1
|
Liu W, Liu Q, Wang D, Tang BZ. Fluorescent Porous Materials Based on Aggregation-induced Emission for Biomedical Applications. ACS NANO 2024; 18:27206-27229. [PMID: 39344127 DOI: 10.1021/acsnano.4c08882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fluorescent porous materials based on aggregation-induced emission (AIE) are growing into a sparkling frontier in biomedical applications. Exploring those materials represents a win-win integration and has recently progressed at a rapid pace, mainly benefiting from intrinsic advantages including tunable pore size and structure, strong guest molecule encapsulation ability, superior biocompatibility, and photophysical outcomes. With the great significance and rapid progress in this area, this review provides an integrated picture on AIE luminogen-based porous materials. It encompasses inorganic, organic, and inorganic-organic porous materials, exploring fundamental concepts and the relationship between AIE performance and material design and highlighting significant breakthroughs and the latest trends in biomedical applications. In addition, some critical challenges and future perspectives in the development of AIE luminogen-based porous materials are also discussed.
Collapse
Affiliation(s)
- Wanlu Liu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
2
|
Pan Y, Liu L, Mou X, Cai Y. Nanomedicine Strategies in Conquering and Utilizing the Cancer Hypoxia Environment. ACS NANO 2023; 17:20875-20924. [PMID: 37871328 DOI: 10.1021/acsnano.3c07763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cancer with a complex pathological process is a major disease to human welfare. Due to the imbalance between oxygen (O2) supply and consumption, hypoxia is a natural characteristic of most solid tumors and an important obstacle for cancer therapy, which is closely related to tumor proliferation, metastasis, and invasion. Various strategies to exploit the feature of tumor hypoxia have been developed in the past decade, which can be used to alleviate tumor hypoxia, or utilize the hypoxia for targeted delivery and diagnostic imaging. The strategies to alleviate tumor hypoxia include delivering O2, in situ O2 generation, reprogramming the tumor vascular system, decreasing O2 consumption, and inhibiting HIF-1 related pathways. On the other side, hypoxia can also be utilized for hypoxia-responsive chemical construction and hypoxia-active prodrug-based strategies. Taking advantage of hypoxia in the tumor region, a number of methods have been applied to identify and keep track of changes in tumor hypoxia. Herein, we thoroughly review the recent progress of nanomedicine strategies in both conquering and utilizing hypoxia to combat cancer and put forward the prospect of emerging nanomaterials for future clinical transformation, which hopes to provide perspectives in nanomaterials design.
Collapse
Affiliation(s)
- Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
3
|
Vordos N, Gkika DA, Pradakis N, Mitropoulos AC, Kyzas GZ. Therapeutic and Diagnostic Potential of Nanomaterials for Enhanced Biomedical Applications. ADVANCED AND INNOVATIVE APPROACHES OF ENVIRONMENTAL BIOTECHNOLOGY IN INDUSTRIAL WASTEWATER TREATMENT 2023:277-300. [DOI: 10.1007/978-981-99-2598-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Jasrotia P, Nagpal M, Mishra CN, Sharma AK, Kumar S, Kamble U, Bhardwaj AK, Kashyap PL, Kumar S, Singh GP. Nanomaterials for Postharvest Management of Insect Pests: Current State and Future Perspectives. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.811056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Globally, between one quarter and one-third of total grains produced each year are lost during storage mainly through infestation of insect pests. Among the available control options such as chemical and physical techniques, fumigation with aluminum phosphide (AlP) is so far considered the best control strategy against storage insect pests. However, these insect pests are now developing resistance against AIP due to its indiscriminate use due to non-availability of any effective alternative control option. Resistance to AIP among storage insect pests is increasing, and its inhalation has shown adverse effects on animals and human beings. Nanotechnology has opened up a wide range of opportunities in various fields such as agriculture (pesticides, fertilizers, etc.), pharmaceuticals, and electronics. One of the applications of nanotechnology is the usage of nanomaterial-based insecticide formulations for mitigating field and storage insect pests. Several formulations, namely, nanoemulsions, nanosuspensions, controlled release formulations, and solid-based nanopesticides, have been developed with different modes of action and application. The major advantage is their small size which helps in proper spreading on the pest surface, and thus, better action than conventional pesticides is achieved. Besides their minute size, these have no or reduced harmful effects on non-target species. Nanopesticides can therefore provide green and efficient alternatives for the management of insect pests of field and storage. However, an outcry against the utilization of nano-based pesticides is also revealed. It is considered by some that nano-insecticides may also have hazardous effects on humans as well as on the environment. Due to limited available data, nanopesticides have become a double-edged weapon. Therefore, nanomaterials need to be evaluated extensively for their large-scale adoption. In this article, we reviewed the nanoformulations that are developed and have proved effective against the insect pests under postharvest storage of grains.
Collapse
|
5
|
Synthesis of core-brush fluorescent silica nanoparticles with tunable hydrophilicity by ATRP method. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Superhydrophobic/superoleophilic membranes based on covalent silanization of silica nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Long W, Ouyang H, Hu X, Liu M, Zhang X, Feng Y, Wei Y. State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials. Int J Biol Macromol 2021; 186:591-615. [PMID: 34271046 DOI: 10.1016/j.ijbiomac.2021.07.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
Cellulose nanocrystals (CNCs) are a class of sustainable nanomaterials that are obtained from plants and microorganisms. These naturally derived nanomaterials are of abundant hydroxyl groups, well biocompatibility, low cost and biodegradable potential, making them suitable and promising candidates for various applications, especially in biomedical fields. In this review, the recent advances and development on the preparation, surface functionalization and biomedical applications of CNCs-based materials have been summarized and outlined. The main context of this paper could be divided into the following three parts. In the first part, the preparation strategies based on physical, chemical, enzymatic and combination techniques for preparation of CNCs have been summarized. The surface functionalization methods for synthesis CNCs-based materials with designed properties and functions were outlined in the following section. Finally, the current state about applications of CNCs-based materials for tissue engineering, medical hydrogels, biosensors, fluorescent imaging and intracellular delivery of biological agents have been highlighted. Moreover, current issues and future directions about the above aspects have also pointed out and discussed. We believe this review will attract great research attention of scientists from materials, chemistry, biomedicine and other disciplines. It will also provide some important insights on the future development of CNCs-based materials especially in biomedical fields.
