1
|
Ndlovu SP, Motaung KSCM, Razwinani M, Alven S, Adeyemi SA, Ubanako PN, Ngema LM, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Capparis sepiaria-Loaded Sodium Alginate Single- and Double-Layer Membrane Composites for Wound Healing. Pharmaceutics 2024; 16:1313. [PMID: 39458642 PMCID: PMC11510319 DOI: 10.3390/pharmaceutics16101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Effective wound dressing is the key solution to combating the increased death rate and prolonged hospital stay common to patients with wounds. Methods: Sodium alginate-based single- and double-layer membranes incorporated with Capparis sepiaria root extract were designed using the solvent-casting method from a combination of polyvinyl alcohol (PVA), Pluronic F127 (PF127), and gum acacia. Results: The successful preparation of the membranes and loading of the extract were confirmed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The prepared membranes were biodegradable and non-toxic to human skin cells (HaCaT), with high biocompatibility of 92 to 112% cell viability and good hemocompatibility with absorbance ranging from 0.17 to 0.30. The membrane's highest water vapor transmission rate was 1654.7333 ± 0.736 g/m2/day and the highest % porosity was 76%. The membranes supported cellular adhesion and migration, with the highest closure being 68% after 4 days compared with the commercial wound dressings. This membrane exhibited enhanced antimicrobial activity against the pathogens responsible for wound infections. Conclusions: The distinct features of the membranes make them promising wound dressings for treating infected wounds.
Collapse
Affiliation(s)
- Sindi P. Ndlovu
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| | | | - Mapula Razwinani
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa;
| | - Sibusiso Alven
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa;
| | - Samson A. Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Philemon N. Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Lindokuhle M. Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Thierry Y. Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa;
| | - Derek T. Ndinteh
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa;
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (S.A.A.); (P.N.U.); (L.M.N.); (P.K.); (Y.E.C.)
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| |
Collapse
|
2
|
Sun R, Gao S, Zhang K, Cheng WT, Hu G. Recent advances in alginate-based composite gel spheres for removal of heavy metals. Int J Biol Macromol 2024; 268:131853. [PMID: 38679268 DOI: 10.1016/j.ijbiomac.2024.131853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The discharge of heavy metal ions from industrial wastewater into natural water bodies is a consequence of global industrialisation. Due to their high toxicity and resistance to degradation, these heavy metal ions pose a substantial threat to human health as they accumulate and amplify. Alginate-based composite gels exhibit good adsorption and mechanical properties, excellent biodegradability, and non-toxicity, making them environmentally friendly heavy metal ion adsorbents for water with promising development prospects. This paper introduces the basic properties, cross-linking methods, synthetic approaches, modification methods, and manufacturing techniques of alginate-based composite gels. The adsorption properties and mechanical strength of these gels can be enhanced through surface modification, multi-component mixing, and embedding. The main production processes involved are sol-gel and cross-linking methods. Additionally, this paper reviews various applications of alginate composite gels for common heavy metals, rare earth elements, and radionuclides and elucidates the adsorption mechanism of alginate composite gels. This study aimed to provide a reference for synthesising new, efficient, and environmentally friendly alginate-based adsorbents and to contribute new ideas and directions for addressing the issue of heavy metal pollution.
Collapse
Affiliation(s)
- Ruiyi Sun
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Sanshuang Gao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Kai Zhang
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Wen-Tong Cheng
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
3
|
Swastha D, Varsha N, Aravind S, Samyuktha KB, Yokesh MM, Balde A, Ayilya BL, Benjakul S, Kim SK, Nazeer RA. Alginate-based drug carrier systems to target inflammatory bowel disease: A review. Int J Biol Macromol 2023:125472. [PMID: 37336375 DOI: 10.1016/j.ijbiomac.2023.125472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder that affects the gastrointestinal tract. IBD has become an increasingly common condition in both developed and developing nations over the last few decades, owing to a variety of factors like a rising population and diets packed with processed and junk foods. While the root pathophysiology of IBD is unknown, treatments are focused on medications aimed to mitigate symptoms. Alginate (AG), a marine-derived polysaccharide, is extensively studied for its biocompatibility, pH sensitivity, and crosslinking nature. This polymer is thoroughly researched in drug delivery systems for IBD treatment, as it is naturally available, non-toxic, cost effective, and can be easily and safely cross-linked with other polymers to form an interconnected network, which helps in controlling the release of drugs over an extended period. There are various types of drug delivery systems developed from AG to deliver therapeutic agents; among them, nanotechnology-based systems and hydrogels are popular due to their ability to facilitate targeted drug delivery, reduce dosage, and increase the therapeutic efficiency. AG-based carrier systems are not only used for the sustained release of drug, but also used in the delivery of siRNA, interleukins, and stem cells for site directed drug delivery and tissue regenerating ability respectively. This review is focussed on pathogenesis and currently studied medications for IBD, AG-based drug delivery systems and their properties for the alleviation of IBD. Moreover, future challenges are also be discoursed to improve the research of AG in the field of biopharmaceuticals and drug delivery.
