1
|
Aldaghi N, Kamalabadi-Farahani M, Alizadeh M, Salehi M. Doxycycline-loaded carboxymethyl cellulose/sodium alginate/gelatin hydrogel: An approach for enhancing pressure ulcer healing in a rat model. J Biomed Mater Res A 2024; 112:2289-2300. [PMID: 39019482 DOI: 10.1002/jbm.a.37778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/15/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Pressure ulcers, or bedsores, are created by areas of the skin under prolonged pressure and can lead to skin and underlying tissue damage. The present study evaluated the effects of carboxymethyl cellulose/sodium alginate/gelatin (CMC/Alg/Gel) hydrogel containing doxycycline (DOX) on improving the healing process of pressure ulcers. The magnet was used to apply pressure on the dorsum skin rat to induce a pressure ulcer model. Then sterile gauze, CMC/Alg/Gel, and CMC/Alg/Gel/1% w/v DOX hydrogels were used to cover the wounds. Blood compatibility, weight loss, cytocompatibility, drug release rate, cell viability, wound closure, and re-epithelialization were evaluated in all animals on the 14th day after treatment. In vivo results and histopathological evaluation showed 56.66% wound closure and the highest re-epithelialization in the CMC/Alg/Gel/1% w/v DOX hydrogel group (14 days after treatment). Furthermore, real-time PCR results indicated that the hydrogel containing DOX significantly decreased the expression of the MMP family consisting of MMP2 and MMP9 mRNA and also increased the expression of vascular endothelial growth factor VEGF mRNA. This study suggested that the addition of DOX, an antibiotic and MMP inhibitor, to hydrogels may be effective in the healing process of pressure ulcers.
Collapse
Affiliation(s)
- Niloofar Aldaghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
2
|
Xu J, Wu Q, Wang J, Liu Y, Liu K, Xia M, Wang D. Advanced alginate-based nanofiber aerogels: A synthetic matrix for high-efficiency lysozyme adsorption and controlled release. Int J Biol Macromol 2024; 280:135974. [PMID: 39332565 DOI: 10.1016/j.ijbiomac.2024.135974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
The development of materials with high lysozyme adsorption is critical for drug delivery and skin wound applications, as it enhances antibacterial properties, stability, and controlled release of therapeutic agents, thereby improving treatment efficacy and safety. Alginate-based nanofiber scaffolds, featuring high surface area and multiple adsorption sites, can efficiently absorb lysozyme and regulate its release through tunable pore channels, offering a promising approach to chronic wound management. In this study, we fabricated poly (vinyl alcohol-co-ethylene) (EVOH) nanofiber-based sodium alginate (ENSA) aerogels using a simple two-step crosslinking procedure. The resulting aerogels, with controllable porosity formed via high-pressure spraying techniques (aerogel film) and molding (aerogel sponge), were evaluated for their high-loading capacity and controllable release of lysozyme. The aerogel film exhibited a remarkable lysozyme adsorption capacity of 1965 ± 36 mg/g, while the aerogel sponge sustained lysozyme release over 14 days. Analysis of the drug-release mechanism through four kinetic models revealed two distinct processes: cation exchange and matrix diffusion. The aerogel's pore structure influenced the diffusion processes, enabling tailored drug release profiles. Additionally, the ENSA aerogels demonstrated good mechanical properties, non-cytotoxicity, and potent antibacterial activity, positioning them as promising materials for skin wound dressings.
Collapse
Affiliation(s)
- Jia Xu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 4030200, China.
| | - Qing Wu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 4030200, China
| | - Jing Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 4030200, China
| | - Yingjie Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 4030200, China
| | - Ke Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 4030200, China
| | - Ming Xia
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 4030200, China.
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 4030200, China.
| |
Collapse
|
3
|
Guo X, Yu J, Ma L, Yuan J, Guo T, Ma Y, Xiao S, Bai J, Zhou B. Covalent organic polyrotaxanes based on β-cyclodextrin for iodine capture. RSC Adv 2024; 14:30077-30083. [PMID: 39315022 PMCID: PMC11417459 DOI: 10.1039/d4ra05339g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Herein, covalent organic polyrotaxanes (COPRs) were integrated with supermolecule self-assembly and dynamic imine bond formation to act as absorbents that captured radioactive iodine from water. The aromatic building blocks were initially complexed with β-cyclodextrin (β-CD) to form pseudorotaxanes, which were then condensed with aromatic tri-aldehyde via mechanical grinding and solvothermal synthesis in sequence. The threading of β-CD throughout the polymer skeleton effectively reduced the usage of expensive building blocks and significantly lowered the cost, while also remarkably enhancing the skeleton polarity, which is closely related to many special applications. Impressively, the threading of CD improved the water dispersibility of COPRs, which displayed an abnormally high iodine adsorption capacity. This novel synthetic strategy allows the incorporation of mechanically interlocked CDs into porous polymeric materials, which provides access to low-cost preparations of COPRs with a brand new structure for specific applications.
Collapse
Affiliation(s)
- Xia Guo
- School of Mathematics and Statistics, Weifang University Weifang 261061 Shandong PR China
| | - Jie Yu
- School of Pharmacy, Weifang Medical University Weifang 261053 Shandong PR China
| | - Lianru Ma
- School of Pharmacy, Weifang Medical University Weifang 261053 Shandong PR China
| | - Jingsong Yuan
- School of Pharmacy, Weifang Medical University Weifang 261053 Shandong PR China
| | - Taoyan Guo
- School of Pharmacy, Weifang Medical University Weifang 261053 Shandong PR China
| | - Yingying Ma
- School of Pharmacy, Weifang Medical University Weifang 261053 Shandong PR China
| | - Shengshun Xiao
- School of Pharmacy, Weifang Medical University Weifang 261053 Shandong PR China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University Weifang 261053 Shandong PR China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University Weifang 261053 Shandong PR China
| |
Collapse
|
4
|
Zhang Z, Zhang Y, Guo Y, Qian C, Chen K, Fang S, Qiu A, Zhong L, Zhang J, He R. Preparing gelatin-containing polycaprolactone / polylactic acid nanofibrous membranes for periodontal tissue regeneration using side-by-side electrospinning technology. J Biomater Appl 2024; 39:48-57. [PMID: 38659361 DOI: 10.1177/08853282241248778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Electrospinning technology has recently attracted increased attention in the biomedical field, and preparing various cellulose nanofibril membranes for periodontal tissue regeneration has unique advantages. However, the characteristics of using a single material tend to make it challenging to satisfy the requirements for a periodontal barrier film, and the production of composite fibrous membranes frequently impacts the quality of the final fiber membrane due to the influence of miscibility between different materials. In this study, nanofibrous membranes composed of polylactic acid (PLA) and polycaprolactone (PCL) fibers were fabricated using side-by-side electrospinning. Different concentrations of gelatin were added to the fiber membranes to improve their hydrophilic properties. The morphological structure of the different films as well as their composition, wettability and mechanical characteristics were examined. The results show that PCL/PLA dual-fibrous composite membranes with an appropriate amount of gelatin ensures sufficient mechanical strength while obtaining improved hydrophilic properties. The viability of L929 fibroblasts was evaluated using CCK-8 assays, and cell adhesion on the scaffolds was confirmed by scanning electron microscopy and by immunofluorescence assays. The results demonstrated that none of the fibrous membranes were toxic to cells and the addition of gelatin improved cell adhesion to those membranes. Based on our findings, adding 30% gelatin to the membrane may be the most appropriate content for periodontal tissue regeneration, considering the scaffold's mechanical qualities, hydrophilic properties and biocompatibility. In addition, the PCL-gelatin/PLA-gelatin dual-fibrous membranes prepared using side-by-side electrospinning technology have potential applications for tissue engineering.
Collapse
Affiliation(s)
- Zhuochen Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Ying Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Yabin Guo
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Cheng Qian
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Kailun Chen
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Sheng Fang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Anna Qiu
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Liangjun Zhong
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Jian Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Rui He
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
5
|
Wu Y, Zhang J, Lin A, Zhang T, Liu Y, Zhang C, Yin Y, Guo R, Gao J, Li Y, Chu Y. Immunomodulatory poly(L-lactic acid) nanofibrous membranes promote diabetic wound healing by inhibiting inflammation, oxidation and bacterial infection. BURNS & TRAUMA 2024; 12:tkae009. [PMID: 38841099 PMCID: PMC11151119 DOI: 10.1093/burnst/tkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 06/07/2024]
Abstract
Background Given the significant impact on human health, it is imperative to develop novel treatment approaches for diabetic wounds, which are prevalent and serious complications of diabetes. The diabetic wound microenvironment has a high level of reactive oxygen species (ROS) and an imbalance between proinflammatory and anti-inflammatory cells/factors, which hamper the healing of chronic wounds. This study aimed to develop poly(L-lactic acid) (PLLA) nanofibrous membranes incorporating curcumin and silver nanoparticles (AgNPs), defined as PLLA/C/Ag, for diabetic wound healing. Methods PLLA/C/Ag were fabricated via an air-jet spinning approach. The membranes underwent preparation and characterization through various techniques including Fourier-transform infrared spectroscopy, measurement of water contact angle, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, assessment of in vitro release of curcumin and Ag+, testing of mechanical strength, flexibility, water absorption and biodegradability. In addition, the antioxidant, antibacterial and anti-inflammatory properties of the membranes were evaluated in vitro, and the ability of the membranes to heal wounds was tested in vivo using diabetic mice. Results Loose hydrophilic nanofibrous membranes with uniform fibre sizes were prepared through air-jet spinning. The membranes enabled the efficient and sustained release of curcumin. More importantly, antibacterial AgNPs were successfully reduced in situ from AgNO3. The incorporation of AgNPs endowed the membrane with superior antibacterial activity, and the bioactivities of curcumin and the AgNPs gave the membrane efficient ROS scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further results from animal studies indicated that the PLLA/C/Ag membranes had the most efficient wound healing properties, which were achieved by stimulating angiogenesis and collagen deposition and inhibiting inflammation. Conclusions In this research, we successfully fabricated PLLA/C/Ag membranes that possess properties of antioxidants, antibacterial agents and anti-inflammatory agents, which can aid in the process of wound healing. Modulating wound inflammation, these new PLLA/C/Ag membranes serve as a novel dressing to enhance the healing of diabetic wounds.