Collapse
Affiliation(s)
- Wei Long
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polyer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Kashapov R, Ibragimova A, Pavlov R, Gabdrakhmanov D, Kashapova N, Burilova E, Zakharova L, Sinyashin O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int J Mol Sci 2021; 22:7055. [PMID: 34209023 PMCID: PMC8269010 DOI: 10.3390/ijms22137055] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Encapsulation of cargoes in nanocontainers is widely used in different fields to solve the problems of their solubility, homogeneity, stability, protection from unwanted chemical and biological destructive effects, and functional activity improvement. This approach is of special importance in biomedicine, since this makes it possible to reduce the limitations of drug delivery related to the toxicity and side effects of therapeutics, their low bioavailability and biocompatibility. This review highlights current progress in the use of lipid systems to deliver active substances to the human body. Various lipid compositions modified with amphiphilic open-chain and macrocyclic compounds, peptide molecules and alternative target ligands are discussed. Liposome modification also evolves by creating new hybrid structures consisting of organic and inorganic parts. Such nanohybrid platforms include cerasomes, which are considered as alternative nanocarriers allowing to reduce inherent limitations of lipid nanoparticles. Compositions based on mesoporous silica are beginning to acquire no less relevance due to their unique features, such as advanced porous properties, well-proven drug delivery efficiency and their versatility for creating highly efficient nanomaterials. The types of silica nanoparticles, their efficacy in biomedical applications and hybrid inorganic-polymer platforms are the subject of discussion in this review, with current challenges emphasized.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (A.I.); (R.P.); (D.G.); (N.K.); (E.B.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen J, Yu Y, Zhu B, Han J, Liu C, Liu C, Miao L, Fakudze S. Synthesis of biocompatible and highly fluorescent N-doped silicon quantum dots from wheat straw and ionic liquids for heavy metal detection and cell imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142754. [PMID: 33109369 DOI: 10.1016/j.scitotenv.2020.142754] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 05/28/2023]
Abstract
Silane-based precursors for the synthesis of water-dispersible silicon quantum dots (SiQDs) present harmful effects on both researchers and the environment, due to their high toxicity. Though waste wheat straw is an abundant source of natural silicon, its application towards the synthesis of biocompatible SiQDs for metal detection has not yet been explored. In this study, N-doped SiQDs demonstrating uniform spherical morphologies, excellent water dispersity and strong fluorescence emission with a quantum yield of 28.9% were facilely synthesized by using wheat straw (WS) as silicon source and allyl-3-methylimidazolium chloride (AMIMCl) as nitrogen source. The wheat straw based SiQDs (WS-SiQDs) showed linear fluorescence quenching ((F0-F)/F) with Cr(VI) and Fe(III) concentration in the range of 0-6 × 10-4 M. Following immobilization on hydrophilic silica hydrogels, WS-SiQDs@silica hydrogels demonstrated enhanced fluorescence emission which can selectively detect Cr(VI) and Fe (III) to the limits of 142 and 175 nM, respectively. Moreover, cell imaging results reflected that WS-SiQDs can penetrate the membranes of dental pulp stem cells and react with the nucleuses of the stem cells. The stem cells maintained high viability under the conditions of 24 h incubation and SiQD concentration below 50 mg·L-1, thus indicating low cytotoxicity of WS-SiQDs. The as-prepared SiQDs demonstrated notable structural and fluorescent properties, therefore representing promising biocompatible fluorescent nanomaterials for metal detection and cell imaging.
Collapse
Affiliation(s)
- Jianqiang Chen
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China.
| | - Yang Yu
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Bijun Zhu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, PR China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Chao Liu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, PR China
| | - Chengguo Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing 210042, PR China
| | - Leiying Miao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, PR China.
| | - Sandile Fakudze
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| |
Collapse
|
10
|
New methods in polymer brush synthesis: Non-vinyl-based semiflexible and rigid-rod polymer brushes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Yang G, Liang J, Hu X, Liu M, Zhang X, Wei Y. Recent Advances on Fabrication of Polymeric Composites Based on Multicomponent Reactions for Bioimaging and Environmental Pollutant Removal. Macromol Rapid Commun 2021; 42:e2000563. [PMID: 33543565 DOI: 10.1002/marc.202000563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Indexed: 12/30/2022]
Abstract
As the core of polymer chemistry, manufacture of functional polymers is one of research hotspots over the past several decades. Various polymers are developed for diverse applications due to their tunable structures and unique properties. However, traditional step-by-step preparation strategies inevitably involve some problems, such as separation, purification, and time-consuming. The multicomponent reactions (MCRs) are emerging as environmentally benign synthetic strategies to construct multifunctional polymers or composites with pendant groups and designed structures because of their features, such as efficient, fast, green, and atom economy. This mini review summarizes the latest advances about fabrication of multifunctional fluorescent polymers or adsorptive polymeric composites through different MCRs, including Kabachnik-Fields reaction, Biginelli reaction, mercaptoacetic acid locking imine reaction, Debus-Radziszewski reaction, and Mannich reaction. The potential applications of these polymeric composites in biomedical and environmental remediation are also highlighted. It is expected that this mini-review will promote the development preparation and applications of functional polymers through MCRs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jie Liang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Ni N, Su Y, Wei Y, Ma Y, Zhao L, Sun X. Tuning Nanosiliceous Framework for Enhanced Cancer Theranostic Applications. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nengyi Ni
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Yaoquan Su
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 China
| | - Yuchun Wei
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| |
Collapse
|
13
|
|
14
|
Kaur M, Mayank, Bains D, Singh G, Kaur N, Singh N. The solvent-free one-pot multicomponent tandem polymerization of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) catalyzed by ionic-liquid@Fe3O4 NPs: the development of polyamide gels. Polym Chem 2021. [DOI: 10.1039/d0py01769h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Solvent-free MCTP via Biginelli DHPMs catalyzed by a non-toxic magnetic catalyst (IL1–2@ Fe3O4) in a one-pot reaction was illustrated for the development of fluorescent non-conjugated polyamide gels.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Mayank
