1
|
Maia MV, do Egito EST, Sapin-Minet A, Viana DB, Kakkar A, Soares DCF. Fibroin-Hybrid Systems: Current Advances in Biomedical Applications. Molecules 2025; 30:328. [PMID: 39860198 PMCID: PMC11767523 DOI: 10.3390/molecules30020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Fibroin, a protein extracted from silk, offers advantageous properties such as non-immunogenicity, biocompatibility, and ease of surface modification, which have been widely utilized for a variety of biomedical applications. However, in vivo studies have revealed critical challenges, including rapid enzymatic degradation and limited stability. To widen the scope of this natural biomacromolecule, the grafting of polymers onto the protein surface has been advanced as a platform to enhance protein stability and develop smart conjugates. This review article brings into focus applications of fibroin-hybrid systems prepared using chemical modification of the protein with polymers and inorganic compounds. A selection of recent preclinical evaluations of these hybrids is included to highlight the significance of this approach.
Collapse
Affiliation(s)
- Matheus Valentin Maia
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil; (D.B.V.)
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Eryvaldo Sócrates Tabosa do Egito
- Laboratório de Sistemas Dispersos LaSiD, Faculdade de Farmácia, Universidade Federal do Rio Grande no Norte, Natal 59012-570, Rio Grande do Norte, Brazil;
| | - Anne Sapin-Minet
- Faculté de Pharmacie, Université de Lorraine, CITHEFOR, F-54000 Nancy, France;
| | - Daniel Bragança Viana
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil; (D.B.V.)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | | |
Collapse
|
2
|
Fang Y, Liu Z, Jin Y, Huang Y, Zhou S, Tian H, Wu H. Electrospun high hydrophilicity antimicrobial poly (lactic acid)/silk fibroin nanofiber membrane for wound dressings. Int J Biol Macromol 2024; 277:133905. [PMID: 39079839 DOI: 10.1016/j.ijbiomac.2024.133905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/25/2024]
Abstract
Antimicrobial wound dressings can aid wound healing by preventing bacterial infection. This is particularly true of electrospun ones, which have a porous structure and can be easily loaded with antimicrobial drugs. Here, Poly lactic acid (PLA), Silk Fibroin (SF) and antimicrobial agents of Silver nanoparticles (Ag NPs) and Silver oxide (Ag2O) to prepare the PLA/SF composites antimicrobial nanofiber membrane by electrospinning. The PLA with 30 % SF nanofiber membrane show the water vapor permeability (WVP) and the liquid absorption of 36 g·mm/(m2·d·kPa) and 1721 %. With the increasing of SF contents, the degradation rate and surface hydrophilicity of the nanofiber membrane increase significantly. The nanofiber membrane exhibited excellent antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) with the inhibition circle reach at 18.2 mm. The resultant nanofiber membrane showed high cytosolic activity, good cytocompatibility and strong antimicrobial ability, which laid a theoretical foundation for the construction of a new PLA/SF composites antimicrobial fiber membrane.
Collapse
Affiliation(s)
- Yiqi Fang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zixuan Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yujuan Jin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yansong Huang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Sudan Zhou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Huafeng Tian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hua Wu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
3
|
Lin P, Gu H, Zhuang X, Wang F, Hu X. Controlled Release of Curcumin and Hypocrellin A from Electrospun Poly(l-Lactic Acid)/Silk Fibroin Nanofibers for Enhanced Cancer Cell Inhibition. ACS APPLIED BIO MATERIALS 2024; 7:5423-5436. [PMID: 39069738 DOI: 10.1021/acsabm.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nanofibers have emerged as a highly effective method for drug delivery, attributed to their remarkable porosity and ability to regulate drug release rates while minimizing toxicity and side effects. In this study, we successfully loaded the natural anticancer drugs curcumin (CUR) and hypocrellin A (HA) into pure poly(l-lactic acid) (PLLA) and PLLA-silk protein (PS) composite nanofibers through electrospinning technology. This result was confirmed through comprehensive analysis involving SEM, FTIR, XRD, DSC, TG, zeta potential, and pH stability analysis. The encapsulation efficiency of all samples exceeded 85%, demonstrating the effectiveness of the loading process. Additionally, the drug release doses were significantly higher in the composites compared to pure PLLA, owing to the enhanced crystallinity and stability of the silk proteins. Importantly, the composite nanofibers exhibited excellent pH stability in physiological and acidic environments. Furthermore, the drug-loaded composite nanofibers displayed strong inhibitory effects on cancer cells, with approximately 28% (HA) and 37% (CUR) inhibition of cell growth and differentiation within 72 h, while showing minimal impact on normal cells. This research highlights the potential for controlling drug release through the manipulation of fiber diameter and crystallinity, paving the way for wider applications of electrospun green nanomaterials in the field of medicine.