Collapse
Affiliation(s)
- Yan Wu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Jin Zhang
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, 62 Wenchang Road, Kecheng District, Quzhou 324004, China
| | - Anqi Lin
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Lingyun Street, Xuhui District, Shanghai 200237, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Yong Liu
- Scientific Research Sharing Platform, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Chunlei Zhang
- Scientific Research Sharing Platform, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Yongkui Yin
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Ran Guo
- Department of Physiology, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Lingyun Street, Xuhui District, Shanghai 200237, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| |
Collapse
|
6
|
Rezaei ES, Poursamar SA, Naeimi M, Taheri MM, Rafienia M. An in vitro and in vivo study of electrospun polyvinyl alcohol/chitosan/sildenafil citrate mat on 3D-printed polycaprolactone membrane as a double layer wound dressing. Int J Biol Macromol 2024; 269:131859. [PMID: 38728875 DOI: 10.1016/j.ijbiomac.2024.131859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Double-layer dermal substitutes (DS) generally provide more effective therapeutic outcomes than single-layer substitutes. The architectural design of DS incorporates an outer layer to protect against bacterial invasions and maintain wound hydration, thereby reducing the risk of infection and the frequency of dressing changes. Moreover, the outer layer is a mechanical support for the wound, preventing undue tension in the affected area. A 3D-printed polycaprolactone (PCL) membrane was utilized as the outer layer to fabricate DS wound dressing. Simultaneously, a polyvinyl alcohol/chitosan/sildenafil citrate (PVA/CS/SC) scaffold was electrospun onto the PCL membrane to facilitate cellular adhesion and proliferation. Scanning electron microscopy (SEM) analysis of the PCL filaments revealed a consistent cross-sectional surface and structure, with an average diameter of 562.72 ± 29.15 μm. SEM results also demonstrated uniform morphology and beadless structure for the PVA/CS/SC scaffold, with an average fiber diameter of 366.77 ± 1.81 nm for PVA/CS. The addition of SC led to an increase in fiber diameter while resulting in a reduction in tensile strength. However, drug release analysis indicated that the SC release from the sample can last up to 72 h. Animal experimentation confirmed that DS wound dressing positively accelerated wound closure and collagen deposition in the Wistar rat skin wound model.
Collapse
Affiliation(s)
- Elham Salar Rezaei
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Poursamar
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mitra Naeimi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdi Taheri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Garg U, Dua T, Kaul S, Jain N, Pandey M, Nagaich U. Enhancing periodontal defences with nanofiber treatment: recent advances and future prospects. J Drug Target 2024; 32:470-484. [PMID: 38404239 DOI: 10.1080/1061186x.2024.2321372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
The term periodontal disease is used to define diseases characterised by inflammation and regeneration of the gums, cementum, supporting bone, and periodontal ligament. The conventional treatment involves the combination of scaling, root planning, and surgical approaches which are invasive and can pose certain challenges. Intrapocket administration of nanofibers can be used for overcoming challenges which can help in speeding up the wound repair process and can also be used to promote osteogenesis. To help make drug delivery more effective, nanofibers are an interesting solution. Nanofibers are nanosized 3D structures that can fill the pockets and have excellent mucoadhesion which prolongs their retention time on the target site. Moreover, their structure mimics the natural extracellular matrix which enables nanomaterials to sense local biological conditions and start cellular-level reprogramming to produce the necessary therapeutic efficacy. In this review, the significance of intrapocket administration of nanofibers using recent research for the management of periodontitis has been discussed in detail. Furthermore, we have discussed polymers used for the preparation of nanofibers, nanofiber production methods, and the patents associated with these developments. This comprehensive compilation of data serves as a valuable resource, consolidating recent developments in nanofiber applications for periodontitis management into one accessible platform.
Collapse
Affiliation(s)
- Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Tanya Dua
- Department of Periodontology, Inderprastha Dental College and Hospital, Atal Bihari Vajpayee Medical University, Lucknow, UP, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, UP, India
| |
Collapse
|
8
|
Deus WFD, Lima CLS, Negreiros ALB, Luz PKD, Machado RDS, Silva GRFD. Nanocomposites used in the treatment of skin lesions: a scoping review. Rev Esc Enferm USP 2024; 58:e20230338. [PMID: 38743957 PMCID: PMC11110158 DOI: 10.1590/1980-220x-reeusp-2023-0338en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE To map the nanocomposites used in the treatment of skin lesions. METHOD A scoping review, according to the Joanna Briggs Institute methodology, carried out on eight databases, a list of references and Google Scholar to answer the question: "Which nanocomposites are used as a cover for the treatment of skin lesions?". Two independent reviewers selected the final sample using inclusion/exclusion criteria using the EndNote® and Rayyan programs. Data was extracted using an adapted form and reported using the PRISMA checklist extension, and the protocol was registered in the Open Science Framework (OSF). RESULTS 21 articles were selected, with nanofibers, nanogels and nanomembranes as the nanocomposites described in wound healing, alone or in association with other therapies: negative pressure and elastic. Silver nanomaterials stand out in accelerating healing due to their antimicrobial and anti-inflammatory action, but caution should be exercised due to the risk of cytotoxicity and microbial resistance. CONCLUSION Nanocomposites used in wound treatment are effective in accelerating healing and reducing costs, and the addition of bioactives to nanomaterials has added extra properties that contribute to healing.
Collapse
Affiliation(s)
| | | | | | - Phellype Kayyaã da Luz
- Universidade Federal do Piauí, Teresina, PI, Brazil
- Colégio Técnico de Bom Jesus, Bom Jesus, PI, Brazil
| | - Raylane da Silva Machado
- Universidade Federal do Piauí, Teresina, PI, Brazil
- Colégio Técnico de Floriano, Floriano, PI, Brazil
| | | |
Collapse
|
9
|
He S, Bai J, Liu Y, Zeng Y, Wang L, Chen X, Wang J, Weng J, Zhao Y, Peng W, Zhi W. A polyglutamic acid/tannic acid-based nano drug delivery system: Antibacterial, immunoregulation and sustained therapeutic strategies for oral ulcers. Int J Pharm 2023; 648:123607. [PMID: 37967688 DOI: 10.1016/j.ijpharm.2023.123607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Oral ulcers are a common inflammatory mucosal ulcer, and the moist and dynamic environment in the oral cavity makes topical pharmacological treatment of oral ulcers challenging. Herein, oral ulcer tissue adhesion nanoparticles were prepared by using esterification reaction between polyglutamic acid and tannic acid, and at the same time doxycycline hydrochloride was loaded into the nanoparticles. The obtained slow drug release effect of the drug-loaded nanoparticles reduced the toxicity of the drug, and by penetrating into the fine crevice region of the wound tissue and adhering to it, they could in-situ release the carried drug more effectively and thus have shown significant antibacterial effects. In addition, tannic acid in the system conferred adhesion, antioxidant and immune regulation activities to the nanocarriers. A rat oral ulcer model based on fluorescent labeling was established to investigate the retention of nanoparticles at the ulcer, and the results showed that the retention rate of drug-loaded nanoparticles at the ulcer was 17 times higher than that of pure drug. Due to the antibacterial and immune regulation effects of the drug-loaded nanoparticles, the healing of oral ulcer wounds was greatly accelerated. Such application of doxycycline hydrochloride loaded polyglutamic acid/tannic acid nanoparticles is a novel and effective treatment strategy for oral ulcer.
Collapse
Affiliation(s)
- Siyuan He
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiafan Bai
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhao Liu
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yili Zeng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linyu Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiangli Chen
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianxin Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Weng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuancong Zhao
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Wei Zhi
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
10
|
Ardika KAR, Marzaman ANF, Kaharuddin KM, Parenden MDK, Karimah A, Musfirah CA, Pakki E, Permana AD. Development of chitosan-hyaluronic acid based hydrogel for local delivery of doxycycline hyclate in an ex vivo skin infection model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2274-2290. [PMID: 37410591 DOI: 10.1080/09205063.2023.2234181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/12/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Doxycycline hyclate (DOXY) is a tetracycline derivative known as the broad-spectrum bacteriostatic drug. DOXY has been suggested as the first-line antibiotic for diabetic foot ulcers (DFU). Unfortunately, the long-term availability of DOXY in both oral and conventional topical dosage forms reduces its therapeutic effectiveness, which is closely linked to gastrointestinal side effects and acute pain during therapy, as well as uncontrolled DOXY release at the wound site. To address these shortcomings, we present for the first time a DOXY hydrogel system (DHs) built on crosslinks between carboxymethyl chitosan (CMC) and aldehyde hyaluronic acid (AHA). Three formulations of DHs were developed with different ratios of CMC and AHA, consisting of F1 (3:7, w/w), F2 (5:5, w/w), and F3 (7:3, w/w). Viscosity, rheology, gel strength, pH, swelling, gel fraction, wettability, stability, in vitro drug release, ex vivo antibacterial, and dermatokinetic studies were used to evaluate the DHs. According to the in vitro release study, up to 85% of DOXY was released from DHs via the Fickian diffusion mechanism in the Korsmeyer-Peppas model (n < 0.45), which provides controlled drug delivery. Because of its excellent physicochemical characteristics, F2 was chosen as the best DHs formulation in this study. Essentially, the optimum DHs formulation could greatly improve DOXY's ex vivo dermatokinetic profile while also providing excellent antibacterial activity. As a consequence, this study had promising outcome as a proof of concept for increasing the efficacy of DOXY in clinical therapy. Further extensive in vivo studies are required to evaluate the efficacy of this approach.
