1
|
Hu B, Chen J, Gao Z, Chen L, Cao T, Li H, Yu Q, Wang C, Gan Z. Biodegradable MXene Quantum Dots with High Near-Infrared Photothermal Performance for Cancer Treatment. ACS APPLIED BIO MATERIALS 2024; 7:4339-4351. [PMID: 38850279 DOI: 10.1021/acsabm.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Photothermal therapy (PTT) offers significant potential in cancer treatment due to its short, simple, and less harmful nature. However, obtaining a photothermal agent (PTA) with good photothermal performance and biocompatibility remains a challenge. MXenes, which are PTAs, have shown promising results in cancer treatment. This study presents the preparation of Ti3C2 MXene quantum dots (MXene QDs) using a simple hydrothermal and ultrasonic method and their use as a PTA for cancer treatment. Compared to conventional MXene QDs synthesized using only the hydrothermal method, the ultrasonic process increased the degree of oxidation on the surface of the MXene QDs. This resulted in the presence of more hydrophilic groups such as hydroxyl groups on the MXene QD surfaces, leading to excellent dispersion in the aqueous system and biocompatibility of the prepared MXene QDs without the need for surface modification. The MXene QDs showed great photothermal performance with a photothermal conversion efficiency of 62.5%, resulting in the highest photothermal conversion efficiency among similar materials reported thus far. Both in vitro and in vivo experiments have proved the potent tumor inhibitory effect of the MXene QD-mediated PTT, with minimal harm to mice. Therefore, these MXene QDs hold a significant promise for clinical applications.
Collapse
Affiliation(s)
- Bingxuan Hu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zeyu Gao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tengyang Cao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Helang Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingsong Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Caiqi Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Gan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Báez DF. Graphene-Based Nanomaterials for Photothermal Therapy in Cancer Treatment. Pharmaceutics 2023; 15:2286. [PMID: 37765255 PMCID: PMC10535159 DOI: 10.3390/pharmaceutics15092286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Graphene-based nanomaterials (GBNMs), specifically graphene oxide (GO) and reduced graphene oxide (rGO), have shown great potential in cancer therapy owing to their physicochemical properties. As GO and rGO strongly absorb light in the near-infrared (NIR) region, they are useful in photothermal therapy (PTT) for cancer treatment. However, despite the structural similarities of GO and rGO, they exhibit different influences on anticancer treatment due to their different photothermal capacities. In this review, various characterization techniques used to compare the structural features of GO and rGO are first outlined. Then, a comprehensive summary and discussion of the applicability of GBNMs in the context of PTT for diverse cancer types are presented. This discussion includes the integration of PTT with secondary therapeutic strategies, with a particular focus on the photothermal capacity achieved through near-infrared irradiation parameters and the modifications implemented. Furthermore, a dedicated section is devoted to studies on hybrid magnetic-GBNMs. Finally, the challenges and prospects associated with the utilization of GBNM in PTT, with a primary emphasis on the potential for clinical translation, are addressed.
Collapse
Affiliation(s)
- Daniela F. Báez
- Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile;
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
3
|
Naderi N, Lalebeigi F, Sadat Z, Eivazzadeh-Keihan R, Maleki A, Mahdavi M. Recent advances on hyperthermia therapy applications of carbon-based nanocomposites. Colloids Surf B Biointerfaces 2023; 228:113430. [PMID: 37418814 DOI: 10.1016/j.colsurfb.2023.113430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Generally, hyperthermia is referred to the composites capability to increase local temperature in such a way that the generated heat would lead to cancerous or bacteria cells destruction, with minimum damage to normal tissue cells. Many different materials have been utilized for hyperthermia application via different heat generating methods. Carbon-based nanomaterials consisting of graphene oxide (GO), carbon nanotube (CNT), carbon dot (CD) and carbon quantum dot (CQD), nanodiamond (ND), fullerene and carbon fiber (CF), have been studied significantly for different applications including hyperthermia due to their biocompatibility, biodegradability, chemical and physical stability, thermal and electrical conductivity and in some cases photothermal conversion. Therefore, in this comprehensive review, a structure-based view on carbon nanomaterials application in hyperthermia therapy of cancer and bacteria via various methods such as optical, magnetic, ultrasonic and radiofrequency-induced hyperthermia is presented.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Bellier N, Baipaywad P, Ryu N, Lee JY, Park H. Recent biomedical advancements in graphene oxide- and reduced graphene oxide-based nanocomposite nanocarriers. Biomater Res 2022; 26:65. [DOI: 10.1186/s40824-022-00313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/30/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractRecently, nanocarriers, including micelles, polymers, carbon-based materials, liposomes, and other substances, have been developed for efficient delivery of drugs, nucleotides, and biomolecules. This review focuses on graphene oxide (GO) and reduced graphene oxide (rGO) as active components in nanocarriers, because their chemical structures and easy functionalization can be valuable assets for in vitro and in vivo delivery. Herein, we describe the preparation, structure, and functionalization of GO and rGO. Additionally, their important properties to function as nanocarriers are presented, including their molecular interactions with various compounds, near-infrared light adsorption, and biocompatibility. Subsequently, their mechanisms and the most appealing examples of their delivery applications are summarized. Overall, GO- and rGO-based nanocomposites show great promise as multipurpose nanocarriers owing to their various potential applications in drug and gene delivery, phototherapy, bioimaging, biosensing, tissue engineering, and as antibacterial agents.
