1
|
Sreena R, Raman G, Manivasagam G, Nathanael AJ. Bioactive glass-polymer nanocomposites: a comprehensive review on unveiling their biomedical applications. J Mater Chem B 2024; 12:11278-11301. [PMID: 39392456 DOI: 10.1039/d4tb01525h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Most natural and synthetic polymers are promising materials for biomedical applications because of their biocompatibility, abundant availability, and biodegradability. Their properties can be tailored according to the intended application by fabricating composites with other polymers or ceramics. The incorporation of ceramic nanoparticles such as bioactive glass (BG) and hydroxyapatite aids in the improvement of mechanical and biological characteristics and alters the degradation kinetics of polymers. BG can be used in the form of nanoparticles, nanofibers, scaffolds, pastes, hydrogels, or coatings and is significantly employed in different applications. This biomaterial is highly preferred because of its excellent biocompatibility, bone-stimulating activity, and favourable mechanical and degradation characteristics. Different compositions of nano BG are incorporated into the polymer system and studied for positive results such as enhanced bioactivity, better cell adherence, and proliferation rate. This review summarizes the fabrication and the progress of natural/synthetic polymer-nano BG systems for biomedical applications such as drug delivery, wound healing, and tissue engineering. The challenges and the future perspectives of the composite system are also addressed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea.
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| | - A Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Seifi S, Shamloo A, Barzoki AK, Bakhtiari MA, Zare S, Cheraghi F, Peyrovan A. Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials. Carbohydr Polym 2024; 339:122232. [PMID: 38823905 DOI: 10.1016/j.carbpol.2024.122232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
In this study, new types of hybrid double-network (DN) hydrogels composed of polyvinyl alcohol (PVA), chitosan (CH), and sodium alginate (SA) are introduced, with the hypothesis that this combination and incorporating multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) will enhance osteogenetic differentiation and the structural and mechanical properties of scaffolds for bone tissue engineering applications. Initially, the impact of varying mass ratios of the PVA/CH/SA mixture on mechanical properties, swelling ratio, and degradability was examined. Based on this investigation, a mass ratio of 4:6:6 was determined to be optimal. At this ratio, the hydrogel demonstrated a Young's modulus of 47.5 ± 5 kPa, a swelling ratio of 680 ± 6 % after 3 h, and a degradation rate of 46.5 ± 5 % after 40 days. In the next phase, following the determination of the optimal mass ratio, CNTs and GNPs were incorporated into the 4:6:6 composite resulting in a significant enhancement in the electrical conductivity and stiffness of the scaffolds. The introduction of CNTs led to a notable increase of 36 % in the viability of MG63 osteoblast cells. Additionally, the inhibition zone test revealed that GNPs and CNTs increased the diameter of the inhibition zone by 49.6 % and 52.6 %, respectively.
Collapse
Affiliation(s)
- Saeed Seifi
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Ali Kheirkhah Barzoki
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohammad Ali Bakhtiari
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Sona Zare
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Cheraghi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11155-9466, Tehran, Iran
| | - Aisan Peyrovan
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Giovagnoli A, D’Altri G, Yeasmin L, Di Matteo V, Scurti S, Di Filippo MF, Gualandi I, Cassani MC, Caretti D, Panzavolta S, Focarete ML, Rea M, Ballarin B. Multi-Layer PVA-PANI Conductive Hydrogel for Symmetrical Supercapacitors: Preparation and Characterization. Gels 2024; 10:458. [PMID: 39057481 PMCID: PMC11276198 DOI: 10.3390/gels10070458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
This work describes a simple, inexpensive, and robust method to prepare a flexible "all in one" integrated hydrogel supercapacitors (HySCs). Preparing smart hydrogels with high electrical conductivity, ability to stretch significantly, and excellent mechanical properties is the last challenge for tailored wearable devices. In this paper, we employed a physical crosslinking process that involves consecutive freezing and thawing cycles to prepare a polyvinyl alcohol (PVA)-based hydrogel. Exploiting the self-healing properties of these materials, the assembly of the different layers of the HySCs has been performed. The ionic conductivity within the electrolyte layer arises from the inclusion of an H2SO4 solution in the hydrogel network. Instead, the electronic conductivity is facilitated by the addition of the conductive polymer PANI-PAMPSA into the hydrogel layers. Electrochemical measures have highlighted newsworthy properties related to our HySCs, opening their use in wearable electronic applications.