Collapse
Affiliation(s)
- Dinakar Swastha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Nambolan Varsha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Suresh Aravind
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Kavassery Balasubramanian Samyuktha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Muruganandam Mohaneswari Yokesh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Bakthavatchalam Loganathan Ayilya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India.
| |
Collapse
|
4
|
Adamiak K, Sionkowska A. State of Innovation in Alginate-Based Materials. Mar Drugs 2023; 21:353. [PMID: 37367678 PMCID: PMC10302983 DOI: 10.3390/md21060353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
This review article presents past and current alginate-based materials in each application, showing the widest range of alginate's usage and development in the past and in recent years. The first segment emphasizes the unique characteristics of alginates and their origin. The second segment sets alginates according to their application based on their features and limitations. Alginate is a polysaccharide and generally occurs as water-soluble sodium alginate. It constitutes hydrophilic and anionic polysaccharides originally extracted from natural brown algae and bacteria. Due to its promising properties, such as gelling, moisture retention, and film-forming, it can be used in environmental protection, cosmetics, medicine, tissue engineering, and the food industry. The comparison of publications with alginate-based products in the field of environmental protection, medicine, food, and cosmetics in scientific articles showed that the greatest number was assigned to the environmental field (30,767) and medicine (24,279), whereas fewer publications were available in cosmetic (5692) and food industries (24,334). Data are provided from the Google Scholar database (including abstract, title, and keywords), accessed in May 2023. In this review, various materials based on alginate are described, showing detailed information on modified composites and their possible usage. Alginate's application in water remediation and its significant value are highlighted. In this study, existing knowledge is compared, and this paper concludes with its future prospects.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
- WellU sp.z.o.o., Wielkopolska 280, 81-531 Gdynia, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
- Faculty of Health Sciences, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
| |
Collapse
|
5
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
6
|
Algal sulfated polysaccharide-based hydrogels enhance gelling properties and in vitro wound healing compared to conventional hydrogels. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Tavakoli J, Shrestha J, Bazaz SR, Rad MA, Warkiani ME, Raston CL, Tipper JL, Tang Y. Developing Novel Fabrication and Optimisation Strategies on Aggregation-Induced Emission Nanoprobe/Polyvinyl Alcohol Hydrogels for Bio-Applications. Molecules 2022; 27:1002. [PMID: 35164268 PMCID: PMC8840180 DOI: 10.3390/molecules27031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
The current study describes a new technology, effective for readily preparing a fluorescent (FL) nanoprobe-based on hyperbranched polymer (HB) and aggregation-induced emission (AIE) fluorogen with high brightness to ultimately develop FL hydrogels. We prepared the AIE nanoprobe using a microfluidic platform to mix hyperbranched polymers (HB, generations 2, 3, and 4) with AIE (TPE-2BA) under shear stress and different rotation speeds (0-5 K RPM) and explored the FL properties of the AIE nanoprobe. Our results reveal that the use of HB generation 4 exhibits 30-times higher FL intensity compared to the AIE alone and is significantly brighter and more stable compared to those that are prepared using HB generations 3 and 2. In contrast to traditional methods, which are expensive and time-consuming and involve polymerization and post-functionalization to develop FL hyperbranched molecules, our proposed method offers a one-step method to prepare an AIE-HB nanoprobe with excellent FL characteristics. We employed the nanoprobe to fabricate fluorescent injectable bioadhesive gel and a hydrogel microchip based on polyvinyl alcohol (PVA). The addition of borax (50 mM) to the PVA + AIE nanoprobe results in the development of an injectable bioadhesive fluorescent gel with the ability to control AIEgen release for 300 min. When borax concentration increases two times (100 mM), the adhesion stress is more than two times bigger (7.1 mN/mm2) compared to that of gel alone (3.4 mN/mm2). Excellent dimensional stability and cell viability of the fluorescent microchip, along with its enhanced mechanical properties, proposes its potential applications in mechanobiology and understanding the impact of microstructure in cell studies.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Jesus Shrestha
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Sajad R. Bazaz
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Maryam A. Rad
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Majid E. Warkiani
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Colin L. Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Joanne L. Tipper
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; (J.T.); (J.S.); (S.R.B.); (M.A.R.); (M.E.W.)