Collapse
|
6
|
Gollavelli G, Ghule AV, Ling YC. Multimodal Imaging and Phototherapy of Cancer and Bacterial Infection by Graphene and Related Nanocomposites. Molecules 2022; 27:5588. [PMID: 36080351 PMCID: PMC9457605 DOI: 10.3390/molecules27175588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022] Open
Abstract
The advancements in nanotechnology and nanomedicine are projected to solve many glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the top five most dangerous deadly diseases worldwide by the WHO. There is great concern to eradicate these problems with accurate diagnosis and therapies. Among many developed therapeutic models, near infra-red mediated phototherapy is a non-invasive technique used to invade many persistent tumors and bacterial infections with less inflammation compared with traditional therapeutic models such as radiation therapy, chemotherapy, and surgeries. Herein, we firstly summarize the up-to-date research on graphene phototheranostics for a better understanding of this field of research. We discuss the preparation and functionalization of graphene nanomaterials with various biocompatible components, such as metals, metal oxides, polymers, photosensitizers, and drugs, through covalent and noncovalent approaches. The multifunctional nanographene is used to diagnose the disease with confocal laser scanning microscopy, magnetic resonance imaging computed tomography, positron emission tomography, photoacoustic imaging, Raman, and ToF-SMIS to visualize inside the biological system for imaging-guided therapy are discussed. Further, treatment of disease by photothermal and photodynamic therapies against different cancers and bacterial infections are carefully conferred herein along with challenges and future perspectives.
Collapse
Affiliation(s)
- Ganesh Gollavelli
- Department of Humanities and Basic Sciences, Aditya Engineering College, Surampalem, Jawaharlal Nehru Technological University Kakinada, Kakinada 533437, Andhra Pradesh, India
| | - Anil V. Ghule
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
7
|
Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 2022; 350:26-59. [PMID: 35964787 DOI: 10.1016/j.jconrel.2022.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in nanotechnology have enabled us to develop sophisticated multifunctional nanoparticles or nanosystems for targeted diagnosis and treatment of several illnesses, including cancers. To effectively treat any solid tumor, the therapy should preferably target just the malignant cells/tissue with minor damage to normal cells/tissues. Graphene oxide (GO) nanoparticles have gained considerable interest owing to their two-dimensional planar structure, chemical/mechanical stability, excellent photosensitivity, superb conductivity, high surface area, and good biocompatibility in cancer therapy. Many compounds have been functionalized on the surface of GO to increase their biological applications and minimize cytotoxicity. The review presents an overview of the physicochemical characteristics, strategies for various modifications, toxicity and biocompatibility of graphene and graphene oxide, current trends in developing GO-based nano constructs as a drug delivery cargo and other biological applications, including chemo-photothermal therapy, chemo-photodynamic therapy, bioimaging, and theragnosis in cancer. Further, the review discusses the challenges and opportunities of GO, GO-based nanomaterials for the said applications. Overall, the review focuses on the therapeutic potential of strategically developed GO nanomedicines and comprehensively discusses their opportunities and challenges in cancer therapy.
Collapse
Affiliation(s)
- Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sree Lakshmi Vemula
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahima Tejasvni Gupta
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahesh Vilasrao Giram
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sangishetty Akhil Kumar
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
8
|
Porrang S, Davaran S, Rahemi N, Allahyari S, Mostafavi E. How Advancing are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature. Int J Nanomedicine 2022; 17:1803-1827. [PMID: 35498391 PMCID: PMC9043011 DOI: 10.2147/ijn.s353349] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
The application of mesoporous silica nanoparticles (MSNs) is ubiquitous in various sciences. MSNs possess unique features, including the diversity in manufacturing by different synthesis methods and from different sources, structure controllability, pore design capabilities, pore size tunability, nanoparticle size distribution adjustment, and the ability to create diverse functional groups on their surface. These characteristics have led to various types of MSNs as a unique system for drug delivery. In this review, first, the synthesis of MSNs by different methods via using different sources were studied. Then, the parameters affecting their physicochemical properties and functionalization have been discussed. Finally, the last decade's novel strategies, including surface functionalization, drug delivery, and cancer treatment, based on the MSNs in drug delivery and cancer therapy have been addressed.