Collapse
Affiliation(s)
- Angelica Giovagnoli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
| | - Giada D’Altri
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
| | - Lamyea Yeasmin
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy
| | - Valentina Di Matteo
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
| | - Stefano Scurti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
| | - Maria Francesca Di Filippo
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.); (M.L.F.); (M.R.)
| | - Isacco Gualandi
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
- Center for Industrial Research-Advanced Applications, Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
- Center for Industrial Research-Advanced Applications, Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Daniele Caretti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
- Center for Industrial Research-Advanced Applications, Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Silvia Panzavolta
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.); (M.L.F.); (M.R.)
| | - Maria Letizia Focarete
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.); (M.L.F.); (M.R.)
| | - Mariangela Rea
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.F.D.F.); (S.P.); (M.L.F.); (M.R.)
| | - Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Distretto Navile—Via Gobetti 85, 40129 Bologna, Italy; (A.G.); (G.D.); (L.Y.); (V.D.M.); (S.S.); (M.C.C.); (D.C.)
- Center for Industrial Research-Advanced Applications, Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
- Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| |
Collapse
|
4
|
Yu H, Liu H, Shen Y, Ao Q. Synthetic biodegradable polymer materials in the repair of tumor-associated bone defects. Front Bioeng Biotechnol 2023; 11:1096525. [PMID: 36873359 PMCID: PMC9978220 DOI: 10.3389/fbioe.2023.1096525] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
The repair and reconstruction of bone defects and the inhibition of local tumor recurrence are two common problems in bone surgery. The rapid development of biomedicine, clinical medicine, and material science has promoted the research and development of synthetic degradable polymer anti-tumor bone repair materials. Compared with natural polymer materials, synthetic polymer materials have machinable mechanical properties, highly controllable degradation properties, and uniform structure, which has attracted more attention from researchers. In addition, adopting new technologies is an effective strategy for developing new bone repair materials. The application of nanotechnology, 3D printing technology, and genetic engineering technology is beneficial to modify the performance of materials. Photothermal therapy, magnetothermal therapy, and anti-tumor drug delivery may provide new directions for the research and development of anti-tumor bone repair materials. This review focuses on recent advances in synthetic biodegradable polymer bone repair materials and their antitumor properties.
Collapse
Affiliation(s)
- Honghao Yu
- Departments of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Haifeng Liu
- Departments of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Shen
- Departments of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial and Institute of Regulatory Science for Medical Device and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Pang L, Zhao R, Chen J, Ding J, Chen X, Chai W, Cui X, Li X, Wang D, Pan H. Osteogenic and anti-tumor Cu and Mn-doped borosilicate nanoparticles for syncretic bone repair and chemodynamic therapy in bone tumor treatment. Bioact Mater 2022; 12:1-15. [PMID: 35087959 PMCID: PMC8777258 DOI: 10.1016/j.bioactmat.2021.10.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Critical bone defects caused by extensive excision of malignant bone tumor and the probability of tumor recurrence due to residual tumor cells make malignant bone tumor treatment a major clinical challenge. The present therapeutic strategy concentrates on implanting bone substitutes for defect filling but suffers from failures in both enhancing bone regeneration and inhibiting the growth of tumor cells. Herein, Cu and Mn-doped borosilicate nanoparticles (BSNs) were developed for syncretic bone repairing and anti-tumor treatment, which can enhance bone regeneration through the osteogenic effects of Cu2+ and Mn3+ ions and meanwhile induce tumor cells apoptosis through the hydroxyl radicals produced by the Fenton-like reactions of Cu2+ and Mn3+ ions. In vitro study showed that both osteogenic differentiation of BMSCs and angiogenesis of endothelial cells were promoted by BSNs, and consistently the critical bone defects of rats were efficiently repaired by BSNs through in vivo evaluation. Meanwhile, BSNs could generate hydroxyl radicals through Fenton-like reactions in the simulated tumor microenvironment, promote the generation of intracellular reactive oxygen species, and eventually induce tumor cell apoptosis. Besides, subcutaneous tumors of mice were effectively inhibited by BSNs without causing toxic side effects to normal tissues and organs. Altogether, Cu and Mn-doped BSNs developed in this work performed dual functions of enhancing osteogenesis and angiogenesis for bone regeneration, and inhibiting tumor growth for chemodynamic therapy, thus holding a great potential for syncretic bone repairing and anti-tumor therapy. Dual-functional bioactive borosilicate nanoparticles were successfully synthesized. Incorporation of Cu and Mn to the nanoparticles enhanced osteogenesis and angiogenesis. Cu and Mn doped borosilicate nanoparticles inhibited tumor by producing ·OH. Potential syncretic bone repair and chemodynamic therapy developed for bone tumor treatment.