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
8
|
Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives. Top Curr Chem (Cham) 2021; 379:9. [PMID: 33544283 DOI: 10.1007/s41061-020-00322-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The development of fluorescent gels, if not the current focus, is at the center of recent efforts devoted to the invention of a new generation of gels. Fluorescent gels have numerous properties that are intrinsic to the gel structure, with additional light-emitting properties making them attractive for different applications. This review focuses on current studies associated with the development of fluorescent gels using aggregation-induced emission fluorophores (AIEgens) to ultimately suggest new directions for future research. Here, we discuss major drawbacks of the methodologies used frequently for the fabrication of fluorescent gels using traditional fluorophores compared to those using AIEgens. The fabrication strategies to develop AIE-based fluorescent gels, including physical mixing, soaking, self-assembly, noncovalent interactions, and permanent chemical reactions, are discussed thoroughly. New and recent findings on developing AIE-active gels are explained. Specifically, physically prepared AIE-based gels including supramolecular, ionic, and chemically prepared AIE-based gels are discussed. In addition, the intrinsic fluorescent properties of natural gels, known as clustering-triggered fluorescent gel, and new and recent relevant findings published in peer-reviewed journals are explained. This review also revealed the biomedical applications of AIE-based fluorescent hydrogels including drug delivery, biosensors, bioimaging, and tissue engineering. In conclusion, the current research situation and future directions are identified.
Collapse
|
9
|
Jian Z, Zhuang T, Qinyu T, Liqing P, Kun L, Xujiang L, Diaodiao W, Zhen Y, Shuangpeng J, Xiang S, Jingxiang H, Shuyun L, Libo H, Peifu T, Qi Y, Quanyi G. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact Mater 2020; 6:1711-1726. [PMID: 33313450 PMCID: PMC7711190 DOI: 10.1016/j.bioactmat.2020.11.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Appropriate biomimetic scaffolds created via 3D bioprinting are promising methods for treating damaged menisci. However, given the unique anatomical structure and complex stress environment of the meniscus, many studies have adopted various techniques to take full advantage of different materials, such as the printing combined with infusion, or electrospining, to chase the biomimetic meniscus, which makes the process complicated to some extent. Some researchers have tried to tackle the challenges only by 3D biopringting, while its alternative materials and models have been constrained. In this study, based on a multilayer biomimetic strategy, we optimized the preparation of meniscus-derived bioink, gelatin methacrylate (GelMA)/meniscal extracellular matrix (MECM), to take printability and cytocompatibility into account together. Subsequently, a customized 3D bioprinting system featuring a dual nozzle + multitemperature printing was used to integrate the advantages of polycaprolactone (PCL) and meniscal fibrocartilage chondrocytes (MFCs)-laden GelMA/MECM bioink to complete the biomimetic meniscal scaffold, which had the best biomimetic features in terms of morphology and components. Furthermore, cell viability, mechanics, biodegradation and tissue formation in vivo were performed to ensure that the scaffold had sufficient feasibility and functionality, thereby providing a reliable basis for its application in tissue engineering. We have optimized the preparation of meniscus-derived bioink with good printability and cytocompatibility. A customized printing system for biomimetic meniscus, the dual-nozzle + multitemperature printing system was developed. We have achieved multilayer meniscal biomimetic strategy, especially the best biomimetics of morphology and components. Focusing on application prospect, we designed a few experiments to verity the feasibility and functionality of the scaffold.
Collapse
Affiliation(s)
- Zhou Jian
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Joint Surgery, Peking University Ninth School of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Tian Zhuang
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Joint Surgery, Peking University Ninth School of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Tian Qinyu
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Peng Liqing
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li Kun
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Luo Xujiang
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wang Diaodiao
- Department of Joint Surgery, Peking University Ninth School of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yang Zhen
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Shuangpeng
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Sui Xiang
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Huang Jingxiang
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Liu Shuyun
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hao Libo
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tang Peifu
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yao Qi
- Department of Joint Surgery, Peking University Ninth School of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Guo Quanyi
- Medical School of Chinese PLA, Beijing, 100853, China.,Institute of Orthopedics, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
10
|
Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020; 13:E335. [PMID: 33114120 PMCID: PMC7690787 DOI: 10.3390/ph13110335] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers are defined as structures and devices that are constructed using nanomaterials which add functionality to the encapsulants. Being small in size and having a customized surface, improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles influence their interaction with living cells and determine the route of administration, clearance, as well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and biomedical applications as a matrix material of nanocarriers due to its inherent biological properties, including good biocompatibility and biodegradability. Various techniques have been adopted to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and cost-effective properties. This review highlights the most used and recent manufacturing techniques of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation, layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the main processing and formulation parameters on alginate nanoparticles are also summarized.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| |
Collapse
|
11
|
Tavakoli J, Wang J, Chuah C, Tang Y. Natural-based Hydrogels: A Journey from Simple to Smart Networks for Medical Examination. Curr Med Chem 2020; 27:2704-2733. [PMID: 31418656 DOI: 10.2174/0929867326666190816125144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Natural hydrogels, due to their unique biological properties, have been used extensively for various medical and clinical examinations that are performed to investigate the signs of disease. Recently, complex-crosslinking strategies improved the mechanical properties and advanced approaches have resulted in the introduction of naturally derived hydrogels that exhibit high biocompatibility, with shape memory and self-healing characteristics. Moreover, the creation of self-assembled natural hydrogels under physiological conditions has provided the opportunity to engineer fine-tuning properties. To highlight recent studies of natural-based hydrogels and their applications for medical investigation, a critical review was undertaken using published papers from the Science Direct database. This review presents different natural-based hydrogels (natural, natural-synthetic hybrid and complex-crosslinked hydrogels), their historical evolution, and recent studies of medical examination applications. The application of natural-based hydrogels in the design and fabrication of biosensors, catheters and medical electrodes, detection of cancer, targeted delivery of imaging compounds (bioimaging) and fabrication of fluorescent bioprobes is summarised here. Without doubt, in future, more useful and practical concepts will be derived to identify natural-based hydrogels for a wide range of clinical examination applications.