Collapse
Affiliation(s)
| | | | | | | | - Aulia Karimah
- Faculty of Mathemathics and Natural Science, Hasanuddin University, Makassar, Indonesia
| | | | - Ermina Pakki
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | |
Collapse
|
11
|
Stan D, Ruta LL, Bocancia-Mateescu LA, Mirica AC, Stan D, Micutz M, Brincoveanu O, Enciu AM, Codrici E, Popescu ID, Popa ML, Rotaru F, Tanase C. Formulation and Comprehensive Evaluation of Biohybrid Hydrogel Membranes Containing Doxycycline or Silver Nanoparticles. Pharmaceutics 2023; 15:2696. [PMID: 38140037 PMCID: PMC10747233 DOI: 10.3390/pharmaceutics15122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a new optimized formula for biohybrid hydrogel membranes, which combine natural and synthetic polymers, bioactive natural compounds, like collagen and hyaluronic acid, and pharmacologically active substances (doxycycline or npAg). Dynamic (oscillatory) rheometry confirmed the strong gel-like properties of the obtained hydrogel membranes. Samples containing low-dose DOXY showed a swelling index of 285.68 ± 6.99%, a degradation rate of 71.6 ± 0.91% at 20 h, and achieved a cumulative drug release of approximately 90% at pH 7.4 and 80% at pH 8.3 within 12 h. The addition of npAg influenced the physical properties of the hydrogel membranes. Furthermore, the samples containing DOXY demonstrated exceptional antimicrobial efficacy against seven selected bacterial strains commonly associated with wound infections and complications. Biocompatibility assessments revealed that the samples exhibited over 80% cell viability. However, the addition of smaller-sized nanoparticles led to decreased cellular viability. The obtained biohybrid hydrogel membranes show favorable properties that render them suitable for application as wound dressings.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Doctoral School of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Lavinia Liliana Ruta
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Department of Inorganic, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania
| | | | - Andreea-Cristina Mirica
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Dana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Marin Micutz
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania;
| | - Oana Brincoveanu
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania;
- Research Institute, The University of Bucharest, 060102 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Maria Linda Popa
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Flaviana Rotaru
- Polytechnic University of Bucharest, Splaiul Independenței 54, 030167 Bucharest, Romania;
- Rohealth—Health and Bioeconomy Cluster, Calea Griviţei 6-8, 010731 Bucharest, Romania
- Frontier Management Consulting, Calea Griviţei6-8, 010731 Bucharest, Romania
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Clinical Biochemistry, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
12
|
Lin ZI, Tsai TH, Yu KC, Nien YH, Liu RP, Liu GL, Chi PL, Fang YP, Ko BT, Law WC, Zhou C, Yong KT, Cheng PW, Chen CK. Creation of Chitosan-Based Nanocapsule-in-Nanofiber Structures for Hydrophobic/Hydrophilic Drug Co-Delivery and Their Dressing Applications in Diabetic Wounds. Macromol Biosci 2023; 23:e2300145. [PMID: 37279400 DOI: 10.1002/mabi.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Nanofiber meshes (NFMs) loaded with therapeutic agents are very often employed to treat hard-to-heal wounds such as diabetic wounds. However, most of the NFMs have limited capability to load multiple or hydrophilicity distinctive-therapeutic agents. The therapy strategy is therefore significantly hampered. To tackle the innate drawback associated with the drug loading versatility, a chitosan-based nanocapsule-in-nanofiber (NC-in-NF) structural NFM system is developed for simultaneous loading of hydrophobic and hydrophilic drugs. Oleic acid-modified chitosan is first converted into NCs by the developed mini-emulsion interfacial cross-linking procedure, followed by loading a hydrophobic anti-inflammatory agent Curcumin (Cur) into the NCs. Sequentially, the Cur-loaded NCs are successfully introduced into reductant-responsive maleoyl functional chitosan/polyvinyl alcohol NFMs containing a hydrophilic antibiotic Tetracycline hydrochloride. Having a co-loading capability for hydrophilicity distinctive agents, biocompatibility, and a controlled release property, the resulting NFMs have demonstrated the efficacy on promoting wound healing either in normal or diabetic rats.
Collapse
Affiliation(s)
- Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Kuan-Chi Yu
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Yu-Hsun Nien
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Ru-Ping Liu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Yi-Ping Fang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Regenerative Medical and Cell Therapy Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
13
|
Celebioglu A, Uyar T. Green Synthesis of Polycyclodextrin/Drug Inclusion Complex Nanofibrous Hydrogels: pH-Dependent Release of Acyclovir. ACS APPLIED BIO MATERIALS 2023; 6:3798-3809. [PMID: 37602902 DOI: 10.1021/acsabm.3c00446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The development of an approach or a material for wound healing treatments has drawn a lot of attention for decades and has been an important portion of the research in the medical industry. Especially, there is growing interest and demand for the generation of wound care products using eco-friendly conditions. Electrospinning is one of these methods that enables the production of nanofibrous materials with attractive properties for wound healing under mild conditions and by using sustainable sources. In this study, starch-derived cyclodextrin (hydroxypropyl-β-cyclodextrin (HPβCD)) was used both for forming an inclusion complex (IC) with acyclovir, a well-known antiviral drug, and for electrospinning of free-standing nanofibers. The nanofibers were produced in an aqueous system, without using a carrier polymer matrix and toxic solvent/chemical. The ultimate HPβCD/acyclovir-IC nanofibers were thermally cross-linked by using citric acid, listed in the generally regarded as safe (GRAS) category by the US Food and Drug Administration (FDA). The cross-linked HPβCD/acyclovir-IC nanofibers displayed stability in aqueous medium. The hydrogel-forming feature of nanofibers was confirmed with their high swelling profile in water in the range of ∼610-810%. Cellulose acetate (CA)/acyclovir nanofibers were also produced as the control sample. Due to inclusion complexation with HPβCD, the solubility of acyclovir was improved, so cross-linked HPβCD/acyclovir-IC nanofibrous hydrogels displayed a better release performance compared to CA/acyclovir nanofibers. Here, a pH-dependent release profile was obtained (pH 5.4 and pH 7.4) besides their attractive swelling features. Therefore, the cross-linked HPβCD/acyclovir-IC nanofibrous hydrogel can be a promising candidate as a wound healing dressing for the administration of antiviral drugs by holding the unique properties of CD and electrospun nanofibers.
Collapse
Affiliation(s)
- Asli Celebioglu
- Fiber Science Program, Department of Human Centered Design College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Li K, Zhu Z, Zhai Y, Chen S. Recent Advances in Electrospun Nanofiber-Based Strategies for Diabetic Wound Healing Application. Pharmaceutics 2023; 15:2285. [PMID: 37765254 PMCID: PMC10535965 DOI: 10.3390/pharmaceutics15092285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetic ulcers are the second largest complication caused by diabetes mellitus. A great number of factors, including hyperchromic inflammation, susceptible microbial infection, inferior vascularization, the large accumulation of free radicals, and other poor healing-promoting microenvironments hold back the healing process of chronic diabetic ulcer in clinics. With the increasing clinical cases of diabetic ulcers worldwide, the design and development of advanced wound dressings are urgently required to accelerate the treatment of skin wounds caused by diabetic complications. Electrospinning technology has been recognized as a simple, versatile, and cost-reasonable strategy to fabricate dressing materials composed of nanofibers, which possess excellent extracellular matrix (ECM)-mimicking morphology, structure, and biological functions. The electrospinning-based nanofibrous dressings have been widely demonstrated to promote the adhesion, migration, and proliferation of dermal fibroblasts, and further accelerate the wound healing process compared with some other dressing types like traditional cotton gauze and medical sponges, etc. Moreover, the electrospun nanofibers are commonly harvested in the structure of nonwoven-like mats, which possess small pore sizes but high porosity, resulting in great microbial barrier performance as well as excellent moisture and air permeable properties. They also serve as good carriers to load various bioactive agents and/or even living cells, which further impart the electrospinning-based dressings with predetermined biological functions and even multiple functions to significantly improve the healing outcomes of different chronic skin wounds while dramatically shortening the treatment procedure. All these outstanding characteristics have made electrospun nanofibrous dressings one of the most promising dressing candidates for the treatment of chronic diabetic ulcers. This review starts with a brief introduction to diabetic ulcer and the electrospinning process, and then provides a detailed introduction to recent advances in electrospinning-based strategies for the treatment of diabetic wounds. Importantly, the synergetic application of combining electrospinning with bioactive ingredients and/or cell therapy was highlighted. The review also discussed the advantages of hydrogel dressings by using electrospun nanofibers. At the end of the review, the challenge and prospects of electrospinning-based strategies for the treatment of diabetic wounds are discussed in depth.
Collapse
Affiliation(s)
- Kun Li
- College of Textile & Clothing, Qingdao University, Qingdao 266071, China;
| | - Zhijun Zhu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China; (Z.Z.); (Y.Z.)
| | - Yanling Zhai
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China; (Z.Z.); (Y.Z.)
| | - Shaojuan Chen
- College of Textile & Clothing, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
15
|
Tran HQ, Shahriar SS, Yan Z, Xie J. Recent Advances in Functional Wound Dressings. Adv Wound Care (New Rochelle) 2023; 12:399-427. [PMID: 36301918 PMCID: PMC10125407 DOI: 10.1089/wound.2022.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/24/2022] [Indexed: 12/15/2022] Open
Abstract
Significance: Nowadays, the wound dressing is no longer limited to its primary wound protection ability. Hydrogel, sponge-like material, three dimensional-printed mesh, and nanofiber-based dressings with incorporation of functional components, such as nanomaterials, growth factors, enzymes, antimicrobial agents, and electronics, are able to not only prevent/treat infection but also accelerate the wound healing and monitor the wound-healing status. Recent Advances: The advances in nanotechnologies and materials science have paved the way to incorporate various functional components into the dressings, which can facilitate wound healing and monitor different biological parameters in the wound area. In this review, we mainly focus on the discussion of recently developed functional wound dressings. Critical Issues: Understanding the structure and composition of wound dressings is important to correlate their functions with the outcome of wound management. Future Directions: "All-in-one" dressings that integrate multiple functions (e.g., monitoring, antimicrobial, pain relief, immune modulation, and regeneration) could be effective for wound repair and regeneration.
Collapse
Affiliation(s)
- Huy Quang Tran
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - S.M. Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
16
|
Tomar Y, Pandit N, Priya S, Singhvi G. Evolving Trends in Nanofibers for Topical Delivery of Therapeutics in Skin Disorders. ACS OMEGA 2023; 8:18340-18357. [PMID: 37273582 PMCID: PMC10233693 DOI: 10.1021/acsomega.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Nanotechnology has yielded nanostructure-based drug delivery approaches, among which nanofibers have been explored and researched for the potential topical delivery of therapeutics. Nanofibers are filaments or thread-like structures in the nanometer size range that are fabricated using various polymers, such as natural or synthetic polymers or their combination. The size or diameter of the nanofibers depends upon the polymers, the techniques of preparation, and the design specification. The four major processing techniques, phase separation, self-assembly, template synthesis, and electrospinning, are most commonly used for the fabrication of nanofibers. Nanofibers have a unique structure that needs a multimethod approach to study their morphology and characterization parameters. They are gaining attention as drug delivery carriers, and the substantially vast surface area of the skin makes it a potentially promising strategy for topical drug products for various skin disorders such as psoriasis, skin cancers, skin wounds, bacterial and fungal infections, etc. However, the large-scale production of nanofibers with desired properties remains challenging, as the widely used electrospinning processes have certain limitations, such as poor yield, use of high voltage, and difficulty in achieving in situ nanofiber deposition on various substrates. This review highlights the insights into fabrication strategies, applications, recent clinical trials, and patents of nanofibers for different skin disorders in detail. Additionally, it discusses case studies of its effective utilization in the treatment of various skin disorders for a better understanding for readers.