Collapse
Affiliation(s)
- Ping Lin
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Xincheng Zhuang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, People's Republic of China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
4
|
Škrbić J, Spasojević L, Sharipova A, Aidarova S, Babayev A, Sarsembekova R, Popović L, Bučko S, Milinković Budinčić J, Fraj J, Petrović L, Katona J. Investigation of Silk Fibroin/Poly(Acrylic Acid) Interactions in Aqueous Solution. Polymers (Basel) 2024; 16:936. [PMID: 38611194 PMCID: PMC11013473 DOI: 10.3390/polym16070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Silk fibroin (SF) is a protein with many outstanding properties (superior biocompatibility, mechanical strength, etc.) and is often used in many advanced applications (epidermal sensors, tissue engineering, etc.). The properties of SF-based biomaterials may additionally be tuned by SF interactions with other (bio)polymers. Being a weak amphoteric polyelectrolyte, SF may form polyelectrolyte complexes (PECs) with other polyelectrolytes of opposite charge, such as poly(acrylic acid) (PAA). PAA is a widely used, biocompatible, synthetic polyanion. Here, we investigate PEC formation between SF and PAA of two different molecular weights (MWs), low and high, using various techniques (turbidimetry, zeta potential measurements, capillary viscometry, and tensiometry). The colloidal properties of SF isolated from Bombyx mori and of PAAs (MW, overlap concentration, the influence of pH on zeta potential, adsorption at air/water interface) were determined to identify conditions for the SF-PAA electrostatic interaction. It was shown that SF-PAA PEC formation takes place at different SF:PAA ratios, at pH 3, for both high and low MW PAA. SF-PAA PEC's properties (phase separation, charge, and surface activity) are influenced by the SF:PAA mass ratio and/or the MW of PAA. The findings on the interactions contribute to the future development of SP-PAA PEC-based films and bioadhesives with tailored properties.
Collapse
Affiliation(s)
- Jelena Škrbić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Ljiljana Spasojević
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Altynay Sharipova
- Mining and Metallurgical Institute, Satbayev University, Satbayev str. 22a, 050013 Almaty, Kazakhstan;
| | - Saule Aidarova
- Petroleum Engineering Institute “One Belt, One Road”, Kazakh–British Technical University, Tole bi str. 59, 050000 Almaty, Kazakhstan; (S.A.); (A.B.); (R.S.)
| | - Alpamys Babayev
- Petroleum Engineering Institute “One Belt, One Road”, Kazakh–British Technical University, Tole bi str. 59, 050000 Almaty, Kazakhstan; (S.A.); (A.B.); (R.S.)
| | - Raziya Sarsembekova
- Petroleum Engineering Institute “One Belt, One Road”, Kazakh–British Technical University, Tole bi str. 59, 050000 Almaty, Kazakhstan; (S.A.); (A.B.); (R.S.)
| | - Ljiljana Popović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Sandra Bučko
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Jelena Milinković Budinčić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Jadranka Fraj
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Lidija Petrović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| | - Jaroslav Katona
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (L.S.); (L.P.); (J.M.B.); (J.F.); (L.P.); (J.K.)
| |
Collapse
|
5
|
Posada VM, Marin A, Mesa-Restrepo A, Nashed J, Allain JP. Enhancing silk fibroin structures and applications through angle-dependent Ar + plasma treatment. Int J Biol Macromol 2024; 257:128352. [PMID: 38043660 DOI: 10.1016/j.ijbiomac.2023.128352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
This study tackles limitations of Silk Fibroin (SF), including availability of sites for modification. This is achieved by Direct Plasma Nanosynthesis (DPNS), an Ar+ bombardment method, to generate and modify nanostructures and nanoscale properties on the SF surface. SF samples were treated with DPNS at incidence angles of 45o and 60o, with specific ion dose and energy parameters (1 × 1018 ions/cm2 and 500 eV, respectively) maintained throughout the process. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) primarily underscored transformations in SF's nitrogenous components. Specifically, treatment produced a boost in C-NH2, particularly pronounced in the 45o-treated samples, suggesting changes were more superficial than alterations to the secondary structure. The DPNS treatment gave rise to periodic nanocone structures on the SF surface, with a scale increase correlated to a higher angle of incidence. This resulted in a decrease in surface stiffness and significant changes in the motility of J774 macrophages interacting with the transformed SF. Furthermore, the SF samples treated at a 60o incidence showcased a confinement effect, moderating the macrophages' motility, morphology, and inflammatory response. The DPNS-induced alterations not only mitigate SF's limitations but also affect cellular behavior, expanding potential for SF in biomaterials.
