1
|
Gan W, Sun BY, Yang ZF, Ye C, Wang ZT, Zhou C, Sun GQ, Yi Y, Qiu SJ. Enhancing hepatocellular carcinoma management: prognostic value of integrated CCL17, CCR4, CD73, and HHLA2 expression analysis. J Cancer Res Clin Oncol 2024; 150:325. [PMID: 38914802 PMCID: PMC11196339 DOI: 10.1007/s00432-024-05832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a critical global health concern, with existing treatments benefiting only a minority of patients. Recent findings implicate the chemokine ligand 17 (CCL17) and its receptor CCR4 as pivotal players in the tumor microenvironment (TME) of various cancers. This investigation aims to delineate the roles of CCL17 and CCR4 in modulating the tumor's immune landscape, assessing their potential as therapeutic interventions and prognostic markers in HCC. METHODS 873 HCC patients post-radical surgery from 2008 to 2012 at Zhongshan Hospital, Fudan University were retrospectively examined. These individuals were stratified into a training cohort (n = 354) and a validation cohort (n = 519). Through immunohistochemical analysis on HCC tissue arrays, the expressions of CCL17, CCR4, CD73, CD47, HHLA2, and PD-L1 were quantified. Survival metrics were analyzed using the Cox model, and a prognostic nomogram was devised via R software. RESULTS The investigation confirmed the presence of CCL17 and CCR4 within the cancerous and stromal compartments of HCC tissues, associating their heightened expression with adverse clinical markers and survival outcomes. Notably, the interplay between CD73 and CCR4 expression in tumor stroma highlighted a novel cellular entity, CCR4 + CD73 + stromal cells, impacting overall and relapse-free survival. A prognostic nomogram amalgamating these immunological markers and clinical variables was established, offering refined prognostic insights and aiding in the management of HCC. The findings suggest that reduced CCR4 and CCR4 + CD73 + cell prevalence may forecast improved outcomes post-TACE. CONCLUSION This comprehensive evaluation of CCR4, CCL17, and associated markers introduces a nuanced understanding of the HCC immunological milieu, proposing CCR4 + CD73 + stromal cells as critical to HCC pathogenesis and patient stratification.
Collapse
Affiliation(s)
- Wei Gan
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Cheng Ye
- Department of Otolaryngology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Guo-Qiang Sun
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation & Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Li C, Lei Q, Ju P, Liu J, Deng W, Chen L. Effect of trans-theoretical model-based nursing intervention on emotion and fear in post-liver cancer surgery patients. Am J Transl Res 2024; 16:2346-2357. [PMID: 39006267 PMCID: PMC11236662 DOI: 10.62347/myea6043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE To investigate the efficacy of nursing interventions grounded in the trans-theoretical model on emotion and fear among patients undergoing surgery for hepatocellular carcinoma (HCC). METHODS The study included 188 surgical patients from the Second People's Hospital of Lanzhou City who underwent HCC intervention between March 2020 and May 2022. The control group comprised 81 patients receiving standard postoperative care, while the observation group included 107 patients who received nursing interventions based on the trans-theoretical model. We assessed outcomes using the Fear of Progression Questionnaire-Short Form (FOP-Q-SF), Quality of Life Questionnaire Core 30 (QLQ-C30), Gastrointestinal Comfort Questionnaire (GCQ), Self-Rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) before and after the intervention. Logistic regression was used to identify factors influencing post-intervention fear. RESULTS Both groups showed improvement in FOP-Q-SF, QLQ-C30, GCQ, SAS, and SDS scores after the intervention. However, the observation group demonstrated significantly greater improvements (P < 0.05). There was a positive correlation between FOP-Q-SF scores and both SAS and SDS scores (all P < 0.05), and a negative correlation with QLQ-C30 and GCQ scores (both P < 0.05). Multifactorial logistic regression revealed that age (P < 0.001, OR: 8.328), gender (P < 0.001, OR: 0.181), literacy level (P < 0.001, OR: 0.354), and nursing care regimen (P < 0.001, OR: 0.078) were significant independent risk factors for persistence of fearpost-intervention. CONCLUSION The implementation of nursing interventions based on the trans-theoretical model significantly reduces postoperative fear and anxiety, improves pain perception, and enhances overall comfort in patients after liver cancer surgery.