Collapse
Affiliation(s)
- Yashika Tomar
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Pandit
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sakshi Priya
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
17
|
Gao Z, Liu S, Li S, Shao X, Zhang P, Yao Q. Fabrication and Properties of the Multifunctional Rapid Wound Healing Panax notoginseng@Ag Electrospun Fiber Membrane. Molecules 2023; 28:molecules28072972. [PMID: 37049735 PMCID: PMC10096071 DOI: 10.3390/molecules28072972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The Panax notoginseng@Ag core/shell electrospun fiber membrane was prepared by coaxial electrospinning combined with the UV reduction method (254 nm). The prepared Panax notoginseng@Ag core/shell nanofiber membrane has a three-dimensional structure, and its swelling ratio could reach as high as 199.87%. Traditional Chinese medicine Panax notoginseng can reduce inflammation, and the silver nanoparticles have antibacterial effects, which synergistically promote rapid wound healing. The developed Panax notoginseng@Ag core/shell nanofiber membrane can effectively inhibit the growth of the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus. The wound healing experiments in Sprague Dawley mice showed that the wound residual area rate of the Panax notoginseng@Ag core/shell electrospun nanofiber membrane group was only 1.52% on day 9, and the wound of this group basically healed on day 12, while the wound residual area rate of the gauze treatment group (control group) was 16.3% and 10.80% on day 9 and day 12, respectively. The wound of the Panax notoginseng@Ag core/shell electrospun nanofiber membrane group healed faster, which contributed to the application of the nanofiber as Chinese medicine rapid wound healing dressings.
Collapse
Affiliation(s)
| | | | | | | | - Pingping Zhang
- Correspondence: (P.Z.); (Q.Y.); Tel.: +86-0531-82919706 (P.Z.)
| | - Qingqiang Yao
- Correspondence: (P.Z.); (Q.Y.); Tel.: +86-0531-82919706 (P.Z.)
| |
Collapse
|
18
|
Yusuf Aliyu A, Adeleke OA. Nanofibrous Scaffolds for Diabetic Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030986. [PMID: 36986847 PMCID: PMC10051742 DOI: 10.3390/pharmaceutics15030986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic wounds are one of the secondary health complications that develop in individuals who have poorly managed diabetes mellitus. This is often associated with delays in the wound healing process, resulting from long-term uncontrolled blood glucose levels. As such, an appropriate therapeutic approach would be maintaining blood glucose concentration within normal ranges, but this can be quite challenging to achieve. Consequently, diabetic ulcers usually require special medical care to prevent complications such as sepsis, amputation, and deformities, which often develop in these patients. Although several conventional wound dressings, such as hydrogels, gauze, films, and foams, are employed in the treatment of such chronic wounds, nanofibrous scaffolds have gained the attention of researchers because of their flexibility, ability to load a variety of bioactive compounds as single entities or combinations, and large surface area to volume ratio, which provides a biomimetic environment for cell proliferation relative to conventional dressings. Here, we present the current trends on the versatility of nanofibrous scaffolds as novel platforms for the incorporation of bioactive agents suitable for the enhancement of diabetic wound healing.
Collapse
Affiliation(s)
- Anna Yusuf Aliyu
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
19
|
Therapeutic Efficacy of Polymeric Biomaterials in Treating Diabetic Wounds-An Upcoming Wound Healing Technology. Polymers (Basel) 2023; 15:polym15051205. [PMID: 36904445 PMCID: PMC10007618 DOI: 10.3390/polym15051205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic wounds are one of the serious, non-healing, chronic health issues faced by individuals suffering from diabetic mellitus. The distinct phases of wound healing are either prolonged or obstructed, resulting in the improper healing of diabetic wounds. These injuries require persistent wound care and appropriate treatment to prevent deleterious effects such as lower limb amputation. Although there are several treatment strategies, diabetic wounds continue to be a major threat for healthcare professionals and patients. The different types of diabetic wound dressings that are currently used differ in their properties of absorbing wound exudates and may also cause maceration to surrounding tissues. Current research is focused on developing novel wound dressings incorporated with biological agents that aid in a faster rate of wound closure. An ideal wound dressing material must absorb wound exudates, aid in the appropriate exchange of gas, and protect from microbial infections. It must support the synthesis of biochemical mediators such as cytokines, and growth factors that are crucial for faster healing of wounds. This review highlights the recent advances in polymeric biomaterial-based wound dressings, novel therapeutic regimes, and their efficacy in treating diabetic wounds. The role of polymeric wound dressings loaded with bioactive compounds, and their in vitro and in vivo performance in diabetic wound treatment are also reviewed.
Collapse
|
20
|
Sharma D, Srivastava S, Kumar S, Sharma PK, Hassani R, Dailah HG, Khalid A, Mohan S. Biodegradable Electrospun Scaffolds as an Emerging Tool for Skin Wound Regeneration: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:325. [PMID: 37259465 PMCID: PMC9965065 DOI: 10.3390/ph16020325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 12/25/2023] Open
Abstract
Skin is designed to protect various tissues, and because it is the largest and first human bodily organ to sustain damage, it has an incredible ability to regenerate. On account of extreme injuries or extensive surface loss, the normal injury recuperating interaction might be inadequate or deficient, bringing about risky and disagreeable circumstances that request the utilization of fixed adjuvants and tissue substitutes. Due to their remarkable biocompatibility, biodegradability, and bioactive abilities, such as antibacterial, immunomodulatory, cell proliferative, and wound mending properties, biodegradable polymers, both synthetic and natural, are experiencing remarkable progress. Furthermore, the ability to convert these polymers into submicrometric filaments has further enhanced their potential (e.g., by means of electrospinning) to impersonate the stringy extracellular grid and permit neo-tissue creation, which is a basic component for delivering a mending milieu. Together with natural biomaterial, synthetic polymers are used to solve stability problems and make scaffolds that can dramatically improve wound healing. Biodegradable polymers, commonly referred to as biopolymers, are increasingly used in other industrial sectors to reduce the environmental impact of material and energy usage as they are fabricated using renewable biological sources. Electrospinning is one of the best ways to fabricate nanofibers and membranes that are very thin and one of the best ways to fabricate continuous nanomaterials with a wide range of biological, chemical, and physical properties. This review paper concludes with a summary of the electrospinning (applied electric field, needle-to-collector distance, and flow rate), solution (solvent, polymer concentration, viscosity, and solution conductivity), and environmental (humidity and temperature) factors that affect the production of nanofibers and the use of bio-based natural and synthetic electrospun scaffolds in wound healing.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum P.O. Box 2404, Sudan
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Science, Saveetha Dental College, Saveetha University, Chennai 600077, India
| |
Collapse
|
21
|
Emerging Antimicrobial and Immunomodulatory Fiber-Based Scaffolding Systems for Treating Diabetic Foot Ulcers. Pharmaceutics 2023; 15:pharmaceutics15010258. [PMID: 36678887 PMCID: PMC9861857 DOI: 10.3390/pharmaceutics15010258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are one of the main complications of diabetes and are characterized by their complexity and severity, which are frequently aggravated by overexpressed inflammatory factors and polymicrobial infections. Most dressing systems offer a passive action in the treatment of DFUs, being frequently combined with antibiotic or immunomodulatory therapies. However, in many instances due to these combined therapies' inability to properly fight microbial presence, and provide a suitable, breathable and moist environment that is also capable of protecting the site from secondary microbial invasions or further harm, aggravation of the wound state is unavoidable and lower limb amputations are necessary. Considering these limitations and knowing of the urgent demand for new and more effective therapeutic systems for DFU care that will guarantee the quality of life for patients, research in this field has boomed in the last few years. In this review, the emerging innovations in DFU dressing systems via fiber-based scaffolds modified with bioactive compounds have been compiled; data focused on the innovations introduced in the last five years (2017-2022). A generalized overview of the classifications and constraints associated with DFUs healing and the bioactive agents, both antimicrobial and immunomodulatory, that can contribute actively to surpass such issues, has also been provided.
Collapse
|
22
|
Sethuram L, Thomas J. Therapeutic applications of electrospun nanofibers impregnated with various biological macromolecules for effective wound healing strategy - A review. Biomed Pharmacother 2023; 157:113996. [PMID: 36399827 DOI: 10.1016/j.biopha.2022.113996] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
A Non-healing infected wound is an ever-growing global epidemic, with increasing burden of mortality rates and management costs. The problems of chronic wound infections and their outcomes will continue as long as their underlying causes like diabetic wounds grow and spread. Commercial wound therapies employed have limited potential that inhibits pivotal functions and tissue re-epithelialization properties resulting in wound infections. Nanomaterial based drug delivery formulations involving biological macromolecules are developing areas of interest in wound healing applications which are utilized in the re-epithelialization of skin with cost-effective preparations. Research conducted on nanofibers has shown enhanced skin establishment with improved cell proliferation and growth and delivery of bioactive organic molecules at the wound site. However, drug targeted delivery with anti-scarring properties and tissue regeneration aspects have not been updated and discussed in the case of macromolecule impregnated nanofibrous mats. Hence, this review focuses on the brief concepts of wound healing and wound management, therapeutic commercialized wound dressings currently available in the field of wound care, effective electrospun nanofibers impregnated with different biological macromolecules and advancement of nanomaterials for tissue engineering have been discussed. These new findings will pave the way for producing anti-scarring high effective wound scaffolds for drug delivery.