Collapse
Affiliation(s)
- Viviana M Posada
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, USA.
| | - Alexandru Marin
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, USA; Surface Analysis Laboratory, Institute for Nuclear Research Pitesti, Mioveni 115400, Romania
| | | | - Jordan Nashed
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, USA
| | - Jean Paul Allain
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, USA; Department of Biomedical Engineering, Pennsylvania State University, USA; Lloyd & Dorothy Foehr Huck Chair in Plasma Medicine, Pennsylvania State University, USA
| |
Collapse
|
6
|
Goetjes V, von Boyneburgk CL, Heim HP, Horn MM. Influence of Chitosan and Grape Seed Extract on Thermal and Mechanical Properties of PLA Blends. Polymers (Basel) 2023; 15:polym15061570. [PMID: 36987350 PMCID: PMC10051302 DOI: 10.3390/polym15061570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Blends based on polylactic acid (PLA), chitosan, and grape seed extract (GE) were prepared by extrusion and injection molding. The effect of chitosan (5% and 15% on PLA basis) and natural extract (1% on PLA basis) incorporated into the PLA host matrix was explored regarding the thermal and mechanical properties. GE showed antioxidant activity, as determined by the DPPH assay method. Chitosan and GE affect the degree of crystallinity up to 30% as the polysaccharide acts as a nucleating agent, while the extract reduces the mobility of PLA chains. The decomposition temperature was mainly affected by adding chitosan, with a reduction of up to 25 °C. The color of the blends was specially modified after the incorporation of both components, obtaining high values of b* and L* after the addition of chitosan, while GE switched to high values of a*. The elongation at break (EB) exhibited that the polysaccharide is mainly responsible for its reduction of around 50%. Slight differences were accessed in tensile strength and Young's modulus, which were not statistically significant. Blends showed increased irregularities in their surface appearance, as observed by SEM analysis, corresponding to the partial miscibility of both polymers.
Collapse
Affiliation(s)
- Victoria Goetjes
- Institute of Material Engineering, Polymer Engineering, University of Kassel, Mönchebergstr. 3, 34125 Kassel, Germany
| | - Claudia L von Boyneburgk
- Institute of Material Engineering, Polymer Engineering, University of Kassel, Mönchebergstr. 3, 34125 Kassel, Germany
| | - Hans-Peter Heim
- Institute of Material Engineering, Polymer Engineering, University of Kassel, Mönchebergstr. 3, 34125 Kassel, Germany
| | - Marilia M Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinich-Plett Straße 40, 34109 Kassel, Germany
| |
Collapse
|
7
|
Novel hybrid biocomposites for tendon grafts: The addition of silk to polydioxanone and poly(lactide-co-caprolactone) enhances material properties, in vitro and in vivo biocompatibility. Bioact Mater 2023; 25:291-306. [PMID: 36844365 PMCID: PMC9945711 DOI: 10.1016/j.bioactmat.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Biopolymers play a critical role as scaffolds used in tendon and ligament (TL) regeneration. Although advanced biopolymer materials have been proposed with optimised mechanical properties, biocompatibility, degradation, and processability, it is still challenging to find the right balance between these properties. Here, we aim to develop novel hybrid biocomposites based on poly(p-dioxanone) (PDO), poly(lactide-co-caprolactone) (LCL) and silk to produce high-performance grafts suitable for TL tissue repair. Biocomposites containing 1-15% of silk were studied through a range of characterisation techniques. We then explored biocompatibility through in vitro and in vivo studies using a mouse model. We found that adding up to 5% silk increases the tensile properties, degradation rate and miscibility between PDO and LCL phases without agglomeration of silk inside the composites. Furthermore, addition of silk increases surface roughness and hydrophilicity. In vitro experiments show that the silk improved attachment of tendon-derived stem cells and proliferation over 72 h, while in vivo studies indicate that the silk can reduce the expression of pro-inflammatory cytokines after six weeks of implantation. Finally, we selected a promising biocomposite and created a prototype TL graft based on extruded fibres. We found that the tensile properties of both individual fibres and braided grafts could be suitable for anterior cruciate ligament (ACL) repair applications.
Collapse
|
8
|
Osteogenesis of Human iPSC-Derived MSCs by PLLA/SF Nanofiber Scaffolds Loaded with Extracellular Matrix. J Tissue Eng Regen Med 2023. [DOI: 10.1155/2023/5280613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone defects that arise from trauma, skeletal diseases, or tumor resections have become the commonest and most thorny problems in orthopedic clinics. Recently, biocomposite materials used as artificial bone repair materials have provided a promising approach for bone regeneration. In this study, poly (l-lactide acid) (PLLA) and silk fibroin (SF) were used to fabricate nanofiber scaffolds by electrospinning technology. In order to simulate a biomimetic osteoblast microenvironment, decellularized extracellular matrix from osteoblasts was loaded into the biocomposite scaffolds (O-ECM/PLLA/SF). It was found that the O-ECM/PLLA/SF scaffolds were nontoxic for L929 cells and had good cytocompatibility. Their effects on mesenchymal stem cells derived from human-induced pluripotent stem cell (iPSC-MSC) behavior were investigated. As a result, the scaffolds with the addition of O-ECM showed enhanced alizarin red S (ARS) activity. In addition, higher expression of osteogenic gene markers such as runt-related transcription factor 2 (Runx2), collagen type I (Col-1), and osteocalcin (OCN) as well as upregulated expression of osteogenic marker protein osteopontin (OPN) and Col-1 further substantiated the applicability of O-ECM/PLLA/SF scaffolds for osteogenesis. Furthermore, the in vivo study also indicated maximal new bone formation in the skull defect model of Sprague Dawley (SD) rats treated with the O-ECM/PLLA/SF carried by human iPSC-MSCs. Hence, this study suggests that O-ECM/PLLA/SF scaffolds have a potential application in bone tissue engineering.