Collapse
Affiliation(s)
- Javad Tavakoli
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia.,School of Biomedical Engineering, University of Technology Sydney, Ultimo, 2007 NSW, Australia
| | - Jing Wang
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia.,Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Institute of Textile Composite, School of Textile, Tianjin Polytechnic University, Tianjin 300387, China
| | - Clarence Chuah
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Youhong Tang
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| |
Collapse
|
12
|
Tavakoli J, Raston CL, Tang Y. Tuning Surface Morphology of Fluorescent Hydrogels Using a Vortex Fluidic Device. Molecules 2020; 25:E3445. [PMID: 32751141 PMCID: PMC7435964 DOI: 10.3390/molecules25153445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
In recent decades, microfluidic techniques have been extensively used to advance hydrogel design and control the architectural features on the micro- and nanoscale. The major challenges with the microfluidic approach are clogging and limited architectural features: notably, the creation of the sphere, core-shell, and fibers. Implementation of batch production is almost impossible with the relatively lengthy time of production, which is another disadvantage. This minireview aims to introduce a new microfluidic platform, a vortex fluidic device (VFD), for one-step fabrication of hydrogels with different architectural features and properties. The application of a VFD in the fabrication of physically crosslinked hydrogels with different surface morphologies, the creation of fluorescent hydrogels with excellent photostability and fluorescence properties, and tuning of the structure-property relationship in hydrogels are discussed. We conceive, on the basis of this minireview, that future studies will provide new opportunities to develop hydrogel nanocomposites with superior properties for different biomedical and engineering applications.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo NSW 2007, Australia;
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Colin L. Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
13
|
Tavakoli J, Joseph N, Raston CL, Tang Y. A hyper-branched polymer tunes the size and enhances the fluorescent properties of aggregation-induced emission nanoparticles. NANOSCALE ADVANCES 2020; 2:633-641. [PMID: 36133251 PMCID: PMC9417821 DOI: 10.1039/d0na00044b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 05/05/2023]
Abstract
The host-guest interaction approach, specifically via the formation of hydrogen bonds, is an effective strategy for preparing luminescent hyper-branched polymers. The challenge here is how to optimize the binding strength and particle size to tune fluorescence properties. The aim of the current study was to optimize the guest (aggregation-induced emission molecule, AIE)-host (hyper-branched polymer, HBP) interaction in the development of an HBP/AIE complex (AIE-HBP) with tunable luminescence properties via the formation of strong hydrogen bonds. Overall, a simple one-step method for the preparation of AIE-HBP was demonstrated. The method was based on the formation of hydrogen bonds among AIE molecules and HBP molecules, resulting in the development of a stable AIE-polymer complex. Compared to other techniques (direct polymerization or post-functionalization), the proposed technique was much simpler. The fluorescence properties of AIE-HBP were significantly enhanced compared to AIE alone and could be tuned during the formation of AIE-HBP by using a novel vortex fluidic device (VFD). The as-prepared AIE-HBP can be used to simultaneously enhance the mechanical properties of hydrogels while increasing the fluorescence properties.
Collapse
Affiliation(s)
- Javad Tavakoli
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University South Australia Australia +61-8-82012138
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney Sydney Australia
| | - Nikita Joseph
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University South Australia Australia +61-8-82012138
| | - Colin L Raston
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University South Australia Australia +61-8-82012138
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University South Australia Australia +61-8-82012138
| |
Collapse
|