Collapse
Affiliation(s)
- Sahar Porrang
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Environmental Engineering Research Centre, Sahand University of Technology, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Centre for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Rahemi
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Environmental Engineering Research Centre, Sahand University of Technology, Tabriz, Iran
| | - Somaiyeh Allahyari
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Environmental Engineering Research Centre, Sahand University of Technology, Tabriz, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Fan S, Lin W, Huang Y, Xia J, Xu JF, Zhang J, Pi J. Advances and Potentials of Polydopamine Nanosystem in Photothermal-Based Antibacterial Infection Therapies. Front Pharmacol 2022; 13:829712. [PMID: 35321326 PMCID: PMC8937035 DOI: 10.3389/fphar.2022.829712] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Bacterial infection remains one of the most dangerous threats to human health due to the increasing cases of bacterial resistance, which is caused by the extensive use of current antibiotics. Photothermal therapy (PTT) is similar to photodynamic therapy (PDT), but PTT can generate heat energy under the excitation of light of specific wavelength, resulting in overheating and damage to target cells or sites. Polydopamine (PDA) has been proved to show plenty of advantages, such as simple preparation, good photothermal conversion effects, high biocompatibility, and easy functionalization and adhesion. Taking these advantages, dopamine is widely used to synthesize the PDA nanosystem with excellent photothermal effects, good biocompatibility, and high drug loading ability, which therefore play more and more important roles for anticancer and antibacterial treatment. PDA nanosystem-mediated PTT has been reported to induce significant tumor inhibition, as well as bacterial killings due to PTT-induced hyperthermia. Moreover, combined with other cancer or bacterial inhibition strategies, PDA nanosystem-mediated PTT can achieve more effective tumor and bacterial inhibitions. In this review, we summarized the progress of preparation methods for the PDA nanosystem, followed by advances of their biological functions and mechanisms for PTT uses, especially in the field of antibacterial treatments. We also provided advances on how to combine PDA nanosystem-mediated PTT with other antibacterial methods for synergistic bacterial killings. Moreover, we further provide some prospects of PDA nanosystem-mediated PTT against intracellular bacteria, which might be helpful to facilitate their future research progress for antibacterial therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jun-Fa Xu
- *Correspondence: Jun-Fa Xu, ; Junai Zhang, ; Jiang Pi,
| | - Junai Zhang
- *Correspondence: Jun-Fa Xu, ; Junai Zhang, ; Jiang Pi,
| | - Jiang Pi
- *Correspondence: Jun-Fa Xu, ; Junai Zhang, ; Jiang Pi,
| |
Collapse
|
10
|
Chen M, Winston DD, Wang M, Niu W, Cheng W, Guo Y, Wang Y, Luo M, Xie C, Leng T, Qu X, Lei B. Hierarchically multifunctional bioactive nanoglass for integrated tumor/infection therapy and impaired wound repair. MATERIALS TODAY 2022; 53:27-40. [DOI: 10.1016/j.mattod.2022.01.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
11
|
Zhu M, Shi Y, Shan Y, Guo J, Song X, Wu Y, Wu M, Lu Y, Chen W, Xu X, Tang L. Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. J Nanobiotechnology 2021; 19:387. [PMID: 34819084 PMCID: PMC8613963 DOI: 10.1186/s12951-021-01131-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Polydopamine (PDA), which is derived from marine mussels, has excellent potential in early diagnosis of diseases and targeted drug delivery owing to its good biocompatibility, biodegradability, and photothermal conversion. However, when used as a solid nanoparticle, the application of traditional PDA is restricted because of the low drug-loading and encapsulation efficiencies of hydrophobic drugs. Nevertheless, the emergence of mesoporous materials broaden our horizon. Mesoporous polydopamine (MPDA) has the characteristics of a porous structure, simple preparation process, low cost, high specific surface area, high light-to-heat conversion efficiency, and excellent biocompatibility, and therefore has gained considerable interest. This review provides an overview of the preparation methods and the latest applications of MPDA-based nanodrug delivery systems (chemotherapy combined with radiotherapy, photothermal therapy combined with chemotherapy, photothermal therapy combined with immunotherapy, photothermal therapy combined with photodynamic/chemodynamic therapy, and cancer theranostics). This review is expected to shed light on the multi-strategy antitumor therapy applications of MPDA-based nanodrug delivery systems. ![]()
Collapse
Affiliation(s)
- Menglu Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Yifan Shan
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Junyan Guo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Xuelong Song
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yuhua Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Miaolian Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yan Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Wei Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, 310004, Hangzhou, Zhejiang, People's Republic of China.