Collapse
|
9
|
Agudelo W, Montoya Y, Garcia-Garcia A, Restrepo-Osorio A, Bustamante J. Electrochemical and Electroconductive Behavior of Silk Fibroin Electrospun Membrane Coated with Gold or Silver Nanoparticles. MEMBRANES 2022; 12:1154. [PMID: 36422146 PMCID: PMC9695740 DOI: 10.3390/membranes12111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The surface modification of materials obtained from natural polymers, such as silk fibroin with metal nanoparticles that exhibit intrinsic electrical characteristics, allows the obtaining of biocomposite materials capable of favoring the propagation and conduction of electrical impulses, acting as communicating structures in electrically isolated areas. On that basis, this investigation determined the electrochemical and electroconductive behavior through electrochemical impedance spectroscopy of a silk fibroin electrospun membrane from silk fibrous waste functionalized with gold or silver nanoparticles synthetized by green chemical reduction methodologies. Based on the results obtained, we found that silk fibroin from silk fibrous waste (SFw) favored the formation of gold (AuNPs-SFw) and silver (AgNPs-SFw) nanoparticles, acting as a reducing agent and surfactant, forming a micellar structure around the individual nanoparticle. Moreover, different electrospinning conditions influenced the morphological properties of the fibers, in the presence or absence of beads and the amount of sample collected. Furthermore, treated SFw electrospun membranes, functionalized with AuNPs-SFw or AgNPS-SFw, allowed the conduction of electrical stimuli, acting as stimulators and modulators of electric current.
Collapse
Affiliation(s)
- Wilson Agudelo
- Grupo de Dinámica Cardiovascular, Línea Ingeniería de Tejidos y Protésica Cardiovascular, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Yuliet Montoya
- Grupo de Dinámica Cardiovascular, Línea Ingeniería de Tejidos y Protésica Cardiovascular, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
- Comité de Trabajo de Bioingeniería Cardiovascular, Sociedad Colombiana de Cardiología y Cirugía Cardiovascular, Bogotá 110121, Colombia
| | - Alejandra Garcia-Garcia
- Grupo de Síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales, Centro de Investigación en Materiales Avanzados S.C., Parque PIIT, Km 10, Autopista Monterrey-Aeropuerto, Apodaca 66628, Mexico
| | - Adriana Restrepo-Osorio
- Grupo de Investigación sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - John Bustamante
- Grupo de Dinámica Cardiovascular, Línea Ingeniería de Tejidos y Protésica Cardiovascular, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
- Comité de Trabajo de Bioingeniería Cardiovascular, Sociedad Colombiana de Cardiología y Cirugía Cardiovascular, Bogotá 110121, Colombia
| |
Collapse
|
10
|
Promnil S, Ruksakulpiwat C, Numpaisal PO, Ruksakulpiwat Y. Electrospun Poly(lactic acid) and Silk Fibroin Based Nanofibrous Scaffold for Meniscus Tissue Engineering. Polymers (Basel) 2022; 14:polym14122435. [PMID: 35746011 PMCID: PMC9231281 DOI: 10.3390/polym14122435] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Biopolymer based scaffolds are commonly considered as suitable materials for medical application. Poly(lactic acid) (PLA) is one of the most popular polymers that has been used as a bioscaffold, but it has poor cell adhesion and slowly degrades in an in vitro environment. In this study, silk fibroin (SF) was selected to improve cell adhesion and degradability of electrospun PLA. In order to fabricate a PLA/SF scaffold that offered both biological and mechanical properties, related parameters such as solution viscosity and SF content were studied. By varying the concentration and molecular weight of PLA, the solution viscosity significantly changed. The effect of solution viscosity on the fiber forming ability and fiber morphology was elucidated. In addition, commercial (l-lactide, d-lactide PLA) and medical grade PLA (pure PLLA) were both investigated. Mechanical properties, thermal properties, biodegradability, wettability, cell viability, and gene expression of electrospun PLA and PLA/SF based nanofibrous scaffolds were examined. The results demonstrated that medical grade PLA electrospun scaffolds offered superior mechanical property, degradability, and cellular induction for meniscus tissue regeneration. However, for commercial non-medical grade PLA used in this study, it was not recommended to be used for medical application because of its toxicity. With the addition of SF in PLA based scaffolds, the in vitro degradability and hydrophilicity were improved. PLAmed50:SF50 scaffold has the potential to be used as biomimetic meniscus scaffold for scaffold augmented suture based on mechanical properties, cell viability, gene expression, surface wettability, and in vitro degradation.