Collapse
|
6
|
Xu L, Qin X, Mozaffari MS, Yan D, Sun X, Cao Y. Hybrid system with stable structure of hard/soft tissue substitutes induces re-osseointegration in a rat model of biofilm-mediated peri-implantitis. J Biomed Mater Res B Appl Biomater 2022; 110:2452-2463. [PMID: 35620882 DOI: 10.1002/jbm.b.35102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/19/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022]
Abstract
Re-osseointegration of an infected/contaminated dental implant poses major clinical challenges. We tested the hypothesis that the application of an antibiotic-releasing construct, combined with hard/soft tissue replacement, increases the efficacy of reconstructive therapy. We initially fabricated semi-flexible hybrid constructs of β-TCP/PHBHHx, with tetracycline (TC) (TC amounts: 5%, 10%, and 15%). Thereafter, using in vitro assays, TC release profile, attachment to rat bone marrow-derived stem cells (rBMSCs) and their viability as well as anti-bacterial activity were determined. Thereafter, regenerative efficacies of the three hybrid constructs were assessed in a rat model of peri-implantitis induced by Aggregatibacter actinomycetemcomitans biofilm; control animals received β-TCP/Bio-Gide and TC injection. Eight weeks later, maxillae were obtained for radiological, histological, and histomorphometric analyses of peri-implant tissues. Sulcus bleeding index was chronologically recorded. Serum cytokines levels of IL-6 and IL-1β were also evaluated by enzyme-linked immunosorbent assay. Substantial amounts of tetracycline, from hybrid constructs, were released for 2 weeks. The medium containing the released tetracycline did not affect the adhesion or viability of rBMSCs; however, it inhibited the proliferation of A. actinomycetemcomitans. Osteogenesis and osseointegration were more marked for the 15% hybrid construct group than the other two groups. The height of attachment and infiltration of inflammatory cells within fibrous tissue was significantly reduced in the experimental groups than the control group. Our protocol resulted in re-osseointegration on a biofilm-contaminated implant. Thus, an antibiotic releasing inorganic/organic construct may offer a therapeutic option to suppress infection and promote guided tissue regeneration thereby serving as an integrated multi-layer substitute for both hard/soft tissues.
Collapse
Affiliation(s)
- Lianyi Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Qin
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mahmood S Mozaffari
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Di Yan
- Department of Oral and Maxillofacial Surgery, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Xiaojuan Sun
- Department of Oral and Maxillofacial Surgery, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021; 7:5397-5431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Parisa Koohsarian
- Department of Biochemistry and Hematology, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | | |
Collapse
|
8
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
9
|
Gazor R, Asgari M, Abdollajhifar MA, Kiani P, Zare F, Fadaei Fathabady F, Norouzian M, Amini A, Khosravipour A, Atashgah RB, Kazemi M, Chien S, Bayat M. Simultaneous Treatment of Photobiomodulation and Demineralized Bone Matrix With Adipose-Derived Stem Cells Improve Bone Healing in an osteoporotic bone defect. J Lasers Med Sci 2021; 12:e41. [PMID: 34733764 DOI: 10.34172/jlms.2021.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022]
Abstract
Introduction: The ability of simultaneous treatment of critical-sized femoral defects (CSFDs) with photobiomodulation (PBM) and demineralized bone matrix (DBM) with or without seeded adipose-derived stem cells (ASCs) to induce bone reconstruction in ovariectomized induced osteoporotic (OVX) rats was investigated. Methods: The OVX rats with CSFD were arbitrarily separated into 6 groups: control, scaffold (S, DBM), S + PBM, S + alendronate (ALN), S + ASCs, and S + PBM + ASCs. Each group was assessed by cone beam computed tomography (CBCT) and histological examinations. Results: In the fourth week, CBCT and histological analyses revealed that the largest volume of new bone formed in the S + PBM and S + PBM + ASC groups. The S + PBM treatment relative to the S and S + ALN treatments remarkably reduced the CSFD (Mann-Whitney test, P = 0.009 and P = 0.01). Furthermore, S + PBM + ASCs treatment compared to the S and S + ALN treatments significantly decreased CSFD (Mann Whitney test, P = 0.01). In the eighth week, CBCT analysis showed that extremely enhanced bone regeneration occurred in the CSFD of the S + PBM group. Moreover, the CSFD in the S + PBM group was substantially smaller than S, S + ALN and S + ASCs groups (Mann Whitney test, P = 0.01, P = 0.02 and P = 0.009). Histological observations showed more new bone formation in the treated CSFD of S + PBM + ASCs and S + PBM groups. Conclusion: The PBM plus DBM with or without ASCs significantly enhanced bone healing in the CSFD in OVX rats compared to control, DBM alone, and ALN plus DBM groups. The PBM plus DBM with or without ASCs significantly decreased the CSFD area compared to either the solo DBM or ALN plus DBM treatments.