| | - Longguang Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China. .,International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021; 339:445-472. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Photoactivated therapeutic strategies (photothermal therapy and photodynamic therapy), due to the adjusted therapeutic area, time and light dosage, have prevailed for the fight against tumors. Currently, the monotherapy with limited treatment effect and undesired side effects is gradually replaced by multimodal and multifunctional nanosystems. Mesoporous silica nanoparticles (MSNs) with unique physicochemical advantages, such as huge specific surface area, controllable pore size and morphology, functionalized modification, satisfying biocompatibility and biodegradability, are considered as promising candidates for multimodal photoactivated cancer therapy. Excitingly, the innovative nanoplatforms based on the mesoporous silica nanoparticles provide more and more effective treatment strategies and display excellent antitumor potential. Given the rapid development of antitumor strategies based on MSNs, this review summarizes the current progress in MSNs-based photoactivated cancer therapy, mainly consists of (1) photothermal therapy-related theranostics; (2) photodynamic therapy-related theranostics; (3) multimodal synergistic therapy, such as chemo-photothermal-photodynamic therapy, phototherapy-immunotherapy and phototherapy-radio therapy. Based on the limited penetration of irradiation light in photoactivated therapy, the challenges faced by deep-seated tumor therapy are fully discussed, and future clinical translation of MSNs-based photoactivated cancer therapy are highlighted.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiali Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yinlu Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| |
Collapse
|
13
|
An excellent antibacterial and high self-adhesive hydrogel can promote wound fully healing driven by its shrinkage under NIR. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112395. [PMID: 34579914 DOI: 10.1016/j.msec.2021.112395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
The lacks of antibacterial properties, low adhesion and delayed wound healing of the hydrogel wound dressings limit their applications in wound treatment. To resolve these, a novel hydrogel composed of polydopamine (PDA), Ag and graphene oxide (GO) is fabricated for wound dressing via the chemical crosslinking of N-isopropylacrylamide (NIPAM) and N,N'-methylene bisacrylamide (BIS). The prepared hydrogel containing PDA@Ag5GO1 (Ag5GO1 denotes the mass ratio between Ag and GO is 5:1) exhibits effective antibacterial properties and high inhibition rate against E. coli and S. aureus. It shows high adhesion ability to various substrate materials, implying a simpler method to the wound obtained by self-fixing rather than suturing. More important, it can produce strong contractility under the irradiation of near-infrared light (NIR), exerting a centripetal force that helps accelerate wound healing. Thus, the hydrogel containing a high concentration PDA@Ag5GO1 irradiated by NIR can completely repair the wound defect (1.0 × 1.0 cm2) within 15 days, the wound healing rate can reach 100%, which was far higher than other groups. Taken together, the new hydrogel with excellent antibacterial, high adhesion and strong contractility will subvert the traditional treatment methods on wound defect, extending its new application range in wound dressing.
Collapse
|
14
|
Liu Y, Chen Y, Fei W, Zheng C, Zheng Y, Tang M, Qian Y, Zhang X, Zhao M, Zhang M, Wang F. Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic. Front Bioeng Biotechnol 2021; 9:733792. [PMID: 34557478 PMCID: PMC8452863 DOI: 10.3389/fbioe.2021.733792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Silica-based nanoframeworks have been extensively studied for diagnosing and treating hepatocellular carcinoma (HCC). Several reviews have summarized the advantages and disadvantages of these nanoframeworks and their use as drug-delivery carriers. Encouragingly, these nanoframeworks, especially those with metal elements or small molecular drugs doping into the skeleton structure or modifying onto the surface of nanoparticles, could be multifunctional components participating in HCC diagnosis and treatment rather than functioning only as drug-delivery carriers. Therefore, in this work, we described the research progress of silica-based nanoframeworks involved in HCC diagnosis (plasma biomarker detection, magnetic resonance imaging, positron emission tomography, photoacoustic imaging, fluorescent imaging, ultrasonography, etc.) and treatment (chemotherapy, ferroptotic therapy, radiotherapy, phototherapy, sonodynamic therapy, immunotherapy, etc.) to clarify their roles in HCC theranostics. Further, the future expectations and challenges associated with silica-based nanoframeworks were highlighted. We believe that this review will provide a comprehensive understanding for researchers to design novel, functional silica-based nanoframeworks that can effectively overcome HCC.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Tang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Ying Qian
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Xie X, Tang J, Xing Y, Wang Z, Ding T, Zhang J, Cai K. Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: State-of-the-Art Designs and Biomedical Applications. Adv Healthc Mater 2021; 10:e2002138. [PMID: 33690982 DOI: 10.1002/adhm.202002138] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The translation of mussel-inspired wet adhesion to biomedical engineering fields have catalyzed the emergence of polydopamine (PDA)-based nanomaterials with privileged features and properties of conducting multiple interfacial interactions. Recent concerns and progress on the understanding of PDA's hierarchical structure and progressive assembly are inspiring approaches toward novel nanostructures with property and function advantages over simple nanoparticle architectures. Major breakthroughs in this field demonstrated the essential role of π-π stacking and π-cation interactions in the rational intervention of PDA self-assembly. In this review, the recently emerging concepts in the preparation and application of PDA nanomaterials, including 3D mesostructures, low-dimensional nanostructures, micelle/nanoemulsion based nanoclusters, as well as other multicomponent nanohybrids by the segregation and organization of PDA building blocks on nanoscale interfaces are outlined. The contribution of π-electron interactions on the interfacial loading/release of π electron-rich molecules (nucleic acids, drugs, photosensitizers) and the exogenous coupling of optical energy, as well as the impact of wet-adhesion interactions on the nano-bio interface interplay, are highlighted by discussing the structure-property relationships in their featured applications including fluorescent biosensing, gene therapy, drug delivery, phototherapy, combined therapy, etc. The limitations of current explorations, and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jia Tang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| |
Collapse
|
16
|
Injectable in situ forming hydrogels incorporating dual-nanoparticles for chemo-photothermal therapy of breast cancer cells. Int J Pharm 2021; 600:120510. [PMID: 33766636 DOI: 10.1016/j.ijpharm.2021.120510] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
Chemo-photothermal therapy (chemo-PTT) mediated by nanomaterials holds a great potential for cancer treatment. However, the tumor uptake of the systemically administered nanomaterials was recently found to be below 1%. To address this limitation, the development of injectable tridimensional polymeric matrices capable of delivering nanomaterials directly into the tumor site appears to be a promising approach. In this work, an injectable in situ forming ionotropically crosslinked chitosan-based hydrogel co-incorporating IR780 loaded nanoparticles (IR/BPN) and Doxorubicin (DOX) loaded nanoparticles (DOX/TPN) was developed for application in breast cancer chemo-PTT. The produced hydrogels (IR/BPN@Gel and IR/BPN+DOX/TPN@Gel) displayed suitable physicochemical properties and produced a temperature increase of about 9.1 °C upon exposure to Near Infrared (NIR) light. As importantly, the NIR-light exposure also increased the release of DOX from the hydrogel by 1.7-times. In the in vitro studies, the combination of IR/BPN@Gel with NIR light (photothermal therapy) led to a reduction in the viability of breast cancer cells to 35%. On the other hand, the non-irradiated IR/BPN+DOX/TPN@Gel (chemotherapy) only diminished cancer cells' viability to 85%. In contrast, the combined action of IR/BPN+DOX/TPN@Gel and NIR light reduced cancer cells' viability to about 9%, demonstrating its potential for breast cancer chemo-PTT.
Collapse
|
17
|
Lu J, Cai L, Dai Y, Liu Y, Zuo F, Ni C, Shi M, Li J. Polydopamine-Based Nanoparticles for Photothermal Therapy/Chemotherapy and their Synergistic Therapy with Autophagy Inhibitor to Promote Antitumor Treatment. CHEM REC 2021; 21:781-796. [PMID: 33634962 DOI: 10.1002/tcr.202000170] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Polydopamine (PDA) has attracted much attention recently due to its strong adhesion capability to most substrates. After combining with organic (such as organic metal framework, micelles, hydrogel, polypeptide copolymer) or inorganic nanomaterials (such as gold, silicon, carbon), polydopamine-based nanoparticles (PDA NPs) exhibit the merging of characteristics. Until now, the preparation methods, polymerization mechanism, and photothermal therapy (PTT) or chemotherapy (CT) applications of PDA NPs have been reported detailly. Since the PTT or CT treatment process is often accompanied by exogenous stimuli, tumor cells usually induce pro-survival autophagy to protect the cells from further damage, which will weaken the therapeutic effect. Therefore, an in-depth understanding of PDA NPs modulated PTT, CT, and autophagy is required. However, this association is rarely reviewed. Herein, we briefly described the relationship between PTT/CT, autophagy, and tumor treatment. Then, the outstanding performances of PDA NPs in PTT/CT and their combination with autophagy inhibitors for tumor synergistic therapy have been summarized. This work is expected to shed light on the multi-strategy antitumor therapy applications of PDA NPs.
Collapse
Affiliation(s)
- Jiahui Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Lulu Cai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yue Dai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yawen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Fengmei Zuo
- Jiangsu Vocational College of Medicine, Yancheng, 224000, Jiangsu Province, China
| | - Chen Ni
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| |
Collapse
|
18
|
Wu B, Li M, Wang L, Iqbal Z, Zhu K, Yang Y, Li Y. Size-transformable nanohybrids with pH/redox/enzymatic sensitivity for anticancer therapy. J Mater Chem B 2021; 9:4319-4328. [PMID: 34013937 DOI: 10.1039/d1tb00396h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lack of sufficient tumor penetration and low delivery efficiency are the main reasons for the limited clinical applications of nanocarriers in cancer treatment. Tumor microenvironment responsive drug delivery systems have been attracting great interest in cancer therapy as the desired drug release can be achieved in the disease sites for optimal treatment efficiency. In this work, we developed a biodegradable nanohybrid drug delivery system with pH/redox/enzymatic sensitivity by the simple assembly of bovine serum albumin nano-units (about 5 nm) onto graphene oxide nanosheets in the presence of a naturally originating protein (gelatin). The nanoparticles can maintain a constant size under physiological conditions, while releasing 5 nm nano-units containing the drug upon triggering by the environment-mimicking protease highly expressed in the tumor microenvironment. Furthermore, after reaching the tumor tissue, the acidic, reductive, and enzymatic microenvironments turned on the switch for DOX release, and the combination of chemotherapy and photothermal therapy was achieved under the trigger of near-infrared light. The nanosystems have the potential to improve the penetration ability through the depth of the tumor tissue to enhance drug intracellular delivery and antitumor bioactivity.