- Department of Chemistry
- Indian Institute of Technology Ropar (IIT Ropar)
- Rupnagar
- India
| | - Deepak Bains
- Department of Chemistry
- Indian Institute of Technology Ropar (IIT Ropar)
- Rupnagar
- India
| | - Gagandeep Singh
- Department of Chemistry
- Indian Institute of Technology Ropar (IIT Ropar)
- Rupnagar
- India
| | - Navneet Kaur
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Narinder Singh
- Department of Chemistry
- Indian Institute of Technology Ropar (IIT Ropar)
- Rupnagar
- India
| |
Collapse
|
15
|
Cherif O, Agrebi A, Alves S, Baleizão C, Farinha JP, Allouche F. Synthesis and fluorescence properties of aminocyanopyrrole and aminocyanothiophene esthers for biomedical and bioimaging applications. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Long W, Ouyang H, Zhou C, Wan W, Yu S, Qian K, Liu M, Zhang X, Feng Y, Wei Y. A novel one-pot strategy for fabrication of PEGylated MoS2 composites for pH responsive controlled drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Huang BH, Shen SS, Wei N, Guo XF, Wang H. Fluorescence biosensor based on silicon quantum dots and 5,5'-dithiobis-(2-nitrobenzoic acid) for thiols in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117972. [PMID: 31891868 DOI: 10.1016/j.saa.2019.117972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 05/28/2023]
Abstract
An efficient and stable fluorescent sensor is described for the detection and imaging of thiols. It is making use of silicon quantum dots (SiQDs) which can be rapidly prepared. They were characterized by transmission electron microscopy, X-ray power diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry. The SiQDs have an absorption maximum at 300 nm and displayed blue-green fluorescence with excitation/emission maxima at 410/480 nm. A mixture of SiQDs and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) exhibits strong fluorescence emission which however is quenched within 30 s of incubation with thiols. This is assumed to be due to an inner filter effect caused by the reaction of DTNB and thiols. The following thiols were tested: cysteine, homocysteine, and glutathione. The sensor has a linear response in the 3-100 μM thiol concentration range, and the LODs are between 0.80 and 0.96 μM. The sensor displays low cytotoxicity and was applied to fluorescence imaging of MCF-7 cells and Hela cells where it demonstrated excellent biocompatibility.
Collapse
Affiliation(s)
- Bo-Hui Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - San-San Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Na Wei
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Feng Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
18
|
A novel double polymer modified hydrophobic/hydrophilic stationary phase for liquid chromatography. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Zhou X, Hou C, Chang TL, Zhang Q, Liang JF. Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. Colloids Surf B Biointerfaces 2020; 187:110645. [DOI: 10.1016/j.colsurfb.2019.110645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
|
20
|
Click multiwalled carbon nanotubes: A novel method for preparation of carboxyl groups functionalized carbon quantum dots. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110376. [DOI: 10.1016/j.msec.2019.110376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/28/2023]
|
21
|
Jiang S, Qiu J, Chen S, Guo H, Yang F. Double-detecting fluorescent sensor for ATP based on Cu 2+ and Zn 2+ response of hydrazono-bis-tetraphenylethylene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117568. [PMID: 31654844 DOI: 10.1016/j.saa.2019.117568] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Although all kinds of sensors with unique detecting ability for one guest were reported, the fluorescence sensor with multiple detecting abilities was seldom presented. This work designed and synthesized a novel AIE fluorescence probe bearing double detecting for ATP based on Cu2+ and Zn2+ response of hydrazono-bis-tetraphenylethylene (Bis-TPE). Bis-TPE was prepared in 82% yield with simple procedure. It exhibited strong red AIE fluorescence based on the large conjugated electron effect in aqueous media. It showed outstanding selective sensing abilities for Cu2+ by strong fluorescence quenching and for Zn2+ by red-orange fluorescence change. The sensing mechanism of 1:1 stoichiometric ratios was confirmed by 1H NMR and MS study. The strong red fluorescence of Bis-TPE + Cu2+ system could be recovered by adding ATP. The orange fluorescence of Bis-TPE + Zn2+ system could be quenched by adding Cu2+ and then was recovered by adding ATP. These double detecting abilities for ATP with the "off-on" red fluorescence in Bis-TPE + Cu2+ system and "allochroic-off-on" orange fluorescence in Bis-TPE + Zn2++Cu2+ system were successfully applied to test Cu2+, Zn2+ and ATP in test paper and living cell imaging, displaying the good application prospects for sensing Cu2+, Zn2+ and double detecting ATP in the complicated environment.
Collapse
Affiliation(s)
- Shengjie Jiang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Jiabin Qiu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Shibing Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou, PR China.
| |
Collapse
|
22
|
Chen J, Huang Q, Huang H, Mao L, Liu M, Zhang X, Wei Y. Recent progress and advances in the environmental applications of MXene related materials. NANOSCALE 2020; 12:3574-3592. [PMID: 32016223 DOI: 10.1039/c9nr08542d] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
MXenes are a new type of two-dimensional (2D) transition metal carbide or carbonitride material with a 2D structure similar to graphene. The general formula of MXenes is Mn+1XnTx, in which M is an early transition metal element, X represents carbon, nitrogen and boron, and T is a surface oxygen-containing or fluorine-containing group. These novel 2D materials possess a unique 2D layered structure, large specific surface area, good conductivity, stability, and mechanical properties. Benefitting from these properties, MXenes have received increasing attention and emerged as new substrate materials for exploration of various applications including, energy storage and conversion, photothermal treatment, drug delivery, environmental adsorption and catalytic degradation. The progress on various applications of MXene-based materials has been reviewed; while only a few of them covered environmental remediation, surface modification of MXenes has never been highlighted. In this review, we highlight recent advances and achievements in surface modification and environmental applications (such as environmental adsorption and catalytic degradation) of MXene-based materials. The current studies on the biocompatibility and toxicity of MXenes and related materials are summarized in the following sections. The challenges and future directions of the environmental applications of MXene-based materials are also discussed and highlighted.