Collapse
Affiliation(s)
- Rouhallah Gazor
- Department of Anatomy and Cell Biology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrdad Asgari
- Department of Anatomy and Cell Biology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; And Department of Maxillofacial Radiology, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Mohammad-Amin Abdollajhifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pejman Kiani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Khosravipour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rahimeh B Atashgah
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 13169- 43551, Iran
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky; USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, Kentucky; USA
| |
Collapse
|
10
|
Kumar A, Han SS. Enhanced mechanical, biomineralization, and cellular response of nanocomposite hydrogels by bioactive glass and halloysite nanotubes for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112236. [PMID: 34474814 DOI: 10.1016/j.msec.2021.112236] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
In the present study, the synergistic effect of the bioactive glass (BG) and halloysite nanotubes (HNTs) (i.e. BG@HNT) was evaluated on physicochemical and bioactive properties of polyacrylamide/poly (vinyl alcohol) (PMPV) based nanocomposite hydrogels. Here, a double-network hydrogel composed of organic-inorganic components was successfully developed by using in-situ free-radical polymerization and freeze-thawing process. Structural analyses confirmed the successful formation of the nanocomposite hydrogels through physical and chemical interactions. Morphological analysis showed that all hydrogel scaffolds are containing highly porous 3D microstructure and pore-interconnectivity. The equilibrium swelling ratio of the hydrogels was decreased by the addition of BG or BG@HNT and thereby the lower porosity and pore-size reduced the penetration of media and slow down the degradation process. Enhanced biomineralization ability of PMPV/BG@HNT was observed via apatite-forming ability (Ca/P: 1.21 ± 0.14) after immersion in the simulated body fluid as well as significantly enhanced dynamic mechanical properties (compressive strength: 102.1 kPa at 45% of strain and stiffness: 3115.0 N/m at 15% of strain). Furthermore, an enhanced attachment and growth of hFOB1.19 osteoblast cells on PMPV/BG@HNT was achieved compared to PMPV or PMPV/BG hydrogels over 14 days. The PMPV/BG@HNT nanocomposite hydrogel could have a promising application in low-load bearing bone tissue regeneration.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
11
|
Abstract
The concepts hybrid and hybridization are common in many scientific fields, as in the taxonomic parts of botany and zoology, in modern genetic, and in the quantum–mechanical theory of atomic–molecular orbitals, which are of foremost relevance in most aspects of modern chemistry. Years later, scientists applied the concept hybrid to colloids, if the particles’ domains are endowed with functionalities differing each from the other in nature and/or composition. For such denomination to be fully valid, the domains belonging to a given hybrid must be recognizable each from another in terms of some intrinsic features. Thus, the concept applies to particles where a given domain has its own physical state, functionality, or composition. Literature examples in this regard are many. Different domains that are present in hybrid colloids self-organize, self-sustain, and self-help, according to the constraints dictated by kinetic and/or thermodynamic stability rules. Covalent, or non-covalent, bonds ensure the formation of such entities, retaining the properties of a given family, in addition to those of the other, and, sometimes, new ones. The real meaning of this behavior is the same as in zoology; mules are pertinent examples, since they retain some features of their own parents (i.e., horses and donkeys) but also exhibit completely new ones, such as the loss of fertility. In colloid sciences, the concept hybrid refers to composites with cores of a given chemical type and surfaces covered by moieties differing in nature, or physical state. This is the result of a mimicry resembling the ones met in a lot of biological systems and foods, too. Many combinations may occur. Silica nanoparticles on which polymers/biopolymers are surface-bound (irrespective of whether binding is covalent or not) are pertinent examples. Here, efforts are made to render clear the concept, which is at the basis of many applications in the biomedical field, and not only. After a historical background and on some features of the species taking part to the formation of hybrids, we report on selected cases met in modern formulations of mixed, and sometimes multifunctional, colloid entities.