Collapse
Affiliation(s)
- Bozhen Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingpei Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liudi Wang
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Zoya Iqbal
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Kaiqi Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuhao Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yulin Li
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
19
|
Jiang C, Zhao H, Xiao H, Wang Y, Liu L, Chen H, Shen C, Zhu H, Liu Q. Recent advances in graphene-family nanomaterials for effective drug delivery and phototherapy. Expert Opin Drug Deliv 2020; 18:119-138. [PMID: 32729733 DOI: 10.1080/17425247.2020.1798400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Owing to the unique properties of graphene, including large specific surface area, excellent thermal conductivity, and optical absorption, graphene-family nanomaterials (GFNs) have attracted extensive attention in biomedical applications, particularly in drug delivery and phototherapy. AREAS COVERED In this review, we point out several challenges involved in the clinical application of GFNs. Then, we provide an overview of the most recent publications about GFNs in biomedical applications, including diverse strategies for improving the biocompatibility, specific targeting and stimuli-responsiveness of GFNs for drug delivery, codelivery of drug and gene, photothermal therapy, photodynamic therapy, and multimodal combination therapy. EXPERT OPINION Although the application of GFNs is still in the preclinical stage, rational modification of GFNs with functional elements or making full use of GFNs-based multimodal combination therapy might show great potential in biomedicine for clinical application.
Collapse
Affiliation(s)
- Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Haiyue Zhao
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Haiyan Xiao
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Huoji Chen
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Hongxia Zhu
- Combining Traditional Chinese and Western Medicine Hospital, Southern Medical University , 510315, Guangzhou, P. R. China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| |
Collapse
|
20
|
Gao Y, Gao D, Shen J, Wang Q. A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies. Front Chem 2020; 8:598722. [PMID: 33330389 PMCID: PMC7732422 DOI: 10.3389/fchem.2020.598722] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Chemotherapy is an important anti-tumor treatment in clinic to date, however, the effectiveness of traditional chemotherapy is limited by its poor selectivity, high systemic toxicity, and multidrug resistance. In recent years, mesoporous silica nanoparticles (MSNs) have become exciting drug delivery systems (DDS) due to their unique advantages, such as easy large-scale production, adjustable uniform pore size, large surface area and pore volumes. While mesoporous silica-based DDS can improve chemotherapy to a certain extent, when used in combination with other cancer therapies MSN based chemotherapy exhibits a synergistic effect, greatly improving therapeutic outcomes. In this review, we discuss the applications of MSN DDS for a diverse range of chemotherapeutic combination anti-tumor therapies, including phototherapy, gene therapy, immunotherapy and other less common modalities. Furthermore, we focus on the characteristics of each nanomaterial and the synergistic advantages of the combination therapies. Lastly, we examine the challenges and future prospects of MSN based chemotherapeutic combination therapies.
Collapse
Affiliation(s)
- Ying Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dongruo Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Emadi F, Emadi A, Gholami A. A Comprehensive Insight Towards Pharmaceutical Aspects of Graphene Nanosheets. Curr Pharm Biotechnol 2020; 21:1016-1027. [PMID: 32188383 DOI: 10.2174/1389201021666200318131422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
Graphene Derivatives (GDs) have captured the interest and imagination of pharmaceutical scientists. This review exclusively provides pharmacokinetics and pharmacodynamics information with a particular focus on biopharmaceuticals. GDs can be used as multipurpose pharmaceutical delivery systems due to their ultra-high surface area, flexibility, and fast mobility of charge carriers. Improved effects, targeted delivery to tissues, controlled release profiles, visualization of biodistribution and clearance, and overcoming drug resistance are examples of the benefits of GDs. This review focuses on the application of GDs for the delivery of biopharmaceuticals. Also, the pharmacokinetic properties and the advantage of using GDs in pharmaceutics will be reviewed to achieve a comprehensive understanding about the GDs in pharmaceutical sciences.