Collapse
Affiliation(s)
- Caihong Li
- Department of Hepatology II, The Second People's Hospital of Lanzhou City No. 388 Jingyuan Road, Chengguan District, Lanzhou 730046, Gansu, China
| | - Qingfen Lei
- Department of Hepatology II, The Second People's Hospital of Lanzhou City No. 388 Jingyuan Road, Chengguan District, Lanzhou 730046, Gansu, China
| | - Ping Ju
- Department of Gastroenterology, The Second People's Hospital of Lanzhou City No. 388 Jingyuan Road, Chengguan District, Lanzhou 730046, Gansu, China
| | - Junlan Liu
- Department of Hepatology II, The Second People's Hospital of Lanzhou City No. 388 Jingyuan Road, Chengguan District, Lanzhou 730046, Gansu, China
| | - Wenmin Deng
- Department of Gastroenterology, The Second People's Hospital of Lanzhou City No. 388 Jingyuan Road, Chengguan District, Lanzhou 730046, Gansu, China
| | - Li Chen
- Department of Endoscopy Center, The Second People's Hospital of Lanzhou City No. 388 Jingyuan Road, Chengguan District, Lanzhou 730046, Gansu, China
| |
Collapse
|
3
|
Curcumin-loaded alginate hydrogels for cancer therapy and wound healing applications: A review. Int J Biol Macromol 2023; 232:123283. [PMID: 36657541 DOI: 10.1016/j.ijbiomac.2023.123283] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Hydrogels have emerged as a versatile platform for a numerous biomedical application due to their ability to absorb a huge quantity of biofluids. In order to design hydrogels, natural polymers are an attractive option owing to their biocompatibility and biodegradability. Due to abundance in occurrence, cost effectiveness, and facile crosslinking approaches, alginate has been extensively investigated to fabricate hydrogel matrix. Management of cancer and chronic wounds have always been a challenge for pharmaceutical and healthcare sector. In both cases, curcumin have been shown significant improvement and effectiveness. However, the innate restraints like poor bioavailability, hydrophobicity, and rapid systemic clearance associated with curcumin have restricted its clinical translations. The current review explores the cascade of research around curcumin encapsulated alginate hydrogel matrix for wound healing and cancer therapy. The focus of the review is to emphasize the mechanistic effects of curcumin with its fate inside the cells. Further, the review discusses different approaches to designed curcumin loaded alginate hydrogels along with the parameters that regulates their release behavior. Finally, the review is concluded with emphasize on some key aspect on increasing the efficacy of these hydrogels along with novel strategies to further develop curcumin loaded alginate hydrogel matrix with multifacet applications.
Collapse
|
4
|
Jia W, Han Y, Mao X, Xu W, Zhang Y. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Adv 2022; 12:31068-31082. [PMID: 36349046 PMCID: PMC9621307 DOI: 10.1039/d2ra05127c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy threatening human health, and existing diagnostic and therapeutic techniques are facing great challenges. In the last decade or so, nanotechnology has been developed and improved for tumor diagnosis and treatment. For example, nano-intravenous injections have been approved for malignant perivascular epithelioid cell tumors. This article provides a comprehensive review of the applications of nanotechnology in HCC in recent years: (I) in radiological imaging, magnetic resonance imaging (MRI), fluorescence imaging (FMI) and multimodality imaging. (II) For diagnostic applications in HCC serum markers. (III) As embolic agents in transarterial chemoembolization (TACE) or directly as therapeutic drugs. (IV) For application in photothermal therapy and photodynamic therapy. (V) As carriers of chemotherapeutic drugs, targeted drugs, and natural plant drugs. (VI) For application in gene and immunotherapy. Compared with the traditional methods for diagnosis and treatment of HCC, nanoparticles have high sensitivity, reduce drug toxicity and have a long duration of action, and can also be combined with photothermal and photodynamic multimodal combination therapy. These summaries provide insights for the further development of nanotechnology applications in HCC.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - YingHui Han
- Outpatient Department, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - YeWei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
5
|
Kalhapure RS, Palekar S, Patel K, Monpara J. Nanocrystals for controlled delivery: State of the art and approved drug products. Expert Opin Drug Deliv 2022; 19:1303-1316. [PMID: 35930427 DOI: 10.1080/17425247.2022.2110579] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Controlled/extended-release formulations offer numerous benefits over conventional especially reduced side effects, improved therapeutic outcomes and high patient compliance. Controlled release nanocrystal is extremely versatile technology with several advantages such as very high drug loading, ease of manufacturing, avoidance of dose dumping, reproducible drug release. Usually, nanonization of drug is performed to improve dissolution rate, intrinsic solubility and thereby bioavailability. Most of the times, this is done for immediate release dosage forms where objective is quick onset of action. However, nanocrystals can also provide a sustained, reproducible plasma concentration profile for weeks to months based on tissue microenvironment, surface coating administration route. AREAS COVERED This review briefly describes the methods for producing nanocrystals, summarizes preclinical research and commercial products demonstrating tremendous potential of controlled release nanocrystals. EXPERT OPINION Lipophilic drugs are attractive candidates for the development of nanocrystal based controlled release formulations. However, constraint should be practiced while generalizing the technology for the controlled release purpose. Not all drugs fit in the requirement from the perspectives of physicochemical properties or pharmacokinetic requirements. Additionally, technologies should be explored which can convert the nanocrystal into its final dosage form for administration yet preserves the benefits of small particle size and controlled release.