Collapse
|
12
|
|
13
|
Li C, Liu L, Zhang T, Wang F, Wang L. β-Tricalcium phosphate contained beaded-fiber scaffolds characterized by high early osteoinductive activity for vascularized bone regeneration. Colloids Surf B Biointerfaces 2021; 201:111639. [PMID: 33639511 DOI: 10.1016/j.colsurfb.2021.111639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 10/24/2022]
Abstract
The calcium phosphate component and surface topology of a scaffold are considered the two main factors that influence osteogenic differentiation. This research reports a one-step but effective scaffold preparation method that can regulate the morphology of nanofibers and control the distribution and release behavior of calcium phosphate nanoparticles (CaPs). Two beaded-on-string CaPs-loaded electrospun scaffolds (PT7.5 and PT4.5) with composite microstructures of microbeads and nanofibers were fabricated by adjusting the concentration of the electrospinning solution. The presence of the composite microstructure was conducive to the surface exposure and sustained release of bioactive components, which in turn could significantly promote the biomineralization and protein adsorption of the scaffold. A study of the human umbilical vein endothelial cells (HUVECs) and rat-bone marrow-derived mesenchymal stem cells (rBMSCs) revealed that cells cultured on scaffolds with composite microstructures (especially PT4.5) could enhance tube formation of the HUVECs and osteogenic differentiation of rBMSCs. The PT4.5 with significantly different microbead and nanofiber sizes presented the high potential to improve the early osteoinductive activity and angiogenesis of the CaPs-loaded electrospun scaffold and expand its advantage in bone regeneration.
Collapse
Affiliation(s)
- Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Laijun Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Tiantian Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
14
|
Liang W, Wu X, Dong Y, Shao R, Chen X, Zhou P, Xu F. In vivo behavior of bioactive glass-based composites in animal models for bone regeneration. Biomater Sci 2021; 9:1924-1944. [PMID: 33506819 DOI: 10.1039/d0bm01663b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This review presents the recent advances and the current state-of-the-art of bioactive glass-based composite biomaterials intended for bone regeneration. Composite materials comprise two (or more) constituents at the nanometre scale, in which typically, one constituent is organic and functions as the matrix phase and the other constituent is inorganic and behaves as the reinforcing phase. Such materials, thereby, more closely resemble natural bio-nanocomposites such as bone. Various glass compositions in combination with a wide range of natural and synthetic polymers have been evaluated in vivo under experimental conditions ranging from unloaded critical-sized defects to mechanically-loaded, weight-bearing sites with highly favourable outcomes. Additional possibilities include controlled release of anti-osteoporotic drugs, ions, antibiotics, pro-angiogenic substances and pro-osteogenic substances. Histological and morphological evaluations suggest the formation of new, highly vascularised bone that displays signs of remodelling over time. With the possibility to tailor the mechanical and chemical properties through careful selection of individual components, as well as the overall geometry (from mesoporous particles and micro-/nanospheres to 3D scaffolds and coatings) through innovative manufacturing processes, such biomaterials present exciting new avenues for bone repair and regeneration.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Grazioli G, Silva AF, Souza JF, David C, Diehl L, Sousa-Neto MD, Cava SS, Fajardo AR, Moraes RR. Synthesis and characterization of poly(vinyl alcohol)/chondroitin sulfate composite hydrogels containing strontium-doped hydroxyapatite as promising biomaterials. J Biomed Mater Res A 2020; 109:1160-1172. [PMID: 32985092 DOI: 10.1002/jbm.a.37108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 01/20/2023]
Abstract
Novel poly(vinyl alcohol)/chondroitin sulfate (PVA/CS) composite hydrogels containing hydroxyapatite (HA) or Sr-doped HA (HASr) particles were synthesized by a freeze/thaw method and characterized aiming towards biomedical applications. HA and HASr were synthesized by a wet-precipitation method and added to the composite hydrogels in fractions up to 15 wt%. Physical-chemical characterizations of particles and hydrogels included scanning electron microscopy, energy-dispersive spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetry, porosity, compressive strength/elastic modulus, swelling degree, and cell viability. Particles were irregular in shape and appeared to have narrow size variation. The thermal behavior of composite hydrogels was altered compared to the control (bare) hydrogel. All hydrogels exhibited high porosity. HA/HASr particles reduced total porosity without reducing pore size. The mechanical strength was improved as the fraction of HA or HASr was increased. HASr particles led to a faster water uptake but did not interfere with the total hydrogel swelling capacity. In cell viability essay, increased cell growth (above 120%) was observed in all groups including the control hydrogel, suggesting a bioactive effect. In conclusion, PVA/CS hydrogels containing HA or HASr particles were successfully synthesized and showed promising morphological, mechanical, and swelling properties, which are particularly required for scaffolding.