Collapse
Affiliation(s)
- Fatemeh Emadi
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Iran
| | - Arash Emadi
- Faculty of Pharmacy and Pharmaceutical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, P.O. Box: 7146864685, Iran
| |
Collapse
|
22
|
Saravanakumar K, Hu X, Ali DM, Wang MH. Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy. Curr Pharm Des 2020; 25:2609-2625. [PMID: 31603055 DOI: 10.2174/1381612825666190709221141] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
The conventional Drug Delivery System (DDS) has limitations such as leakage of the drug, toxicity to normal cells and loss of drug efficiency, while the stimuli-responsive DDS is non-toxic to cells, avoiding the leakage and degradation of the drug because of its targeted drug delivery to the pathological site. Thus nanomaterial chemistry enables - the development of smart stimuli-responsive DDS over the conventional DDS. Stimuliresponsive DDS ensures spatial or temporal, on-demand drug delivery to the targeted cancer cells. The DDS is engineered by using the organic (synthetic polymers, liposomes, peptides, aptamer, micelles, dendrimers) and inorganic (zinc oxide, gold, magnetic, quantum dots, metal oxides) materials. Principally, these nanocarriers release the drug at the targeted cells in response to external and internal stimuli such as temperature, light, ultrasound and magnetic field, pH value, redox potential (glutathione), and enzyme. The multi-stimuli responsive DDS is more promising than the single stimuli-responsive DDS in cancer therapy, and it extensively increases drug release and accumulation in the targeted cancer cells, resulting in better tumor cell ablation. In this regard, a handful of multi-stimuli responsive DDS is in clinical trials for further approval. A comprehensive review is crucial for addressing the existing knowledge about multi-stimuli responsive DDS, and hence, we summarized the emerging strategies in tailored ligand functionalized stimuli-responsive nanocarriers as the DDS for cancer therapies.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Davoodbasha M Ali
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai - 600048, Tamil Nadu, India
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| |
Collapse
|
23
|
Mun SG, Choi HW, Lee JM, Lim JH, Ha JH, Kang MJ, Kim EJ, Kang L, Chung BG. rGO nanomaterial-mediated cancer targeting and photothermal therapy in a microfluidic co-culture platform. NANO CONVERGENCE 2020; 7:10. [PMID: 32180051 PMCID: PMC7076105 DOI: 10.1186/s40580-020-0220-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/28/2020] [Indexed: 05/15/2023]
Abstract
We developed the microfluidic co-culture platform to study photothermal therapy applications. We conjugated folic acid (FA) to target breast cancer cells using reduced graphene oxide (rGO)-based functional nanomaterials. To characterize the structure of rGO-based nanomaterials, we analyzed the molecular spectrum using UV-visible and Fourier-transform infrared spectroscopy (FT-IR). We demonstrated the effect of rGO-FA-based nanomaterials on photothermal therapy of breast cancer cells in the microfluidic co-culture platform. From the microfluidic co-culture platform with breast cancer cells and human umbilical vein endothelial cells (HUVECs), we observed that the viability of breast cancer cells treated with rGO-FA-based functional nanomaterials was significantly decreased after near-infrared (NIR) laser irradiation. Therefore, this microfluidic co-culture platform could be a potentially powerful tool for studying cancer cell targeting and photothermal therapy.
Collapse
Affiliation(s)
- Seok Gyu Mun
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | | | - Jong Min Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Jae Hyun Lim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | | | - Lifeng Kang
- School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
24
|
Plachá D, Jampilek J. Graphenic Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1758. [PMID: 31835693 PMCID: PMC6956396 DOI: 10.3390/nano9121758] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials have been intensively studied for their properties, modifications, and application potential. Biomedical applications are one of the main directions of research in this field. This review summarizes the research results which were obtained in the last two years (2017-2019), especially those related to drug/gene/protein delivery systems and materials with antimicrobial properties. Due to the large number of studies in the area of carbon nanomaterials, attention here is focused only on 2D structures, i.e. graphene, graphene oxide, and reduced graphene oxide.
Collapse
Affiliation(s)
- Daniela Plachá
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- ENET Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
25
|
Slow degrading hyaluronic acid hydrogel reinforced with cationized graphene nanosheets. Int J Biol Macromol 2019; 141:232-239. [DOI: 10.1016/j.ijbiomac.2019.08.243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022]
|
26
|
Phan LMT, Gul AR, Le TN, Kim MW, Kailasa SK, Oh KT, Park TJ. One-pot synthesis of carbon dots with intrinsic folic acid for synergistic imaging-guided photothermal therapy of prostate cancer cells. Biomater Sci 2019; 7:5187-5196. [PMID: 31588457 DOI: 10.1039/c9bm01228a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photothermal therapy (PTT) is performed using near-infrared-responsive agents, which is proven to be an effective therapeutic strategy against cancer with several advantages including minimal invasion, high effectiveness, and easy implementation. Herein, we report a facile and novel one-pot synthetic approach for the fabrication of polydopamine-folate carbon dots (PFCDs) as theranostic nanocarriers for the image-guided PTT targeting of prostate cancer (PCa) cells that express a prostate-specific membrane antigen (PSMA) (folate hydrolase 1). The as-fabricated PFCDs exhibited several advantages such as easy preparation, high biocompatibility, low toxicity, good water-solubility, and excellent photothermal effect with robust blue fluorescence emission. The PSMA-directed imaging of PCa using PFCDs showed remarkable fluorescence enhancement in LNCap cells as compared to the case of other cells that did not express PSMA. PFCDs exhibited a photothermal effect in the PCa cells when irradiated with an 808 nm laser, which possibly resulted in the complete elimination of the tumor. Thus, these features make PFCDs a promising candidate for PTT. Moreover, PFCD-based PTT provides an effective biomedical platform for cancer therapy.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Anam Rana Gul
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Thi Ngoc Le
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Min Woo Kim
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
27
|
Graphene oxide as a polymeric N-halamine carrier and release platform: Highly-efficient, sustained-release antibacterial property and great storage stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109877. [DOI: 10.1016/j.msec.2019.109877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/08/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
|
28
|
Xu S, Zhang G, Fang B, Xiong Q, Duan H, Lai W. Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31283-31290. [PMID: 31389683 DOI: 10.1021/acsami.9b08789] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, polydopamine-coated gold nanoparticles (Au@PDAs) were synthesized by the oxidative self-polymerization of dopamine (DA) on the surface of AuNPs and applied for the first time as a signal-amplification label in lateral flow immunoassays (LFIAs) for the sensitive detection of zearalenone (ZEN) in maize. The PDA layer functioned as a linker between AuNPs and anti-ZEN monoclonal antibody (mAb) to form a probe (Au@PDA-mAb). Compared with AuNPs, Au@PDA had excellent color intensity, colloidal stability, and mAb coupling efficiency. The limit of detection of the Au@PDA-based LFIA (Au@PDA-LFIA) was 7.4 pg/mL, which was 10-fold lower than that of the traditional AuNP-based LFIA (AuNP-LFIA) (76.1 pg/mL). The recoveries of Au@PDA-LFIA were 93.80-111.82%, with the coefficient of variation of 1.08-9.04%. In addition, the reliability of Au@PDA-LFIA was further confirmed by the high-performance liquid chromatography method. Overall, our study showed that PDA coating can chemically modify the surface of AuNPs through a simple method and can thus significantly improve the detection sensitivity of LFIA.