Collapse
Affiliation(s)
- Junyu Chen
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Qiang Huang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Hongye Huang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Liucheng Mao
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Meiying Liu
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Xiaoyong Zhang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China. and Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
23
|
He Z, Jiang R, Long W, Huang H, Liu M, Feng Y, Zhou N, Ouyang H, Zhang X, Wei Y. Red aggregation-induced emission luminogen and Gd 3+ codoped mesoporous silica nanoparticles as dual-mode probes for fluorescent and magnetic resonance imaging. J Colloid Interface Sci 2020; 567:136-144. [PMID: 32045735 DOI: 10.1016/j.jcis.2020.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Fluorescence imaging and magnetic resonance imaging have been research hotspots for adjuvant therapy and diagnosis. However, traditional fluorescent probes or contrast agents possess insurmountable weaknesses. In this work, we reported the preparation of dual-mode probes based on mesoporous silica nanomaterials (MSNs), which were doped with an aggregation-induced emission (AIE) dye and Gd3+ through a direct sol-gel method. In this system, the obtained materials emitted strong red fluorescence, in which the maximum emission wavelength was located at 669 nm, and could be applied as effective fluorescence probes for fluorescence microscopy imaging. Furthermore, the introduction of Gd3+ made the nanoparticles effective contrast agents when applied in contrast-enhanced magnetic resonance (MR) imaging because they could improve the contrast of MR imaging. The excellent biocompatibility of these nanoparticles, as demonstrated via a typical CCK-8 assay, and their performance in fluorescence cell imaging and MR imaging shows their potential for applications in biomedical imaging.
Collapse
Affiliation(s)
- Ziyang He
- School of Materials Science and Engineering & Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
| | - Ruming Jiang
- School of Materials Science and Engineering & Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
| | - Wei Long
- School of Materials Science and Engineering & Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China; Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hongye Huang
- School of Materials Science and Engineering & Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
| | - Meiying Liu
- School of Materials Science and Engineering & Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Naigen Zhou
- School of Materials Science and Engineering & Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Xiaoyong Zhang
- School of Materials Science and Engineering & Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
24
|
Huang Z, Chen Y, Wang R, Zhou C, Liu X, Mao L, Yuan J, Tao L, Wei Y. An acrylate AIE-active dye with a two-photon fluorescent switch for fluorescent nanoparticles by RAFT polymerization: synthesis, molecular structure and application in cell imaging. RSC Adv 2020; 10:5704-5711. [PMID: 35497448 PMCID: PMC9049524 DOI: 10.1039/c9ra10430e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 01/04/2023] Open
Abstract
Recently, AIE-active fluorescent materials have attracted extensive investigation due to their significant applications in the fields of memory devices, photomodulation, information displays, sensors, and biological imaging. In this contribution, a novel acrylate AIE-active dye of TPMA was successfully synthesized by Suzuki coupling and acylation reaction, and belongs to the monoclinic crystal system and P21/c space group from the crystal structure analysis, and its fluorescence intensity was stronger with an obvious red shift of emission wavelength as compared with the reported TPB dye. Moreover, the obtained TPMA dye exhibits multi-stimuli-responsivity and a two-photon fluorescent switch with excellent reversibility in the solid state. Subsequently, the corresponding fluorescent polymers of PEG-TM were successfully fabricated via RAFT polymerization of TPMA and PEGMA with a molecular weight of about 25 000 (M n) and narrow polydispersity index (PDI). From 1H NMR analysis, when the feeding ratio of TPMA increased to 32.2% from 19.2%, the molar fraction of TPMA in PEG-TM polymers accordingly increased to 32.8% from 19.5%. In water solution, the as-prepared PEG-TM1 polymers would self-assemble into fluorescent organic nanoparticles (FONs) with diameters ranging from 150 to 250 nm, and their maximum emission wavelength presented at 518 nm with obvious AIE phenomena. Moreover, the as-synthesized PEG-TM polymers have prospective application in biological imaging due to their good fluorescence, high water solubility and excellent biocompatibility.