Collapse
Affiliation(s)
- Siripanyo Promnil
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (C.R.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (C.R.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piya-on Numpaisal
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- School of Orthopaedics, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (P.-o.N.); (Y.R.); Tel.: +66-44-22-3917 (P.-o.N.); +66-44-22-3033 (Y.R.)
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (C.R.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (P.-o.N.); (Y.R.); Tel.: +66-44-22-3917 (P.-o.N.); +66-44-22-3033 (Y.R.)
| |
Collapse
|
11
|
Deng Q, Wang F, Gough CR, Hu X. Tunable microphase-regulated silk fibroin/poly (lactic acid) biocomposite materials generated from ionic liquids. Int J Biol Macromol 2022; 197:55-67. [PMID: 34952094 DOI: 10.1016/j.ijbiomac.2021.12.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022]
Abstract
One of the most effective and promising strategies to develop novel biomaterials with unique, tunable structure and physicochemical properties is by creating composite materials that combine synthetic polymers with natural proteins using ionic liquids. In this study, biodegradable poly(d,l-lactic acid) (PDLLA) was blended with silk fibroin (SF) to create biocompatible films using an ionic liquid-based binary solvent system (1-butyl-3-methylimidazolium chloride/N,N-dimethylformamide), which can maintain the molecular weights of the proteins/polymers and encourage intermolecular interactions between the molecules. The effects of varying the ratio of PLA to SF were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), water contact angle testing, and cytotoxicity analysis as well as enzymatic degradation. Results showed that the composite films were homogeneously blended on the macroscopic scale and exhibited typical fully miscible polymer blend characteristics. By increasing the SF content in the composites, the amounts of β-sheets in the films were significantly increased, allowing for SF to act as a physical crosslinker to maintain the stability of the protein-polymer network. Additionally, SF significantly improved the hydrophilicity and biocompatibility of the material and promoted the self-assembly of micelle structures in the biocomposites. Different topologies in the films also provided beneficial surface morphology for cell adhesion, growth, and proliferation. Overall, this study demonstrated an effective fabrication method for a fine-tuned polymer blends combining synthetic polymer and protein for a wide variety of biomedical and green material applications.
Collapse
Affiliation(s)
- Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Christopher R Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
12
|
Cai B, Gu H, Wang F, Printon K, Gu Z, Hu X. Ultrasound regulated flexible protein materials: Fabrication, structure and physical-biological properties. ULTRASONICS SONOCHEMISTRY 2021; 79:105800. [PMID: 34673337 PMCID: PMC8560629 DOI: 10.1016/j.ultsonch.2021.105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 05/03/2023]
Abstract
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.
Collapse
Affiliation(s)
- Bowen Cai
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Kyle Printon
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Zhenggui Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
13
|
Rivera-Galletti A, Gough CR, Kaleem F, Burch M, Ratcliffe C, Lu P, Salas-de la Cruz D, Hu X. Silk-Cellulose Acetate Biocomposite Materials Regenerated from Ionic Liquid. Polymers (Basel) 2021; 13:2911. [PMID: 34502951 PMCID: PMC8433620 DOI: 10.3390/polym13172911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
The novel use of ionic liquid as a solvent for biodegradable and natural organic biomaterials has increasingly sparked interest in the biomedical field. As compared to more volatile traditional solvents that rapidly degrade the protein molecular weight, the capability of polysaccharides and proteins to dissolve seamlessly in ionic liquid and form fine and tunable biomaterials after regeneration is the key interest of this study. Here, a blended system consisting of Bombyx Mori silk fibroin protein and a cellulose derivative, cellulose acetate (CA), in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc) was regenerated and underwent characterization to understand the structure and physical properties of the films. The change in the morphology of the biocomposites (by scanning electron microscope, SEM) and their secondary structure analysis (by Fourier-transform infrared spectroscopy, FTIR) showed that the samples underwent a wavering conformational change on a microscopic level, resulting in strong interactions and changes in their crystalline structures such as the CA crystalline and silk beta-pleated sheets once the different ratios were applied. Differential scanning calorimetry (DSC) results demonstrated that strong molecular interactions were generated between CA and silk chains, providing the blended films lower glass transitions than those of the pure silk or cellulose acetate. All films that were blended had higher thermal stability than the pure cellulose acetate sample but presented gradual changes amongst the changing of ratios, as demonstrated by thermogravimetric analysis (TGA). This study provides the basis for the comprehension of the protein-polysaccharide composites for various biomedical applications.