Collapse
Affiliation(s)
- Shaolan Xu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Ganggang Zhang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Bolong Fang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
29
|
Tran HQ, Batul R, Bhave M, Yu A. Current Advances in the Utilization of Polydopamine Nanostructures in Biomedical Therapy. Biotechnol J 2019; 14:e1900080. [DOI: 10.1002/biot.201900080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Huy Q. Tran
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Rahila Batul
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| | - Aimin Yu
- Faculty of Science, Engineering and Technology, Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn Victoria 3122 Australia
| |
Collapse
|
30
|
Xiao Y, Chen L, Chen X, Xiao B. Current strategies to enhance the targeting of polydopamine-based platforms for cancer therapeutics. J Drug Target 2019; 28:142-153. [PMID: 31305176 DOI: 10.1080/1061186x.2019.1644650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yin Xiao
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Lin Chen
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Xiaoliang Chen
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bin Xiao
- Laboratory of Clinical Pharmacy, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, Inner Mongolia Autonomous region, China
| |
Collapse
|
31
|
Dhas N, Parekh K, Pandey A, Kudarha R, Mutalik S, Mehta T. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J Control Release 2019; 308:130-161. [PMID: 31310783 DOI: 10.1016/j.jconrel.2019.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
Graphene based nanocomposites have revolutionized cancer treatment, diagnosis and imaging owing to its good compatibility, elegant flexibility, high surface area, low mass density along with excellent combined additive effect of graphene with other nanomaterials. This review inculcates the type of graphene based nanocomposites and their fabrication techniques to improve its properties as photothermal and theranostic platform. With decades' efforts, many significant breakthroughs in the method of synthesis and characterization in addition to various functionalization options of graphene based nanocomposite have paved a solid foundation for their potential applications in the cancer therapy. This work intends to provide a thorough, up-to-date holistic discussion on correlation of breakthroughs with their biomedical applications and illustrate how to utilize these breakthroughs to address long-standing challenges in the clinical translation of nanomedicines. This review also emphasizes on graphene based nanocomposites based toxicity concerns pertaining to delivery platforms.
Collapse
Affiliation(s)
- Namdev Dhas
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Khushali Parekh
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Abhijeet Pandey
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Ritu Kudarha
- The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Srinivas Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Tejal Mehta
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
32
|
Chen C, Tang W, Jiang D, Yang G, Wang X, Zhou L, Zhang W, Wang P. Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic targeted chemo-photothermal therapy. NANOSCALE 2019; 11:11012-11024. [PMID: 31140527 DOI: 10.1039/c9nr01385g] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The integration of chemotherapy and photothermal therapy into one nanoplatform has attracted much attention for synergistic tumor treatment, but the practical clinical applications were usually limited by their synergistic effects and low selectivity for disease sites. To overcome these limitations, a tumor-specific and pH/NIR dual-responsive multifunctional nanocarrier coated with mussel inspired polydopamine and further conjugated with targeting molecular hyaluronic acid (HA) was designed and fabricated for synergistic targeted chemo-photothermal therapy. The synthesized versatile nanoplatform displayed strong near-infrared absorption because of the successful formation of polydopamine coating. Furthermore, the nanosystem revealed high storage capacity for drugs and pH/NIR dual-responsive release performance, which could effectively enhance the chemo-photothermal therapy effect. With this smart design, in vitro experimental results confirmed that the drug loaded multifunctional nanoparticles could be efficiently taken up by cancer cells, and exhibited remarkable tumor cell killing efficiency and excellent photothermal properties. Meanwhile, significant tumor regression in the tumor-bearing mice model was also observed due to the combination of chemotherapy and photothermal therapy. Thus, this work indicated that the simple multifunctional nanoplatform can be applied as an efficient therapeutic agent for site-specific synergistic chemo-photothermal therapy.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | |
Collapse
|