Collapse
Affiliation(s)
- Zengfang Huang
- School of Materials & Food Engineering, Zhongshan Institute, University of Electronic Science & Technology of China Zhongshan 528402 P. R. China
- School of Materials and Energy, University of Electronic Science & Technology of China Chengdu 610054 P. R. China
| | - Yali Chen
- School of Materials & Food Engineering, Zhongshan Institute, University of Electronic Science & Technology of China Zhongshan 528402 P. R. China
- School of Materials and Energy, University of Electronic Science & Technology of China Chengdu 610054 P. R. China
| | - Runze Wang
- School of Materials & Food Engineering, Zhongshan Institute, University of Electronic Science & Technology of China Zhongshan 528402 P. R. China
- School of Materials and Energy, University of Electronic Science & Technology of China Chengdu 610054 P. R. China
| | - Chaoyue Zhou
- School of Materials & Food Engineering, Zhongshan Institute, University of Electronic Science & Technology of China Zhongshan 528402 P. R. China
- School of Materials and Energy, University of Electronic Science & Technology of China Chengdu 610054 P. R. China
| | - Xiaobo Liu
- School of Materials and Energy, University of Electronic Science & Technology of China Chengdu 610054 P. R. China
| | - Liucheng Mao
- Department of Chemistry, The Tsinghua Center for Frontier Polymer Research, Tsinghua University Beijing 100084 P. R. China
| | - Jinying Yuan
- Department of Chemistry, The Tsinghua Center for Frontier Polymer Research, Tsinghua University Beijing 100084 P. R. China
| | - Lei Tao
- Department of Chemistry, The Tsinghua Center for Frontier Polymer Research, Tsinghua University Beijing 100084 P. R. China
| | - Yen Wei
- Department of Chemistry, The Tsinghua Center for Frontier Polymer Research, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
25
|
Yang G, Huang Q, Huang H, Chen J, Lei Y, Deng F, Liu M, Wen Y, Zhang X, Wei Y. Preparation of cationic poly(ionic liquids) functionalization of silica nanoparticles via multicomponent condensation reaction with significant enhancement of adsorption capacity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Huang H, Jiang R, Feng Y, Ouyang H, Zhou N, Zhang X, Wei Y. Recent development and prospects of surface modification and biomedical applications of MXenes. NANOSCALE 2020; 12:1325-1338. [PMID: 31872839 DOI: 10.1039/c9nr07616f] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MXenes, as a novel kind of two-dimensional (2D) materials, were first discovered by Gogotsi et al. in 2011. Owing to their multifarious chemical compositions and outstanding physicochemical properties, the novel types of 2D materials have attracted intensive research interest for potential applications in various fields such as energy storage and conversion, environmental remediation, catalysis, and biomedicine. Although many achievements have been made in recent years, there still remains a lack of reviews to summarize these recent advances of MXenes, especially in biomedical fields. Understanding the current status of surface modification, biomedical applications and toxicity of MXenes and related materials will give some inspiration to the development of novel methods for the preparation of multifunctional MXene-based materials and promote the practical biomedical applications of MXenes and related materials. In this review, we present the recent developments in the surface modification of MXenes and the biomedical applications of MXene-based materials. In the first section, some typical surface modification strategies were introduced and the related issues were also discussed. Then, the potential biomedical applications (such as biosensor, biological imaging, photothermal therapy, drug delivery, theranostic nanoplatforms, and antibacterial agents) of MXenes and related materials were summarized and highlighted in the following sections. In the last section, the toxicity and biocompatibility of MXenes in vitro were mentioned. Finally, the development, future directions and challenges about the surface modification of MXene-based materials for biomedical applications were discussed. We believe that this review article will attract great interest from the scientists in materials, chemistry, biomedicine and related fields and promote the development of MXenes and related materials for biomedical applications.
Collapse
Affiliation(s)
- Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
He Y, Qin L, Huang Y, Ma C. Advances of Nano-Structured Extended-Release Local Anesthetics. NANOSCALE RESEARCH LETTERS 2020; 15:13. [PMID: 31950284 PMCID: PMC6965527 DOI: 10.1186/s11671-019-3241-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/26/2019] [Indexed: 05/08/2023]
Abstract
Extended-release local anesthetics (LAs) have drawn increasing attention with their promising role in improving analgesia and reducing adverse events of LAs. Nano-structured carriers such as liposomes and polymersomes optimally meet the demands of/for extended-release, and have been utilized in drug delivery over decades and showed satisfactory results with extended-release. Based on mature technology of liposomes, EXPAREL, the first approved liposomal LA loaded with bupivacaine, has seen its success in an extended-release form. At the same time, polymersomes has advances over liposomes with complementary profiles, which inspires the emergence of hybrid carriers. This article summarized the recent research successes on nano-structured extended-release LAs, of which liposomal and polymeric are mainstream systems. Furthermore, with continual optimization, drug delivery systems carry properties beyond simple transportation, such as specificity and responsiveness. In the near future, we may achieve targeted delivery and controlled-release properties to satisfy various analgesic requirements.
Collapse
Affiliation(s)
- Yumiao He
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Linan Qin
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China.
| | - Chao Ma
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, 100730, China.
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
28
|
Amourizi F, Dashtian K, Ghaedi M. Polyvinylalcohol-citrate-stabilized gold nanoparticles supported congo red indicator as an optical sensor for selective colorimetric determination of Cr(III) ion. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Satheeshkumar M, Kumar ER, Indhumathi P, Srinivas C, Deepty M, Sathiyaraj S, Suriyanarayanan N, Sastry D. Structural, morphological and magnetic properties of algae/CoFe2O4 and algae/Ag-Fe-O nanocomposites and their biomedical applications. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Martín-Gracia B, Martín-Barreiro A, Cuestas-Ayllón C, Grazú V, Line A, Llorente A, M. de la Fuente J, Moros M. Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. J Mater Chem B 2020; 8:6710-6738. [DOI: 10.1039/d0tb00861c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selecting the appropriate nanoparticle, functionalization chemistry and sensing methodology can speed up the translation of liquid biopsies into the clinic.