Collapse
Affiliation(s)
- Ashley Rivera-Galletti
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (A.R.-G.); (C.R.G.); (F.K.); (M.B.); (C.R.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (A.R.-G.); (C.R.G.); (F.K.); (M.B.); (C.R.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Farhan Kaleem
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (A.R.-G.); (C.R.G.); (F.K.); (M.B.); (C.R.)
| | - Michael Burch
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (A.R.-G.); (C.R.G.); (F.K.); (M.B.); (C.R.)
| | - Chris Ratcliffe
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (A.R.-G.); (C.R.G.); (F.K.); (M.B.); (C.R.)
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - David Salas-de la Cruz
- Department of Chemistry, Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA;
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (A.R.-G.); (C.R.G.); (F.K.); (M.B.); (C.R.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
14
|
B M, D K, H R L, D CG, Sionkowska A. Insights into the miscibility characteristics of plastic-mimetic polypeptide with hydroxypropylmethylcellulose: Investigation of thermal degradability and intermolecular interactions. Colloids Surf B Biointerfaces 2021; 205:111877. [PMID: 34049001 DOI: 10.1016/j.colsurfb.2021.111877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
In this investigation, we integrated the parent recurring sequence of the plastic-derived polypeptide, poly[0.8(AVGVP),0.2(AEGVP)] (A, V, G, P, and E represents Alanine, Valine, Glycine, Proline, and Glutamic acid respectively) followed by characterization with inverse transition temperature, 13C, and 1H-NMR spectroscopy. The miscibility attributes of poly[0.8(AVGVP),0.2(AEGVP)] with Hydroxypropylmethylcellulose was examined both in aqueous and solid-phase. The Huggins' co-efficient [KH], the intrinsic viscosity [η], the interaction parameters ΔB and μ suggested by Chee, ΔK and β recommended by Jiang and Han, α by Sun, Δ[η]m by Garcia showed that the polypeptide was miscible with HPMC in all proportions. DSC studies revealed single Tg values, and TGA manifested the enhanced thermal stability for all the proportions compared with their individuals. Further, verified the results by SEM and XRD. The FTIR evidenced existence of intermolecular hydrogen bonding between the two constituent polymers that caused the miscible blend system.
Collapse
Affiliation(s)
- Mahesh B
- Department of Chemistry, JSS Academy of Technical Education(Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, 560 060, India.
| | - Kathyayani D
- Department of Chemistry, JSS Academy of Technical Education(Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, 560 060, India
| | - Lokesh H R
- Department of Chemistry, JSS Academy of Technical Education(Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, 560 060, India
| | - Channe Gowda D
- DOS in Chemistry, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
15
|
Wang F, Li Y, Gough CR, Liu Q, Hu X. Dual-Crystallizable Silk Fibroin/Poly(L-lactic Acid) Biocomposite Films: Effect of Polymer Phases on Protein Structures in Protein-Polymer Blends. Int J Mol Sci 2021; 22:ijms22041871. [PMID: 33668676 PMCID: PMC7918901 DOI: 10.3390/ijms22041871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022] Open
Abstract
Biopolymer composites based on silk fibroin have shown widespread potential due to their brilliant applications in tissue engineering, medicine and bioelectronics. In our present work, biocomposite nanofilms with different special topologies were obtained through blending silk fibroin with crystallizable poly(L-lactic acid) (PLLA) at various mixture rates using a stirring-reflux condensation blending method. The microstructure, phase components, and miscibility of the blended films were studied through thermal analysis in combination with Fourier-transform infrared spectroscopy and Raman analysis. X-ray diffraction and scanning electron microscope were also used for advanced structural analysis. Furthermore, their conformation transition, interaction mechanism, and thermal stability were also discussed. The results showed that the hydrogen bonds and hydrophobic interactions existed between silk fibroin (SF) and PLLA polymer chains in the blended films. The secondary structures of silk fibroin and phase components of PLLA in composites vary at different ratios of silk to PLLA. The β-sheet content increased with the increase of the silk fibroin content, while the glass transition temperature was raised mainly due to the rigid amorphous phase presence in the blended system. This results in an increase in thermal stability in blended films compared to the pure silk fibroin films. This study provided detailed insights into the influence of synthetic polymer phases (crystalline, rigid amorphous, and mobile amorphous) on protein secondary structures through blending, which has direct applications on the design and fabrication of novel protein–synthetic polymer composites for the biomedical and green chemistry fields.