Collapse
Affiliation(s)
- Lakshimipriya Sethuram
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
23
|
Khosravian P, Javdani M, Noorbakhnia R, Moghtadaei-Khorasgani E, Barzegar A. Preparation and evaluation of chitosan skin patches containing mesoporous silica nanoparticles loaded by doxycycline on skin wound healing. Arch Dermatol Res 2022; 315:1333-1345. [PMID: 36576582 DOI: 10.1007/s00403-022-02518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
This study aims to prepare and evaluate a skin patch containing mesoporous silica nanoparticles with doxycycline for skin wound healing in a rat model. For this purpose, 84 female rats were randomly placed in four equal groups: (A) Control group with only skin defects and no therapeutic intervention; (B) Chitosan group in which a chitosan skin patch without loading any drug was placed on their skin defect; (C); The ChMesN group had a chitosan skin patch containing drug-free mesoporous silica nanoparticles; (D) ChMesND group had a skin patch loaded with doxycycline loaded with mesoporous silica nanoparticles on their skin defect. The histological results showed that on the 3rd day of the study, collagen fiber orientation was significantly higher in the ChMesND group than in the other groups. On the 7th day of the study, neovascularization, and inflammation in the ChMesND group were significantly higher and lower than in the other groups, respectively. On day 21, the most re-epithelialization was observed in the ChMesND group. It was found that on day 7, the wound area in the ChMesND group was significantly less than in other groups. On the 21st day of the study, the minimal experimental wound area was related to chitosan and ChMesND groups. Although chitosan has anti-inflammatory effects, its combination with doxycycline with several beneficial biological effects can have significant therapeutic effects with chitosan. Hence, it can be concluded that chitosan skin patch containing doxycycline can be suitable dressings for managing and accelerating the healing of skin wounds.
Collapse
Affiliation(s)
- Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Moosa Javdani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, 115, Shahrekord, Iran.
| | - Razieh Noorbakhnia
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, 115, Shahrekord, Iran
| | | | - Abolfazl Barzegar
- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
24
|
Developing Antibiofilm Fibrillar Scaffold with Intrinsic Capacity to Produce Silver Nanoparticles. Int J Mol Sci 2022; 23:ijms232315378. [PMID: 36499703 PMCID: PMC9737318 DOI: 10.3390/ijms232315378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The development of biomedical systems with antimicrobial and antibiofilm properties is a difficult medical task for preventing bacterial adhesion and growth on implanted devices. In this work, a fibrillar scaffold was produced by electrospinning a polymeric organic dispersion of polylactic acid (PLA) and poly(α,β-(N-(3,4-dihydroxyphenethyl)-L-aspartamide-co-α,β-N-(2-hydroxyethyl)-L-aspartamide) (PDAEA). The pendant catechol groups of PDAEA were used to reduce silver ions in situ and produce silver nanoparticles onto the surface of the electrospun fibers through a simple and reproducible procedure. The morphological and physicochemical characterization of the obtained scaffolds were studied and compared with virgin PLA electrospun sample. Antibiofilm properties against Pseudomonas aeruginosa, used as a biofilm-forming pathogen model, were also studied on planar and tubular scaffolds. These last were fabricated as a proof of concept to demonstrate the possibility to obtain antimicrobial devices with different shape and dimension potentially useful for different biomedical applications. The results suggest a promising approach for the development of antimicrobial and antibiofilm scaffolds.
Collapse
|
25
|
Ren S, Guo S, Yang L, Wang C. Effect of composite biodegradable biomaterials on wound healing in diabetes. Front Bioeng Biotechnol 2022; 10:1060026. [PMID: 36507270 PMCID: PMC9732485 DOI: 10.3389/fbioe.2022.1060026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The repair of diabetic wounds has always been a job that doctors could not tackle quickly in plastic surgery. To solve this problem, it has become an important direction to use biocompatible biodegradable biomaterials as scaffolds or dressing loaded with a variety of active substances or cells, to construct a wound repair system integrating materials, cells, and growth factors. In terms of wound healing, composite biodegradable biomaterials show strong biocompatibility and the ability to promote wound healing. This review describes the multifaceted integration of biomaterials with drugs, stem cells, and active agents. In wounds, stem cells and their secreted exosomes regulate immune responses and inflammation. They promote angiogenesis, accelerate skin cell proliferation and re-epithelialization, and regulate collagen remodeling that inhibits scar hyperplasia. In the process of continuous combination with new materials, a series of materials that can be well matched with active ingredients such as cells or drugs are derived for precise delivery and controlled release of drugs. The ultimate goal of material development is clinical transformation. At present, the types of materials for clinical application are still relatively single, and the bottleneck is that the functions of emerging materials have not yet reached a stable and effective degree. The development of biomaterials that can be further translated into clinical practice will become the focus of research.
Collapse
Affiliation(s)
- Sihang Ren
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuaichen Guo
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Glinka M, Filatova K, Kucińska-Lipka J, Šopík T, Domincová Bergerová E, Mikulcová V, Wasik A, Sedlařík V. Antibacterial Porous Systems Based on Polylactide Loaded with Amikacin. Molecules 2022; 27:molecules27207045. [PMID: 36296639 PMCID: PMC9609933 DOI: 10.3390/molecules27207045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Three porous matrices based on poly(lactic acid) are proposed herein for the controlled release of amikacin. The materials were fabricated by the method of spraying a surface liquid. Description is given as to the possibility of employing a modifier, such as a silica nanocarrier, for prolonging the release of amikacin, in addition to using chitosan to improve the properties of the materials, e.g., stability and sorption capacity. Depending on their actual composition, the materials exhibited varied efficacy for drug loading, as follows: 25.4 ± 2.2 μg/mg (matrices with 0.05% w/v of chitosan), 93 ± 13 μg/mg (with 0.08% w/v SiO2 amikacin modified nanoparticles), and 96 ± 34 μg/mg (matrices without functional additives). An in vitro study confirmed extended release of the drug (amikacin, over 60 days), carried out in accordance with the mathematical Kosmyer–Pepas model for all the materials tested. The matrices were also evaluated for their effectiveness in inhibiting the growth of bacteria such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Concurrent research was conducted on the transdermal absorption, morphology, elemental composition, and thermogravimetric properties of the released drug.
Collapse
Affiliation(s)
- Marta Glinka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Katerina Filatova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Tomáš Šopík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Eva Domincová Bergerová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Veronika Mikulcová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Andrzej Wasik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
- Correspondence:
| | - Vladimir Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| |
Collapse
|
27
|
Alinezhad Sardareh E, Shahzeidi M, Salmanifard Ardestani MT, Mousavi-Khattat M, Zarepour A, Zarrabi A. Antimicrobial Activity of Blow Spun PLA/Gelatin Nanofibers Containing Green Synthesized Silver Nanoparticles against Wound Infection-Causing Bacteria. Bioengineering (Basel) 2022; 9:518. [PMID: 36290486 PMCID: PMC9599005 DOI: 10.3390/bioengineering9100518] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
One of the main challenges in wound healing is the wound infection due to various causes, of which moisture is the most important reason. Owing to this fact, wound dressings that can collect wound moisture in addition to showing antibacterial properties have provided an important basis for wound healing research. In this study, gelatin and poly lactic acid (PLA) polymers were used in a wound dressing textile to provide gelation and structure strength properties, respectively. Meanwhile, silver nanoparticles (SNPs) synthesized through the green method were integrated into these fibers to provide the formed textile with antibacterial properties. Nanoparticles were made using donkey dung extract, and nanofibers were produced by the solution blow spinning method which has high production efficiency and low energy consumption among spinning methods. The produced nanoparticles were characterized and evaluated by UV-Vis, DLS, XRD, and FTIR methods, and the production of silver nanoparticles that were coated with metabolites in the extract was proven. In addition, the morphology and diameter of the resulted fibers and presence of nanoparticles were confirmed by the SEM method. The size and size distribution of the synthesized fibers were determined through analyzing SEM results. Gelatin nanofibers demonstrated a mean size of 743 nm before and 773 nm after nanoparticle coating. PLA nanofibers demonstrated a mean size of 57 nm before and 182 nm after nanoparticle coating. Finally, 335 nm was the mean diameter size of gelatin/PLA/SNPs nanofibers. Also, the textiles synthesized by PLA and gelatin which contained silver nanoparticles showed higher antibacterial activity against both gram-positive and gram-negative species compared to PLA and gelatin tissues without nanoparticles. Cytotoxicity test on L929 cells showed that silver nanoparticles incorporated textiles of PLA and gelatin show a very low level and non-significant toxicity compared to the free particles.
Collapse
Affiliation(s)
- Elham Alinezhad Sardareh
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan 83517-65851, Iran
| | - Moloud Shahzeidi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 81593-58686, Iran
| | | | - Mohammad Mousavi-Khattat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
28
|
Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int J Nanomedicine 2022; 17:4137-4162. [PMID: 36118177 PMCID: PMC9480606 DOI: 10.2147/ijn.s370340] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a major threat to oral health, prompting scientists to continuously study new treatment techniques. The nanofibrous membrane prepared via electrospinning has a large specific surface area and high porosity. On the one hand, electrospun nanofibers can improve the absorption capacity of proteins and promote the expression of specific genes. On the other hand, they can improve cell adhesion properties and prevent fibroblasts from passing through the barrier membrane. Therefore, electrospinning has unique advantages in periodontal treatment. At present, many oral nanofibrous membranes with antibacterial, anti-inflammatory, and tissue regeneration properties have been prepared for periodontal treatment. First, this paper introduces the electrospinning process. Then, the commonly used polymers of electrospun nanofibrous membranes for treating periodontitis are summarized. Finally, different types of nanofibrous membranes prepared via electrospinning for periodontal treatment are presented, and the future evolution of electrospinning to treat periodontitis is described.
Collapse
Affiliation(s)
- Ping Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, People's Republic of China.,Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yufeng Xie
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, 200093, People's Republic of China
| |
Collapse
|
29
|
|
30
|
Fabrication and characterization of three-layer nanofibrous yarn (PA6/PU/PA6). Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
3D PCL/collagen nanofibrous medical dressing for one-time treatment of diabetic foot ulcers. Colloids Surf B Biointerfaces 2022; 214:112480. [PMID: 35358884 DOI: 10.1016/j.colsurfb.2022.112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Nanofibrous dressings exhibit high specific surface areas, good histocompatibility, enhanced wound healing, and reduced inflammation, which have broad technological implications for treating diabetic foot ulcers (DFUs). However, current nanofibrous dressings still suffer from high resistance to cell infiltration and multiple dressing changes. In this study, polycaprolactone (PCL) and collagen were adopted as electrospinning materials to prepare a 3D PCL/Collagen (PC) nanofibrous dressing (3D-PC) using aqueous phase fibre reassembly technology. The matrix metalloproteinases (MMPs) inhibitor doxycycline hyclate (DCH)-loaded halloysite nanotubes (HNTs) (DCH@HNTs) and antibacterial agent cephalexin (CEX) were loaded onto the dressing to prepare a multifunctional 3D drug-loaded PCL/Collagen nanofibrous dressing to promote DFU wound healing. The obtained 3D nanofibrous dressing exhibited high water absorption capacity and swelling capacity. It showed good antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro antibacterial test. In addition, the 3D nanofibrous dressing demonstrated good biocompatibility. It could significantly reduce the frequency of dressing changes and improve the healing of DFU wounds compared with the conventional multiple dressing changes method, suggesting a potential candidate for healing diabetic wounds.