Collapse
Affiliation(s)
- Beatriz Martín-Gracia
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - Alba Martín-Barreiro
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | | | - Valeria Grazú
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - Aija Line
- Latvian Biomedical Research and Study Centre
- Riga
- Latvia
| | - Alicia Llorente
- Department of Molecular Cell Biology
- Institute for Cancer Research
- Oslo University Hospital
- Oslo
- Norway
| | - Jesús M. de la Fuente
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - María Moros
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| |
Collapse
|
31
|
|
32
|
Synthesis and characterization of biocompatible hydrogel based on hydroxyethyl cellulose-g-poly(hydroxyethyl methacrylate). Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02962-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Kritchenkov AS, Egorov AR, Artemjev AA, Kritchenkov IS, Volkova OV, Kurliuk AV, Shakola TV, Rubanik VV, Rubanik VV, Tskhovrebov AG, Yagafarov NZ, Khrustalev VN. Ultrasound-assisted catalyst-free thiol-yne click reaction in chitosan chemistry: Antibacterial and transfection activity of novel cationic chitosan derivatives and their based nanoparticles. Int J Biol Macromol 2019; 143:143-152. [PMID: 31805332 DOI: 10.1016/j.ijbiomac.2019.11.241] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 11/17/2022]
Abstract
In this work, we demonstrate that the thiol-yne click reaction could be efficiently mediated by ultrasonic irradiation and implement the ultrasound-assisted thiol-yne click reaction to chitosan chemistry as a polymer-analogous transformation. We optimize power and frequency of ultrasound to preserve selectivity of the click reaction and avoid ultrasonic degradation of the chitosan polymer chain. Thus, we obtain a new water-soluble betaine. Using ionic gelation of the obtained betaine derivatives of chitosan, we prepare nanoparticles with a unimodal size distribution. Furthermore, we present results of antibacterial and transfection activity tests for the chitosan derivatives and their based nanoparticles. The derivative with a medium molecular weight and a high degree of substitution demonstrated the best antibacterial effect. It derived nanoparticles with a size of ca. 100 nm and ζ-potential of ca. +69 mV revealed even higher antibacterial activity, slightly superior to commercial antibiotics ampicillin and gentamicin. On the contrary, the obtained polymers possess a much more pronounced transfection activity as compared with their based nanoparticles and species with a low degree of substitution acts as the most efficient transfecting agent. Moreover, the obtained betaine chitosan derivatives as well as their derived nanoparticles are non-toxic.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus.
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Alexey A Artemjev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Ilya S Kritchenkov
- Saint Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russian Federation
| | - Olga V Volkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Tatsiana V Shakola
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Alexander G Tskhovrebov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Building 1, Moscow 119991, Russian Federation
| | - Niyaz Z Yagafarov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Pirogov Russian National Research Medical University, 1 Ostrovityanov Street, Moscow 117997, Russian Federation
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
34
|
Yang G, Huang H, Chen J, Gan D, Deng F, Huang Q, Wen Y, Liu M, Zhang X, Wei Y. Preparation of ionic liquids functionalized nanodiamonds-based composites through the Michael addition reaction for efficient removal of environmental pollutants. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Amino Acid-functionalized hollow mesoporous silica nanospheres as efficient biocompatible drug carriers for anticancer applications. Int J Pharm 2019; 572:118709. [DOI: 10.1016/j.ijpharm.2019.118709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/16/2023]
|
36
|
He Z, Jiang R, Long W, Huang H, Liu M, Chen J, Deng F, Zhou N, Zhang X, Wei Y. The combination of Diels-Alder reaction and redox polymerization for preparation of functionalized CNTs for intracellular controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110442. [PMID: 32228901 DOI: 10.1016/j.msec.2019.110442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
Carbon nanotubes (CNTs) are a novel type of one-dimensional carbon nanomaterials that have been widely utilized for biomedical applications such as drug delivery, cancer photothermal treatment owing to their high surface area and unique interaction with cell membranes. However, their biomedical applications are still impeded by some drawbacks, including poor water dispersibility, lack of functional groups and toxicity. Therefore, surface modification of CNTs to overcome these issues should be importance and of great interest. In this work, we reported for the first time that CNTs could be surface modification through the combination of Diels-Alder (D-A) reaction and redox polymerization, this strategy shows the advantages of mild reaction conditions, water tolerance, low temperature and hydroxyl-surfaced initiator. In this modification procedure, the hydroxyl groups were introduced on the surface of CNTs through the D-A reaction that was adopted for grafting the copolymers, which were initiated by the Ce(IV)/HNO3 redox system using the hydrophilic and biocompatible poly(ethylene glycol) methyl ether methacrylate (PEGMA) and carboxyl-rich acrylic acid (AA) as monomers. The final CNTs-OH-PAA@PEGMA composites were characterized by a series of characterization techniques. The drug loading and release results suggested that anticancer agent cis‑platinum (CDDP) could be loaded on CNTs-OH-PAA@PEGMA composites through coordination with carboxyl groups and drug release behavior could be controlled by pH. More importantly, the cell viability results clearly demonstrated that CNTs-OH-PAA@PEGMA composites displayed low toxicity and the drug could be transported in cells and still maintain their therapeutic effects.
Collapse
Affiliation(s)
- Ziyang He
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ruming Jiang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Wei Long
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
37
|
Long W, Ouyang H, Wan W, Yan W, Zhou C, Huang H, Liu M, Zhang X, Feng Y, Wei Y. "Two in one": Simultaneous functionalization and DOX loading for fabrication of nanodiamond-based pH responsive drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110413. [PMID: 31923965 DOI: 10.1016/j.msec.2019.110413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/13/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023]
Abstract
Nanodiamond (ND) has been widely studied as a new type of carbon nanomaterials that is expected to be used as a promising candidate in various fields especially in the field of biomedicine. However, its poor water dispersibility and insufficient controlled release limit its practical applications. In this paper, ND-based composites with pH-responsive hydrazone bonds were successfully prepared by a simple chemical reaction between ester groups and hydrazine hydrate, in which ester groups were conjugated on the surface of ND via thiol-ene click reaction. On the other hand, CHO-PEG and doxorubicin hydrochloride (DOX) were linked on the carriers through formation of hydrazone bonds, resulting in improving water dispersibility and high drug loading capacity. The structure, thermal stability, surface morphology and particle size of ND carriers were characterized by different equipment. Results demonstrated that we have successfully prepared these functionalized ND. The release rate of DOX in acidic environment was significantly greater than that in normal physiological environment. More importantly, cell viability and optical imaging results showed that ND-based composites possess good biocompatibility, therapeutic effect, and could successfully transport DOX to HepG2 cells. Considering the above results, we believe that our new ND carriers will become promising candidates for intracellular controlled drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Wei Long
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Weimin Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wenfeng Yan
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chaoqun Zhou
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
38
|
Ahmed HB. Recruitment of various biological macromolecules in fabrication of gold nanoparticles: Overview for preparation and applications. Int J Biol Macromol 2019; 140:265-277. [DOI: 10.1016/j.ijbiomac.2019.08.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 11/26/2022]
|
39
|
Fernandes RS, Raimundo IM, Pimentel MF. Revising the synthesis of Stöber silica nanoparticles: A multivariate assessment study on the effects of reaction parameters on the particle size. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Shahzad MK, Zhang Y, Raza A, Ikram M, Qi K, Khan MU, Aslam MJ, Alhazaa A. Polymer Microfibers Incorporated with Silver Nanoparticles: a New Platform for Optical Sensing. NANOSCALE RESEARCH LETTERS 2019; 14:270. [PMID: 31396725 PMCID: PMC6687803 DOI: 10.1186/s11671-019-3108-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
The enhanced sensitivity of up-conversion luminescence is imperative for the application of up-conversion nanoparticles (UCNPs). In this study, microfibers were fabricated after co-doping UCNPs with polymethylmethacrylate (PMMA) and silver (Ag) solutions. Transmission losses and sensitivities of UCNPs (tetrogonal-LiYF4:Yb3+/Er3+) in the presence and absence of Ag were investigated. Sensitivity of up-conversion luminescence with Ag (LiYF4:Yb3+/Er3+/Ag) is 0.0095 K-1 and reduced to (LiYF4:Yb3+/Er3+) 0.0065 K-1 without Ag at 303 K under laser source (980 nm). The UCNP microfibers with Ag showed lower transmission losses and higher sensitivity than without Ag and could serve as promising candidate for optical applications. This is the first observation of Ag-doped microfiber via facile method.