Collapse
Affiliation(s)
- Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (Q.L.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (F.W.); (X.H.); Tel.: +86-25-8589-8173 (F.W.); +1-856-256-4860 (X.H.)
| | - Yingying Li
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (Q.L.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Qichun Liu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (Q.L.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
- Correspondence: (F.W.); (X.H.); Tel.: +86-25-8589-8173 (F.W.); +1-856-256-4860 (X.H.)
| |
Collapse
|
16
|
Wine By-Products as Raw Materials for the Production of Biopolymers and of Natural Reinforcing Fillers: A Critical Review. Polymers (Basel) 2021; 13:polym13030381. [PMID: 33530517 PMCID: PMC7865623 DOI: 10.3390/polym13030381] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/19/2023] Open
Abstract
The plastic industry is today facing a green revolution; however, biopolymers, produced in low amounts, expensive, and food competitive do not represent an efficient solution. The use of wine waste as second-generation feedstock for the synthesis of polymer building blocks or as reinforcing fillers could represent a solution to reduce biopolymer costs and to boost the biopolymer presence in the market. The present critical review reports the state of the art of the scientific studies concerning the use of wine by-products as substrate for the synthesis of polymer building blocks and as reinforcing fillers for polymers. The review has been mainly focused on the most used bio-based and biodegradable polymers present in the market (i.e., poly(lactic acid), poly(butylene succinate), and poly(hydroxyalkanoates)). The results present in the literature have been reviewed and elaborated in order to suggest new possibilities of development based on the chemical and physical characteristics of wine by-products.
Collapse
|
17
|
Wang F, Liu H, Li Y, Li Y, Ma Q, Zhang J, Hu X. Tunable Biodegradable Polylactide-Silk Fibroin Scaffolds Fabricated by a Solvent-Free Pressure-Controllable Foaming Technology. ACS APPLIED BIO MATERIALS 2020; 3:8795-8807. [PMID: 35019555 DOI: 10.1021/acsabm.0c01157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polylactide (PLA) and silk fibroin (SF) are biocompatible green macromolecular materials with tunable structures and properties. In this study, microporous PLA/SF composites were fabricated under different pressures by a green solid solvent-free foaming technology. Scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric (TG) analysis, and Fourier transform infrared (FTIR) spectroscopy were used to analyze the morphology, structure, and mechanical properties of the PLA/SF scaffolds. The crystalline, mobile amorphous phases and rigid amorphous phases in PLA/SF composites were calculated to further understand their structure-property relations. It was found that an increase in pore density and a decrease in pore size can be achieved by increasing the saturation pressure during the foaming process. In addition, changes in the microcellular structure provided PLA/SF scaffolds with better thermal stability, tunable biodegradation rates, and mechanical properties. FTIR and XRD analysis indicated strong hydrogen bonds were formed between PLA and SF molecules, which can be tuned by changing the foaming pressure. The composite scaffolds have good cell compatibility and are conducive to cell adhesion and growth, suggesting that PLA/SF microporous scaffolds could be used as three-dimensional (3-D) biomaterials with a wide range of applications.
Collapse
Affiliation(s)
- Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Hao Liu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Yingying Li
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, P. R. China.,School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Yajuan Li
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Qingyu Ma
- School of Physics and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun Zhang
- School of Chemistry and Materials Science, Nanjing Normal University Jiangsu, Nanjing 210023, P. R. China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States.,Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States.,Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
18
|
Gough CR, Bessette K, Xue Y, Mou X, Hu X. Air-Jet Spun Corn Zein Nanofibers and Thin Films with Topical Drug for Medical Applications. Int J Mol Sci 2020; 21:E5780. [PMID: 32806616 PMCID: PMC7461119 DOI: 10.3390/ijms21165780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic patients are especially susceptible to chronic wounds of the skin, which can lead to serious complications. Sodium citrate is one potential therapeutic molecule for the topical treatment of diabetic ulcers, but its viability requires the assistance of a biomaterial matrix. In this study, nanofibers and thin films fabricated from natural corn zein protein are explored as a drug delivery vehicle for the topical drug delivery of sodium citrate. Corn zein is cheap and abundant in nature, and easily extracted with high purity, while nanofibers are frequently cited as ideal drug carriers due to their high surface area and high porosity. To further reduce costs, the 1-D nanofibers in this study were fabricated through an air jet-spinning method rather than the conventional electrospinning method. Thin films were also created as a comparative 2-D material. Corn zein composite nanofibers and thin films with different concentration of sodium citrate (1-30%) were analyzed through FTIR, DSC, TGA, and SEM. Results reveal that nanofibers are a much more effective vehicle than films, with the ability to interact with sodium citrate. Thermal analysis results show a stable material with low degradation, while FTIR reveals strong control over the protein secondary structures and hold of citrate. These tunable properties and morphologies allow the fibers to provide a sustained release of citrate and then revert to their structure prior to citrate loading. A statistical analysis via t-test confirmed a significant difference between fiber and film drug release. A biocompatibility study also confirms that cells are much more tolerant of the porous nanofiber structure than the nonporous protein films, and lower percentages of sodium citrate (1-5%) were outperformed to higher percentages (15-30%). This study demonstrated that protein-based nanofiber materials have high potential as vehicles for the delivery of topical diabetic drugs.