Collapse
Affiliation(s)
- Guillermo Grazioli
- Department of Dental Materials, University of the Republic, Montevideo, Uruguay.,Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana F Silva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Jaqueline F Souza
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Carla David
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Lisiane Diehl
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - Manoel D Sousa-Neto
- Department of Restorative Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Sergio S Cava
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - André R Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Rafael R Moraes
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
16
|
Gupta A, Bhasarkar J, Chandan MR, Shaik AH, Kiran B, Bal DK. Diffusion Kinetics of Vitamin B12 from Alginate and Poly(vinyl acetate) Based Gel Scaffolds for Targeted Drug Delivery. J MACROMOL SCI B 2020. [DOI: 10.1080/00222348.2020.1800246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ambuj Gupta
- Colloids and Polymers Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Jaykumar Bhasarkar
- Department of Pulp and Paper Technology, Laxminarayan Institute of Technology, R.T.M. Nagpur University, Nagpur, Maharashtra, India
| | - Mohammed Rehaan Chandan
- Colloids and Polymers Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Aabid Hussain Shaik
- Colloids and Polymers Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bandaru Kiran
- Colloids and Polymers Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dharmendra K. Bal
- Colloids and Polymers Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
17
|
Liu L, Li C, Liu X, Jiao Y, Wang F, Jiang G, Wang L. Tricalcium Phosphate Sol-Incorporated Poly(ε-caprolactone) Membrane with Improved Mechanical and Osteoinductive Activity as an Artificial Periosteum. ACS Biomater Sci Eng 2020; 6:4631-4643. [DOI: 10.1021/acsbiomaterials.0c00511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laijun Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xingxing Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yongjie Jiao
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Guansen Jiang
- Hangzhou Ruijian Maasting Medical Equipment Co. Ltd., Hangzhou 310000, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
18
|
Acik G, Karatavuk AO. Synthesis, properties and biodegradability of cross-linked amphiphilic Poly(vinyl acrylate)-Poly(tert-butyl acrylate)s by photo-initiated radical polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Manufacture and characteristics of HA-Electrodeposited polylactic acid/polyvinyl alcohol biodegradable braided scaffolds. J Mech Behav Biomed Mater 2020; 103:103555. [PMID: 32090949 DOI: 10.1016/j.jmbbm.2019.103555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
This study proposes the braided bone scaffolds. First, biologically degradable polylactic acid (PLA) filaments and polyvinyl alcohol (PVA) filaments are plied into composite yarns using a doubling and twisting machine. The composite yarns are tested to determine the optimal mechanical properties and a stabilized morphology. The PLA/PVA composite yarns are then braided into bone scaffolds, during which the optimal braiding process parameters and yarn ratio are determined. Based on the surface observation and tensile strength, a gear ratio of 45:45 provides the tubular braids with an optimal morphology and porosity that meet the biological requirements. When the PLA/PVA ratio is 3:1, the braids exhibit the maximum tensile properties and the most stable space structure. Furthermore, to make the braids a bioactive material with surface active sites, the braids are coated with hydroxyapatite (HA) by electrodeposition. The resulting HA-electrodeposited bone scaffolds are tested by in vitro biological experiments using a scanning electronic microscope (SEM), energy dispersive x-ray analysis(EDAX), X-ray Diffraction(XRD), and Fourier transform infrared spectroscopy(FT-IR), thereby examining their characteristics and microstructure. Results suggest that HA is electrodeposited over the bone scaffolds successfully. The immersion in simulated body fluid (SBF) is proven to contribute a good in vitro bioactivity to bone scaffolds. As a result, bone scaffolds are a good candidate for the application in the cancellous bone repairing field.
Collapse
|