Collapse
Affiliation(s)
- Muhammad Khuram Shahzad
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Yundong Zhang
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China.
| | - Adil Raza
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University, Lahore, Punjab, 54000, Pakistan
| | - Kaiyue Qi
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Muhammad Usman Khan
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Muhammad Jehanzaib Aslam
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Abdulaziz Alhazaa
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia.
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
41
|
Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B Biointerfaces 2019; 180:411-428. [DOI: 10.1016/j.colsurfb.2019.05.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
|
42
|
Highly efficient aggregation-induced emission and stimuli-responsive fluorochromism triggered by carborane-induced charge transfer state. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Bahavarnia F, Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N, Hassanzadeh A. Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: A new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD). Int J Biol Macromol 2019; 138:744-754. [PMID: 31326512 DOI: 10.1016/j.ijbiomac.2019.07.109] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/28/2023]
Abstract
Ovarian cancer is the first and most important cause of malignancy death in women. Mucin 16 or MUC16 protein also known as carcinoma antigen 125 (CA 125) is the most commonly used glycoprotein for early stage diagnosis of ovarian cancer. In this work, a novel paper-based bio-device through hand writing of Ag/RGO (silver nanoparticles/reduced graphene oxide) nano-ink on the flexible paper substrate using pen-on-paper technology was developed. The prepared interface was used to the recognition of CA 125 protein in human biofluid. For this purpose, Ag/rGO nano-ink was synthesized by deposition of Ag nanoparticles onto graphene oxide sheets and the reduction of graphene oxide to rGO simultaneously. Conductivity and resistance of conductive lines were studied after drawing on photographic paper. Subsequently, to prepare a new and unique immuno-device, paper electrode modified by cysteamine caped gold nanoparticles (CysA/Au NPs) using electrochemical techniques. CysA is bonded by sulfur atoms with Au (CysA/Au NPs), and from the amine group with hydroxyl and carboxyl groups of Ag/RGO nano-ink deposited on the surface of paper-based electrodes (CysA/Au NPs/Ag-rGO). Then, anti-CA 125 antibody was immobilized on the electrode surface through Au NPs and CA 125 positively charged amine groups interaction. Atomic force microscopy, Transmission electron microscopy, Field emission scanning electron microscopy, and dynamic light scattering, were performed to identify the engineered immunosensor. Using chronoamperometry technique and under the optimized conditions, the low limit of quantitation (LLOQ) for the proposed immunoassay was recorded as 0.78 U/ml, which this evaluation was performed at highly linear range of 0.78-400 U/ml. The high sensitivity of the electrochemical immunosensor device is indicative of the ability of this immuno-device to detect early stages ovarian cancer.
Collapse
Affiliation(s)
- Farnas Bahavarnia
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Hassanpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Nasrin Shadjou
- Nanotechnology Research Center, Urmia University, Urmia, Iran
| | - Ahmad Hassanzadeh
- Department of Processing, Helmholtz-Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Chemnitzer Str. 40, 09599 Freiberg, Germany
| |
Collapse
|
44
|
Cui Y, Huang H, Liu M, Chen J, Deng F, Zhou N, Zhang X, Wei Y. Facile preparation of luminescent cellulose nanocrystals with aggregation-induced emission feature through Ce(IV) redox polymerization. Carbohydr Polym 2019; 223:115102. [PMID: 31426952 DOI: 10.1016/j.carbpol.2019.115102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
Cellulose nanocrystals (CNCs) are a novel type of natural nanomaterials that have attracted tremendous research interest for various applications especially in the biomedical fields owing to their natural origin, biodegradable potential, remarkable biocompatibility and massive reactive hydroxyl groups. In this work, a novel strategy has been developed for fabrication of luminescent CNCs with aggregation-induced emission (AIE) feature for the first time through a facile one-step Ce(IV) redox polymerization for direct surface grafting of AIE dye (PhE) and hydrophilic monomer Poly(ethylene glycol) monomethyl ether acrylate (PEGMA) on CNCs. Various characterization techniques would demonstrate the successful preparation of resultant CNC-PhE-PEGMA with uniform nanoscale size, remarkable fluorescent properties and extremely low cytotoxicity. Furthermore, compared with conventional modification strategy of CNCs, Ce(IV) redox polymerization only need moderate temperature and can operate in aqueous solution utilizing surface hydroxyl groups of CNCs as polymerization activity sites. More importantly, CNC-PhE-PEGMA show desirable fluorescent properties and can be used for cell dyeing, indicating their potential for biomedical applications.