Collapse
|
32
|
Naseri E, Ahmadi A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Zhang F, Pei X, Peng X, Gou D, Fan X, Zheng X, Song C, Zhou Y, Cui S. Dual crosslinking of folic acid-modified pectin nanoparticles for enhanced oral insulin delivery. BIOMATERIALS ADVANCES 2022; 135:212746. [PMID: 35929218 DOI: 10.1016/j.bioadv.2022.212746] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
Pectin-based drug delivery systems hold great potential for oral insulin delivery, since they possess excellent gelling property, good mucoadhesion and high stability in the gastrointestinal (GI) tract. However, lack of enterocyte targeting ability and premature drug release in the upper GI tract of the susceptible ionic-crosslinked pectin matrices are two major problems to be solved. To address these issues, we developed folic acid (FA)-modified pectin nanoparticles (INS/DFAN) as insulin delivery vehicles by a dual-crosslinking method using calcium ions and adipic dihydrazide (ADH) as crosslinkers. In vitro studies indicated insulin release behaviors of INS/DFAN depended on COOH/ADH molar ratio in the dual-crosslinking process. INS/DFAN effectively prevented premature insulin release in simulated GI fluids compared to ionic-crosslinked nanoparticles (INS/FAN). At an optimized COOH/ADH molar ratio, INS/DFAN with FA graft ratio of 18.2% exhibited a relatively small particle size, high encapsulation efficiency and excellent stability. Cellular uptake of INS/DFAN was FA graft ratio dependent when it was at/below 18.2%. Uptake mechanism and intestinal distribution studies demonstrated the enhanced insulin transepithelial transport by INS/DFAN via FA carrier-mediated transport pathway. In vivo studies revealed that orally-administered INS/DFAN produced a significant reduction in blood glucose levels and further improved insulin bioavailability in type I diabetic rats compared to INS/FAN. Taken together, the combination of dual crosslinking and FA modification is an effective strategy to develop pectin nano-vehicles for enhanced oral insulin delivery.
Collapse
Affiliation(s)
- Fenglei Zhang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejing Pei
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaoxia Peng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Dongxia Gou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiao Fan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuefei Zheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Sisi Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
34
|
Hussein MAM, Gunduz O, Sahin A, Grinholc M, El-Sherbiny IM, Megahed M. Dual Spinneret Electrospun Polyurethane/PVA-Gelatin Nanofibrous Scaffolds Containing Cinnamon Essential Oil and Nanoceria for Chronic Diabetic Wound Healing: Preparation, Physicochemical Characterization and In-Vitro Evaluation. Molecules 2022; 27:2146. [PMID: 35408546 PMCID: PMC9000402 DOI: 10.3390/molecules27072146] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
In this study, a dual spinneret electrospinning technique was applied to fabricate a series of polyurethane (PU) and polyvinyl alcohol-gelatin (PVA/Gel) nanofibrous scaffolds. The study aims to enhance the properties of PU/PVA-Gel NFs loaded with a low dose of nanoceria through the incorporation of cinnamon essential oil (CEO). The as-prepared nCeO2 were embedded into the PVA/Gel nanofibrous layer, where the cinnamon essential oil (CEO) was incorporated into the PU nanofibrous layer. The morphology, thermal stability, mechanical properties, and chemical composition of the produced NF mats were investigated by STEM, DSC, and FTIR. The obtained results showed improvement in the mechanical, and thermal stability of the dual-fiber scaffolds by adding CEO along with nanoceria. The cytotoxicity evaluation revealed that the incorporation of CEO to PU/PVA-Gel loaded with a low dose of nanoceria could enhance the cell population compared to using pure PU/PVA-Gel NFs. Moreover, the presence of CEO could inhibit the growth rate of S. aureus more than E. coli. To our knowledge, this is the first time such nanofibrous membranes composed of PU and PVA-Gel have been produced. The first time was to load the nanofibrous membranes with both CEO and nCeO2. The obtained results indicate that the proposed PU/PVA-Gel NFs represent promising platforms with CEO and nCeO2 for effectively managing diabetic wounds.
Collapse
Affiliation(s)
- Mohamed Ahmed Mohamady Hussein
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
- Department of Pharmacology, Medical Research Division, National Research Center, Dokki, Cairo 12622, Egypt
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey;
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ali Sahin
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul 34854, Turkey;
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 80307 Gdansk, Poland;
| | - Ibrahim Mohamed El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
| |
Collapse
|
35
|
Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063192] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(lactic acid)(PLA) is an aliphatic polyester that can be derived from natural and renewable resources. Owing to favorable features, such as biocompatibility, biodegradability, good thermal and mechanical performance, and processability, PLA has been considered as one of the most promising biopolymers for biomedical applications. Particularly, electrospun PLA nanofibers with distinguishing characteristics, such as similarity to the extracellular matrix, large specific surface area and high porosity with small pore size and tunable mechanical properties for diverse applications, have recently given rise to advanced spillovers in the medical area. A variety of PLA-based nanofibrous structures have been explored for biomedical purposes, such as wound dressing, drug delivery systems, and tissue engineering scaffolds. This review highlights the recent advances in electrospinning of PLA-based structures for biomedical applications. It also gives a comprehensive discussion about the promising approaches suggested for optimizing the electrospun PLA nanofibrous structures towards the design of specific medical devices with appropriate physical, mechanical and biological functions.
Collapse
|
36
|
Preparation and Characterization of Doxycycline-Loaded Electrospun PLA/HAP Nanofibers as a Drug Delivery System. MATERIALS 2022; 15:ma15062105. [PMID: 35329557 PMCID: PMC8951507 DOI: 10.3390/ma15062105] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
The present study aimed to prepare nanofibers by electrospinning in the system polylactic acid-hydroxyapatite-doxycycline (PLA-HAP-Doxy) to be used as a drug delivery vehicle. Two different routes were employed for the preparation of Doxy-containing nanofibers: Immobilization on the electrospun mat’s surface and encapsulation in the fiber structure. The nanofibers obtained by Doxy encapsulation were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric (TG) and differential thermal analyses (DTA) and scanning electron microscopy (SEM). The adsorption properties of pure PLA and PLA-HAP nanofibers were investigated for solutions with different Doxy concentrations (3, 7 and 12 wt%). Moreover, the desorption properties of the active substance were tested in two different fluids, simulated body fluid (SBF) and phosphate buffer solution (PBS), to evidence the drug release properties. In vitro drug release studies were performed and different drug release kinetics were assessed to confirm the use of these nanofiber materials as efficient drug delivery vehicles. The obtained results indicate that the PLA-HAP-Doxy is a promising system for biomedical applications, the samples with 3 and 7 wt% of Doxy-loaded PLA-HAP nanofibers prepared by physical adsorption are the most acceptable membranes to provide prolonged release in PBS/SBF rather than an immediate release of Doxy.
Collapse
|
37
|
Gajić I, Stojanović S, Ristić I, Ilić-Stojanović S, Pilić B, Nešić A, Najman S, Dinić A, Stanojević L, Urošević M, Nikolić V, Nikolić L. Electrospun Poly(lactide) Fibers as Carriers for Controlled Release of Biochanin A. Pharmaceutics 2022; 14:528. [PMID: 35335904 PMCID: PMC8951644 DOI: 10.3390/pharmaceutics14030528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study is to investigate the possibility of using electrospun polylactide (PLA) fibers as a carrier of the phytoestrogen biochanin A. Polylactide fibers were prepared with different contents of biochanin A by using an electrospinning method at specific process parameters. The obtained electrospun polylactide fibers, as carriers of biochanin A, were characterized by means of different methods. The presented results showed that the mechanical properties of PLA have not changed significantly in the presence of biochanin A. Scanning electron microscopy showed that the fine fiber structure is retained without visible deformations and biochanin A crystals on the surface of the fibres. The analysis by infrared spectroscopy showed that there are no strong interactions between polylactide and biochanin A molecules, which is a good prerequisite for the diffusion release of biochanin A from PLA fibers.The release of biochanin A from PLA fibers in buffer solution pH 7.4 at 37 °C was monitored by applying the HPLC method. The rate and time of the release of biochanin A from PLA fibers is in correlation with the amount of the active ingredient in the matrix of the carrier and follows zero-order kinetics. PLA fibers with biochanin A exhibit concentration-dependent activity on proliferation and migration of L929 fibroblasts in direct culture system in vitro, and proved to be suitable for a potential formulation for use in wound healing.
Collapse
Affiliation(s)
- Ivana Gajić
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia; (I.G.); (A.D.); (L.S.); (M.U.); (V.N.); (L.N.)
| | - Sanja Stojanović
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjica 81, 18108 Niš, Serbia; (S.S.); (S.N.)
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjica 81, 18108 Niš, Serbia
| | - Ivan Ristić
- Faculty of Technology Novi Sad, University of Novi Sad, 18000 Novi Sad, Serbia; (I.R.); (B.P.); (A.N.)
| | - Snežana Ilić-Stojanović
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia; (I.G.); (A.D.); (L.S.); (M.U.); (V.N.); (L.N.)
| | - Branka Pilić
- Faculty of Technology Novi Sad, University of Novi Sad, 18000 Novi Sad, Serbia; (I.R.); (B.P.); (A.N.)
| | - Aleksandra Nešić
- Faculty of Technology Novi Sad, University of Novi Sad, 18000 Novi Sad, Serbia; (I.R.); (B.P.); (A.N.)
| | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjica 81, 18108 Niš, Serbia; (S.S.); (S.N.)