Collapse
Affiliation(s)
- Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (K.B.); (Y.X.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Kristen Bessette
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (K.B.); (Y.X.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Ye Xue
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (K.B.); (Y.X.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Xiaoyang Mou
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (K.B.); (Y.X.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
19
|
Bi X, Li L, Mao Z, Liu B, Yang L, He W, Fan Y, Li X. The effects of silk layer-by-layer surface modification on the mechanical and structural retention of extracellular matrix scaffolds. Biomater Sci 2020; 8:4026-4038. [PMID: 32573617 DOI: 10.1039/d0bm00448k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Naturally derived extracellular matrix scaffolds can effectively promote tissue repair and regeneration due to their remarkable bioactivity. However, their rapid degradation leads to the decrease of mechanical retention and the failure of physical support in vivo which limit their applications. In this paper, we modified a classic extracellular matrix scaffold - small intestinal submucosa (SIS) - by a silk fibroin (SF) layer-by-layer (LbL) assembly to replace the existing chemical crosslinking methods for improving its mechanical and structural stability. Experimental results showed that the SF LbL surface functionalized SIS scaffold had tunable mechanical properties and degradation rate by adjusting the number of layers of the SF deposited on the surface. For biological responses, in vitro NIH3T3 fibroblast culture studies demonstrated that SF surface modification did not affect the excellent biocompatibility of the SIS. In vivo subcutaneous implantation results showed that the SF modification could effectively extend the residence time of the SIS in the body, and elicit a more moderate inflammatory response compared to the traditional glutaraldehyde chemical crosslinking. Furthermore, we found that SF modification could maintain the ability of bioactive components of the SIS to regulate the transformation of M1 into M2 in macrophages in vivo. This SF LbL modification strategy offers a green process for the development of high-performance extracellular matrix-based scaffolds with tunable biodegradability.
Collapse
Affiliation(s)
- Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Xue Y, Hu X. Electrospun Silk-Boron Nitride Nanofibers with Tunable Structure and Properties. Polymers (Basel) 2020; 12:E1093. [PMID: 32403370 PMCID: PMC7284470 DOI: 10.3390/polym12051093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 11/28/2022] Open
Abstract
In this study, hexagonal boron nitride (h-BN) nanosheets and Bombyx mori silk fibroin (SF) proteins were combined and electrospun into BNSF nanofibers with different ratios. It was found that the surface morphology and crosslinking density of the nanofibers can be tuned through the mixing ratios. Fourier transform infrared spectroscopy study showed that pure SF electrospun fibers were dominated by random coils and they gradually became α-helical structures with increasing h-BN nanosheet content, which indicates that the structure of the nanofiber material is tunable. Thermal stability of electrospun BNSF nanofibers were largely improved by the good thermal stability of BN, and the strong interactions between BN and SF molecules were revealed by temperature modulated differential scanning calorimetry (TMDSC). With the addition of BN, the boundary water content also decreased, which may be due to the high hydrophobicity of BN. These results indicate that silk-based BN composite nanofibers can be potentially used in biomedical fields or green environmental research.
Collapse
Affiliation(s)
- Ye Xue
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
21
|
Bealer EJ, Onissema-Karimu S, Rivera-Galletti A, Francis M, Wilkowski J, Salas-de la Cruz D, Hu X. Protein-Polysaccharide Composite Materials: Fabrication and Applications. Polymers (Basel) 2020; 12:E464. [PMID: 32079322 PMCID: PMC7077675 DOI: 10.3390/polym12020464] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
Abstract
Protein-polysaccharide composites have been known to show a wide range of applications in biomedical and green chemical fields. These composites have been fabricated into a variety of forms, such as films, fibers, particles, and gels, dependent upon their specific applications. Post treatments of these composites, such as enhancing chemical and physical changes, have been shown to favorably alter their structure and properties, allowing for specificity of medical treatments. Protein-polysaccharide composite materials introduce many opportunities to improve biological functions and contemporary technological functions. Current applications involving the replication of artificial tissues in tissue regeneration, wound therapy, effective drug delivery systems, and food colloids have benefited from protein-polysaccharide composite materials. Although there is limited research on the development of protein-polysaccharide composites, studies have proven their effectiveness and advantages amongst multiple fields. This review aims to provide insight on the elements of protein-polysaccharide complexes, how they are formed, and how they can be applied in modern material science and engineering.
Collapse
Affiliation(s)
- Elizabeth J. Bealer
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (A.R.-G.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - Shola Onissema-Karimu
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - Ashley Rivera-Galletti
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (A.R.-G.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Maura Francis
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - Jason Wilkowski
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - David Salas-de la Cruz
- Department of Chemistry, Rutgers University, Camden, NJ 08102, USA;
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (A.R.-G.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|