Collapse
Affiliation(s)
- Yi Cui
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, PR China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
45
|
Yuan J, Zeng C, Cao W, Zhou X, Pan Y, Xie Y, Zhang Y, Yang Q, Wang S. Bufalin-Loaded PEGylated Liposomes: Antitumor Efficacy, Acute Toxicity, and Tissue Distribution. NANOSCALE RESEARCH LETTERS 2019; 14:223. [PMID: 31278603 PMCID: PMC6611856 DOI: 10.1186/s11671-019-3057-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/19/2019] [Indexed: 05/08/2023]
Abstract
Bufalin, derived from Venenum Bufonis, exerts antitumor effects but has low bioavailability and adverse effects when administered as a single agent. The purpose of this study was to evaluate the physical and chemical properties, antitumor efficacy, general pharmacology, acute toxicity, and tissue distribution profile of bufalin-loaded PEGylated liposomes (BF/PEG-LP), which were prepared in a previous study. To evaluate the safety of the preparation, a red blood cell hemolysis test was performed, which indicated that the hemolysis rate of BF/PEG-LP was significantly lower than that of bufalin alone. Cell viability assay revealed that the blank liposomes were nontoxic. In an in vitro experiment, BF/PEG-LP dose-dependently induced the apoptosis of HepG2, HCT116, A549, and U251 cancer cells, with half-maximal inhibitory concentration (IC50) values of 21.40 ± 2.39, 21.00 ± 3.34, 43.39 ± 6.43, and 31.14 ± 2.58 ng/mL, respectively, at 24 h. Tumor xenograft experiments in nude mice showed that BF/PEG-LP significantly inhibited the growth of U251 cells. Pharmacological evaluation revealed that BF/PEG-LP impacted the general behavior, independent activities, and coordination of mice after a week of administration compared with those of mice in the control group. In an acute toxicity test, the median lethal concentration (LD50) of BF and BF/PEG-LP in mice was 0.156 and 3.03 mg/kg, respectively. Tissue distribution profiles showed that the BF concentration in brain tissue was 20% higher, whereas that in heart tissue was 30% lower when BF/PEG-LP was administered to mice compared with BF. Thus, BF/PEG-LP exhibited lower hemolysis and cytotoxicity and improved pharmacokinetic and antitumor properties compared with bufalin alone, indicating its potential for future pharmacological application, particularly for glioma treatment.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Cheng Zeng
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Wei Cao
- Shannxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling, China
| | - Xuanxuan Zhou
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Yang Pan
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Yanhua Xie
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Yifang Zhang
- Shaanxi Pharmaceutical Development Center, Xi’an, China
| | - Qian Yang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| |
Collapse
|
46
|
Khademi S, Sarkar S, Shakeri-Zadeh A, Attaran N, Kharrazi S, Ay MR, Azimian H, Ghadiri H. Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: An in vivo study. Int J Biochem Cell Biol 2019; 114:105554. [PMID: 31276787 DOI: 10.1016/j.biocel.2019.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 11/15/2022]
Abstract
The development of various cost-effective multifunctional contrast agent for specific targeting molecular imaging of tumors presents a great challenge. We report here the in vivo targeting imaging of folic acid (FA) gold nanoparticles (AuNPs) through cysteamine (Cys) linking for targeted of human nasopharyngeal head and neck cancer by computed tomography (CT). The toxicity of nanoparticles in kidney, heart, spleen, brain and liver was evaluated by H&E (hematoxylin and eosin) assay. We showed that the formed FA-Cys-AuNPs with an Au core size of ˜13 nm are non-cytotoxic in the particle concentration of 3 × 103 μg/ ml. The nude mice were scanned using a 64-slice CT scan with parameters (80 kVp, slice thickness: 0.625 mm, mAs: 200, pitch: 1). CT scan was performed before and after (Three and six hours) I.V (Intra Venous) injection of AuNPs and FA-Cys-AuNPs. The distribution of nanoparticles in the nude mice was evaluated by imaging and coupled plasma optical emission spectrometry (ICP-OES) analysis. The findings clearly illustrated that a small tumor, which is undetectable via computed tomography, is enhanced by X-ray attenuation and becomes visible (4.30-times) by the molecularly targeted AuNPs. It was further demonstrated that active tumor cells targeting (FA-Cys-AuNPs) is more specific and efficient (2.03-times) than passive targeting AuNPs. According to the results, FA-Cys-AuNPs can be employed as a promising contrast agent in CT scan imaging and maybe in radiotherapy that require enhanced radiation dose.
Collapse
Affiliation(s)
- Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Sarkar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ghadiri
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
A review on application of Nano-structures and Nano-objects with high potential for managing different aspects of bone malignancies. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Gharieh A, Khoee S, Mahdavian AR. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Adv Colloid Interface Sci 2019; 269:152-186. [PMID: 31082544 DOI: 10.1016/j.cis.2019.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
In recent years, polymer nanoparticles (PNPs) have found their ways into numerous applications extending from electronics to photonics, conducting materials to sensors and medicine to biotechnology. Physical properties and surface morphology of PNPs are the most important parameters that significantly affect on their exploitations and can be controlled through the synthesis process. Emulsion and miniemulsion techniques are among the most efficient and wide-spread methods for preparation of PNPs. The objective of this review is to present and highlight the recent developments in the advanced PNPs with specific properties that are produced through emulsion and miniemulsion processes.
Collapse
Affiliation(s)
- Ali Gharieh
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran.
| |
Collapse
|
49
|
Bio-assay: The best alternative for conventional methods in detection of epidermal growth factor. Int J Biol Macromol 2019; 133:624-639. [DOI: 10.1016/j.ijbiomac.2019.04.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
|
50
|
Lee KC, Lo PY, Lee GY, Zheng JH, Cho EC. Carboxylated carbon nanomaterials in cell cycle and apoptotic cell death regulation. J Biotechnol 2019; 296:14-21. [DOI: 10.1016/j.jbiotec.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/27/2022]
|