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjica 81, 18108 Niš, Serbia
| | - Ana Dinić
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia; (I.G.); (A.D.); (L.S.); (M.U.); (V.N.); (L.N.)
| | - Ljiljana Stanojević
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia; (I.G.); (A.D.); (L.S.); (M.U.); (V.N.); (L.N.)
| | - Maja Urošević
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia; (I.G.); (A.D.); (L.S.); (M.U.); (V.N.); (L.N.)
| | - Vesna Nikolić
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia; (I.G.); (A.D.); (L.S.); (M.U.); (V.N.); (L.N.)
| | - Ljubiša Nikolić
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia; (I.G.); (A.D.); (L.S.); (M.U.); (V.N.); (L.N.)
| |
Collapse
|
38
|
Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. Polymers (Basel) 2022; 14:polym14040724. [PMID: 35215637 PMCID: PMC8874614 DOI: 10.3390/polym14040724] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic wounds are severe injuries that are common in patients that suffer from diabetes. Most of the presently employed wound dressing scaffolds are inappropriate for treating diabetic wounds. Improper treatment of diabetic wounds usually results in amputations. The shortcomings that are related to the currently used wound dressings include poor antimicrobial properties, inability to provide moisture, weak mechanical features, poor biodegradability, and biocompatibility, etc. To overcome the poor mechanical properties, polymer-based wound dressings have been designed from the combination of biopolymers (natural polymers) (e.g., chitosan, alginate, cellulose, chitin, gelatin, etc.) and synthetic polymers (e.g., poly (vinyl alcohol), poly (lactic-co-glycolic acid), polylactide, poly-glycolic acid, polyurethanes, etc.) to produce effective hybrid scaffolds for wound management. The loading of bioactive agents or drugs into polymer-based wound dressings can result in improved therapeutic outcomes such as good antibacterial or antioxidant activity when used in the treatment of diabetic wounds. Based on the outstanding performance of polymer-based wound dressings on diabetic wounds in the pre-clinical experiments, the in vivo and in vitro therapeutic results of the wound dressing materials on the diabetic wound are hereby reviewed.
Collapse
|
39
|
Costa PRA, Menezes LR, Dias ML, Silva EO. Advances in the use of electrospinning as a promising technique for obtaining nanofibers to guide epithelial wound healing in diabetics—Mini‐review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pamela Roberta Alves Costa
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Lívia Rodrigues Menezes
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Marcos Lopes Dias
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| | - Emerson Oliveira Silva
- Universidade Federal do Rio de Janeiro (UFRJ) Instituto de Macromoléculas Professora Eloisa Mano (IMA) Ilha do Fundão RJ Brazil
| |
Collapse
|
40
|
Pamu D, Tallapaneni V, Karri VVSR, Singh SK. Biomedical applications of electrospun nanofibers in the management of diabetic wounds. Drug Deliv Transl Res 2022; 12:158-166. [PMID: 33748878 DOI: 10.1007/s13346-021-00941-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 01/07/2023]
Abstract
Diabetes mellitus (DM) is a complex disease that affects almost all the body's vital organs. Around 415 million people have been diagnosed with DM worldwide, and most of them are due to type 2 DM. The incidence of DM is estimated to increase by 642 million individuals by 2040. DM is considered to have many complications among which diabetic wound (DW) is one of the most distressing complication. DW affects 15% of people with diabetes and is triggered by the loss of glycaemic control, peripheral neuropathy, vascular diseases, and immunosuppression. For timely treatment, early detection, debridement, offloading, and controlling infection are crucial. Even though several treatments are available, the understanding of overlying diabetes-related wound healing mechanisms as therapeutic options has increased dramatically over the past decades. Conventional dressings are cost-effective; however, they are not productive enough to promote the overall process of DW healing. Thanks to tissue engineering developments, one of the promising current trends in innovative wound dressings such as hydrocolloids, hydrogels, scaffolds, films, and nanofibers which merges traditional healing agents and modern products/practices. Nanofibers prepared by electrospinning with enormous porosity, excellent absorption of moisture, the better exchange rate of oxygen, and antibacterial activities have increased interest. The application of these nanofibers can be extended by starting with a careful selection of polymers, loading with active therapeutic moieties such as peptides, proteins, active pharmaceutical ingredients (API), and stem cells, etc. to make them as potential dosage forms in the management of DWs. This review explains the potential applications of electrospun nanofibers in DW healing. A schematic view of role of nanofibers in diabetic wounds.
Collapse
Affiliation(s)
- Divya Pamu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Vyshnavi Tallapaneni
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
41
|
Eang C, Nim B, Sreearunothai P, Petchsuk A, Opaprakasit P. Chemical upcycling of polylactide (PLA) and its use in fabricating PLA-based super-hydrophobic and oleophilic electrospun nanofibers for oil absorption and oil/water separation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02747j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular design and fabrication of PLA nanofiber filters from PLA wastes for effective oil decontamination and oil/water separation.
Collapse
Affiliation(s)
- Chorney Eang
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Bunthoeun Nim
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Paiboon Sreearunothai
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pakorn Opaprakasit
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| |
Collapse
|
42
|
Gao Z, Wang Q, Yao Q, Zhang P. Application of Electrospun Nanofiber Membrane in the Treatment of Diabetic Wounds. Pharmaceutics 2021; 14:6. [PMID: 35056901 PMCID: PMC8780153 DOI: 10.3390/pharmaceutics14010006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetic wounds are complications of diabetes which are caused by skin dystrophy because of local ischemia and hypoxia. Diabetes causes wounds in a pathological state of inflammation, resulting in delayed wound healing. The structure of electrospun nanofibers is similar to that of the extracellular matrix (ECM), which is conducive to the attachment, growth, and migration of fibroblasts, thus favoring the formation of new skin tissue at the wound. The composition and size of electrospun nanofiber membranes can be easily adjusted, and the controlled release of loaded drugs can be realized by regulating the fiber structure. The porous structure of the fiber membrane is beneficial to gas exchange and exudate absorption at the wound, and the fiber surface can be easily modified to give it function. Electrospun fibers can be used as wound dressing and have great application potential in the treatment of diabetic wounds. In this study, the applications of polymer electrospun fibers, nanoparticle-loaded electrospun fibers, drug-loaded electrospun fibers, and cell-loaded electrospun fibers, in the treatment of diabetic wounds were reviewed, and provide new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
| | | | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; (Z.G.); (Q.W.)
| | - Pingping Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; (Z.G.); (Q.W.)
| |
Collapse
|
43
|
Ciftci F, Duygulu N, Yilmazer Y, Karavelioğlu Z, Çakır Koç R, Gündüz O, Ustündag CB. Antibacterial and cellular behavior of PLA-based bacitracin and zataria multiflora nanofibers produced by electrospinning method. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2008391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Fatih Sultan Mehmet Vakif University, Istanbul, Turkey
- Technology Transfer Office, Fatih Sultan Mehmet Vakif University, Istanbul, Turkey
| | - Nilüfer Duygulu
- Department of Metallurgical and Material Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Yasemin Yilmazer
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | | | - Rabia Çakır Koç
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Oguzhan Gündüz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
44
|
Hussein MAM, Su S, Ulag S, Woźniak A, Grinholc M, Erdemir G, Erdem Kuruca S, Gunduz O, Muhammed M, El-Sherbiny IM, Megahed M. Development and In Vitro Evaluation of Biocompatible PLA-Based Trilayer Nanofibrous Membranes for the Delivery of Nanoceria: A Novel Approach for Diabetic Wound Healing. Polymers (Basel) 2021; 13:3630. [PMID: 34771187 PMCID: PMC8587307 DOI: 10.3390/polym13213630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
The attempts to explore and optimize the efficiency of diabetic wound healing's promotors are still in progress. Incorporation of cerium oxide nanoparticles (nCeO2) in appropriate nanofibers (NFs) can prolong and maximize their promoting effect for the healing of diabetic wounds, through their sustained releases, as well as the nanofibers role in mimicking of the extra cellular matrix (ECM). The as-prepared nCeO2 were analyzed by using UV-Vis spectroscopy, XRD, SEM-EDX, TEM and FTIR, where TEM and SEM images of both aqueous suspension and powder showed spherical/ovoid-shaped particles. Biodegradable trilayer NFs with cytobiocompatibility were developed to sandwich nCeO2 in PVA NFs as a middle layer where PLA NFs were electrospun as outer bilayer. The nCeO2-loaded trilayer NFs were characterized by SEM, XRD, FTIR and DSC. A two-stage release behavior was observed when the nanoceria was released from the trilayer-based nanofibers; an initial burst release took place, and then it was followed by a sustained release pattern. The mouse embryo fibroblasts, i.e., 3T3 cells, were seeded over the nCeO2-loaded NFs mats to investigate their cyto-biocompatibility. The presence and sustained release of nCeO2 efficiently enhance the adhesion, growth and proliferation of the fibroblasts' populations. Moreover, the incorporation of nCeO2 with a higher amount into the designed trilayer NFs demonstrated a significant improvement in morphological, mechanical, thermal and cyto-biocompatibility properties than lower doses. Overall, the obtained results suggest that designated trilayer nanofibrous membranes would offer a specific approach for the treatment of diabetic wounds through an effective controlled release of nCeO2.
Collapse
Affiliation(s)
- Mohamed Ahmed Mohamady Hussein
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
- Department of Pharmacology, Medical Research Division, National Research Center, Dokki, Cairo 12622, Egypt
| | - Sena Su
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (S.S.); (S.U.); (O.G.)
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (S.S.); (S.U.); (O.G.)
| | - Agata Woźniak
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (M.G.)
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 80-307 Gdansk, Poland; (A.W.); (M.G.)
| | - Gökce Erdemir
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34390, Turkey;
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul 34010, Turkey
| | - Serap Erdem Kuruca
- Department of Physiology, Faculty of Medicine, Istanbul University, Istanbul 34390, Turkey;
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (S.S.); (S.U.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Mamoun Muhammed
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden;
| | - Ibrahim M. El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
| |
Collapse
|
45
|
Maleki H, Khoshnevisan K, Sajjadi-Jazi SM, Baharifar H, Doostan M, Khoshnevisan N, Sharifi F. Nanofiber-based systems intended for diabetes. J Nanobiotechnology 2021; 19:317. [PMID: 34641920 PMCID: PMC8513238 DOI: 10.1186/s12951-021-01065-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetic mellitus (DM) is the most communal metabolic disease resulting from a defect in insulin secretion, causing hyperglycemia by promoting the progressive destruction of pancreatic β cells. This autoimmune disease causes many severe disorders leading to organ failure, lower extremity amputations, and ultimately death. Modern delivery systems e.g., nanofiber (NF)-based systems fabricated by natural and synthetic or both materials to deliver therapeutics agents and cells, could be the harbinger of a new era to obviate DM complications. Such delivery systems can effectively deliver macromolecules (insulin) and small molecules. Besides, NF scaffolds can provide an ideal microenvironment to cell therapy for pancreatic β cell transplantation and pancreatic tissue engineering. Numerous studies indicated the potential usage of therapeutics/cells-incorporated NF mats to proliferate/regenerate/remodeling the structural and functional properties of diabetic skin ulcers. Thus, we intended to discuss the aforementioned features of the NF system for DM complications in detail.
Collapse
Affiliation(s)
- Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran.
| | - Sayed Mahmoud Sajjadi-Jazi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Maryam Doostan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazanin Khoshnevisan
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Farshad Sharifi
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran
| |
Collapse
|
46
|
Emmert S, Pantermehl S, Foth A, Waletzko-Hellwig J, Hellwig G, Bader R, Illner S, Grabow N, Bekeschus S, Weltmann KD, Jung O, Boeckmann L. Combining Biocompatible and Biodegradable Scaffolds and Cold Atmospheric Plasma for Chronic Wound Regeneration. Int J Mol Sci 2021; 22:9199. [PMID: 34502107 PMCID: PMC8430875 DOI: 10.3390/ijms22179199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Skin regeneration is a quite complex process. Epidermal differentiation alone takes about 30 days and is highly regulated. Wounds, especially chronic wounds, affect 2% to 3% of the elderly population and comprise a heterogeneous group of diseases. The prevailing reasons to develop skin wounds include venous and/or arterial circulatory disorders, diabetes, or constant pressure to the skin (decubitus). The hallmarks of modern wound treatment include debridement of dead tissue, disinfection, wound dressings that keep the wound moist but still allow air exchange, and compression bandages. Despite all these efforts there is still a huge treatment resistance and wounds will not heal. This calls for new and more efficient treatment options in combination with novel biocompatible skin scaffolds. Cold atmospheric pressure plasma (CAP) is such an innovative addition to the treatment armamentarium. In one CAP application, antimicrobial effects, wound acidification, enhanced microcirculations and cell stimulation can be achieved. It is evident that CAP treatment, in combination with novel bioengineered, biocompatible and biodegradable electrospun scaffolds, has the potential of fostering wound healing by promoting remodeling and epithelialization along such temporarily applied skin replacement scaffolds.
Collapse
Affiliation(s)
- Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (A.F.); (O.J.)
| | - Sven Pantermehl
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (A.F.); (O.J.)
| | - Aenne Foth
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (A.F.); (O.J.)
| | - Janine Waletzko-Hellwig
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Georg Hellwig
- Clinic and Policlinic for Orthopedics, University Medical Center Rostock, 18057 Rostock, Germany; (G.H.); (R.B.)
| | - Rainer Bader
- Clinic and Policlinic for Orthopedics, University Medical Center Rostock, 18057 Rostock, Germany; (G.H.); (R.B.)
| | - Sabine Illner
- Institute for Biomedical Engineering, University Medical Center Rostock, 18119 Rostock, Germany; (S.I.); (N.G.)
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, 18119 Rostock, Germany; (S.I.); (N.G.)
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (S.B.); (K.-D.W.)
| | - Klaus-Dieter Weltmann
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (S.B.); (K.-D.W.)
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (A.F.); (O.J.)
| | - Lars Boeckmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (A.F.); (O.J.)
| |
Collapse
|
47
|
Mohamady Hussein MA, Ulag S, Abo Dena AS, Sahin A, Grinholc M, Gunduz O, El-Sherbiny I, Megahed M. Chitosan/Gold Hybrid Nanoparticles Enriched Electrospun PVA Nanofibrous Mats for the Topical Delivery of Punica granatum L. Extract: Synthesis, Characterization, Biocompatibility and Antibacterial Properties. Int J Nanomedicine 2021; 16:5133-5151. [PMID: 34354349 PMCID: PMC8331124 DOI: 10.2147/ijn.s306526] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Intending to obtain Punica granatum L. extract (PE)-loaded drug delivery system of better impact and biomedical applicability, the current study reports the use of crosslinked PVA nanofibers (NFs) as platforms incorporating different amounts of biosynthesized PE-CS-gold nanoparticles (PE-CS-Au NPs). Methods PE-conjugated CS-Au nanoparticles (PE-CS-Au NPs) were synthesized via green chemistry approach. The formation of PE-CS-Au NPs was confirmed by UV spectroscopy, DLS, SEM and STEM. PE-CS-Au NPs were then dispersed into polyvinyl alcohol (PVA) solution at different ratios, where the optimized ratios were selected for electrospinning and further studies. Crosslinking of PE-CS-Au NPs loaded PVA nanofibers (NFs) was performed via glutaraldehyde vapor. The morphology, chemical compositions, thermal stability and mechanical properties of PE-CS-Au NPs loaded NFs were evaluated by SEM, FTIR and DSC. Swelling capacity, biodegradability, PE release profiles, release kinetics, antibacterial and cell biocompatibility were also demonstrated. Results By incorporating PE-CS-Au NPs at 0.6% and 0.9%, the diameters of the nanofibers decreased from 295.7±83.1 nm in neat PVA to 165.6±43.4 and 147.8±42.7 nm, respectively. It is worth noting that crosslinking and incorporation of PE-CS-Au NPs improved thermal stability and mechanical properties of the obtained NFs. The release of PE from NFs was controlled by a Fickian diffusion mechanism (n value ˂0.5), whereas Higuchi was the mathematical model which could describe this release. The antibacterial activity was found to be directly proportional to the amount of the incorporated PE-CS-Au NPs. The human fibroblasts (HFF-1) showed the highest viability (123%) by seeding over the PVA NFs mats containing 0.9% PE-CS-Au NPs. Conclusion The obtained results suggest that the electrospun PVA NFs composites containing 0.9% PE-CS-Au NPs can be used as antibacterial agents against antibiotic-resistant bacteria, and as suitable scaffolds for cell adhesion, growth and proliferation of fibroblast populations.
Collapse
Affiliation(s)
- Mohamed Ahmed Mohamady Hussein
- Clinic of Dermatology, University Hospital of RWTH Aachen, Aachen, 52074, Germany.,Department of Pharmacology, Medical Research Division, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Turkey
| | - Ahmed S Abo Dena
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12578, Egypt
| | - Ali Sahin
- Department of Biochemistry, School of Medicine, Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, 34722, Turkey
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Turkey.,Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, 34722, Turkey
| | - Ibrahim El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12578, Egypt
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of RWTH Aachen, Aachen, 52074, Germany
| |
Collapse
|
48
|
Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials. Pharmaceutics 2021; 13:pharmaceutics13070964. [PMID: 34206857 PMCID: PMC8308981 DOI: 10.3390/pharmaceutics13070964] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
The treatment of wounds is expensive and challenging. Most of the available wound dressings are not effective and suffer from limitations such as poor antimicrobial activity, toxicity, inability to provide suitable moisture to the wound and poor mechanical performance. The use of inappropriate wound dressings can result in a delayed wound healing process. Nanosize range scaffolds have triggered great attention because of their attractive properties, which include their capability to deliver bioactive agents, high surface area, improved mechanical properties, mimic the extracellular matrix (ECM), and high porosity. Nanofibrous materials can be further encapsulated/loaded with metal-based nanoparticles to enhance their therapeutic outcomes in wound healing applications. The widely studied metal-based nanoparticles, silver nanoparticles exhibit good properties such as outstanding antibacterial activity, display antioxidant, and anti-inflammatory properties, support cell growth, making it an essential bioactive agent in wound dressings. This review article reports the biological (in vivo and in vitro) and mechanical outcomes of nanofibrous scaffolds loaded with silver nanoparticles on wound healing.
Collapse
|
49
|
Chen K, Pan H, Ji D, Li Y, Duan H, Pan W. Curcumin-loaded sandwich-like nanofibrous membrane prepared by electrospinning technology as wound dressing for accelerate wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112245. [PMID: 34225884 DOI: 10.1016/j.msec.2021.112245] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Wound healing is a complicated process constituted of four successive physiological stages involving wound bleeding, inflammatory response, cell proliferation and tissue remodeling. During this period, bacteria can easily infect the wound. Therefore, we prepared a novel curcumin-loaded sandwich-like nanofibrous membrane (CSNM) using sequential electrospinning for the hemostasis, antibacterial and accelerate wound healing. The morphology of the nanofibrous membrane was analyzed by SEM. In addition, the water absorption capacity, water vapor transmission rate, water contact-angle, and in vitro drug release were all tested. Then in vitro and in vivo hemostatic experiments demonstrated that CSNM has a good hemostatic effect. Antioxidant effect was assessed by the DPPH radical scavenging method and CSNM presented a high antioxidant activity. Additionally, CSNM demonstrated excellent antibacterial activity by the disk diffusion method. Furthermore, the rat dorsal skin defects model revealed that the CSNM distinctly induced the granulation tissue grew, collagen deposition and epithelial tissue remodeling. Meanwhile, the results of the immunohistochemical staining showed that the CSNM can facilitate the expression of CD31 and TGF-β in the early stage of the wound, thereby accelerating wound healing. In general, this study proved that the multifunctional CSNM has great potential as wound dressing in wound healing.
Collapse
Affiliation(s)
- Kai Chen
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hao Pan
- School of Pharmaceutical Science, Liaoning University, 66 ChongShan Mid Road, Shenyang 110036, China
| | - Dongxu Ji
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yunjian Li
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongliang Duan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Weisan Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
50
|
Balla E, Daniilidis V, Karlioti G, Kalamas T, Stefanidou M, Bikiaris ND, Vlachopoulos A, Koumentakou I, Bikiaris DN. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties-From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers (Basel) 2021; 13:1822. [PMID: 34072917 PMCID: PMC8198026 DOI: 10.3390/polym13111822] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Environmental problems, such as global warming and plastic pollution have forced researchers to investigate alternatives for conventional plastics. Poly(lactic acid) (PLA), one of the well-known eco-friendly biodegradables and biobased polyesters, has been studied extensively and is considered to be a promising substitute to petroleum-based polymers. This review gives an inclusive overview of the current research of lactic acid and lactide dimer techniques along with the production of PLA from its monomers. Melt polycondensation as well as ring opening polymerization techniques are discussed, and the effect of various catalysts and polymerization conditions is thoroughly presented. Reaction mechanisms are also reviewed. However, due to the competitive decomposition reactions, in the most cases low or medium molecular weight (MW) of PLA, not exceeding 20,000-50,000 g/mol, are prepared. For this reason, additional procedures such as solid state polycondensation (SSP) and chain extension (CE) reaching MW ranging from 80,000 up to 250,000 g/mol are extensively investigated here. Lastly, numerous practical applications of PLA in various fields of industry, technical challenges and limitations of PLA use as well as its future perspectives are also reported in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.B.); (V.D.); (G.K.); (T.K.); (M.S.); (N.D.B.); (A.V.); (I.K.)
| |
Collapse
|