Collapse
Affiliation(s)
- Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.,Odin Pharmaceuticals LLC, 300 Franklin Square Dr., Somerset, NJ 08873, USA
| | - Siddhant Palekar
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | | |
Collapse
|
6
|
Graur F, Puia A, Mois EI, Moldovan S, Pusta A, Cristea C, Cavalu S, Puia C, Al Hajjar N. Nanotechnology in the Diagnostic and Therapy of Hepatocellular Carcinoma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3893. [PMID: 35683190 PMCID: PMC9182427 DOI: 10.3390/ma15113893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is the most common liver malignancy and is among the top five most common cancers. Despite the progress of surgery and chemotherapy, the results are often disappointing, in part due to chemoresistance. This type of tumor has special characteristics that allow the improvement of diagnostic and treatment techniques used in clinical practice, by combining nanotechnology. This article presents a brief review of the literature focused on nano-conditioned diagnostic methods, targeted therapy, and therapeutic implications for the pathology of hepatocellular carcinoma. Within each subdomain, several modern technologies with significant impact were highlighted: serological, imaging, or histopathological diagnosis; intraoperative detection; carrier-type nano-conditioned therapy, thermal ablation, and gene therapy. The prospects offered by nanomedicine will strengthen the hope of more efficient diagnoses and therapies in the future.
Collapse
Affiliation(s)
- Florin Graur
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Aida Puia
- Department of General Practitioner, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania
| | - Emil Ioan Mois
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Septimiu Moldovan
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Alexandra Pusta
- Department of Analytical Chemistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania; (A.P.); (C.C.)
| | - Cecilia Cristea
- Department of Analytical Chemistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania; (A.P.); (C.C.)
| | - Simona Cavalu
- Department of Medical Biophysics, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Cosmin Puia
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Nadim Al Hajjar
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| |
Collapse
|
7
|
Jia G, Van Valkenburgh J, Chen AZ, Chen Q, Li J, Zuo C, Chen K. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1749. [PMID: 34405552 PMCID: PMC8850537 DOI: 10.1002/wnan.1749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Transarterial chemoembolization (TACE) is a recommended treatment for patients suffering from intermediate and advanced hepatocellular carcinoma (HCC). As compared to the conventional TACE, drug-eluting bead TACE demonstrates several advantages in terms of survival, treatment response, and adverse effects. The selection of embolic agents is critical to the success of TACE. Many studies have been performed on the modification of the structure, size, homogeneity, biocompatibility, and biodegradability of embolic agents. Continuing efforts are focused on efficient loading of versatile chemotherapeutics, controlled sizes for sufficient occlusion, real-time detection intra- and post-procedure, and multimodality imaging-guided precise treatment. Here, we summarize recent advances and applications of microspheres and nanoparticles in TACE for HCC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Austin Z. Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China,Corresponding authors ,(Changjing Zuo); , (Kai Chen)
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Corresponding authors ,(Changjing Zuo); , (Kai Chen)
| |
Collapse
|
8
|
Kim J, Choi C, Hong S. Dialysis-derived urchin-like supramolecular assembly of tannic acid and paclitaxel with high porosity. NANOSCALE 2022; 14:1363-1369. [PMID: 35015801 DOI: 10.1039/d1nr06237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Co-crystallization of active pharmaceutical ingredients (APIs) with pharmaceutically acceptable additives has emerged as an alternative to current drug delivery systems for hydrophobic drugs, due to their high drug loading efficiency. During this process, we herein report that tannic acid (TA) can be used as an amphiphilic stabilizer for the model drug, paclitaxel (PTX), that results in the shape and morphology variations of the synthesized microstructures, depending on the synthetic environment. We observed that rapid co-precipitation of PTX and TA via dialysis in water resulted in unprecedented urchin-like supramolecular microstructures with high porosity. On the other hand, slow co-precipitation for several hours under static conditions without dialysis exhibited bundles of straight TA-coated PTX fibers without any pores. This was plausibly due to the dynamic change of both the building block concentration and the solvent composition occurring during the transition of the kinetic product to the thermodynamic product. Interestingly, the synthesized urchin-like porous structure further rapidly transformed into a spherical shape through the interaction with serum proteins by remodeling of the non-covalent interactions, which contributed to the overall therapeutic efficacy tested in vitro. Our results provide knowledge on the self-assembly behavior of the hydrophobic drug and amphiphilic stabilizer under dynamic conditions, and contribute to the development of novel strategies in designing drug formulations.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea.
| | - Chanuk Choi
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea.
| | - Seonki Hong
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
9
|
Du Y, Liu D, Du Y. Recent advances in hepatocellular carcinoma therapeutic strategies and imaging-guided treatment. J Drug Target 2021; 30:287-301. [PMID: 34727794 DOI: 10.1080/1061186x.2021.1999963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancer in the world, which greatly threatens human health. However, the routine treatment strategies for HCC have failed to specifically eradicate the tumorigenic cells, leading to the occurrence of metastasis and recurrence. To improve treatment efficacies, the development of novel effective technologies is urgently required. Recently, nanotechnologies have gained the extensive attention in cancer targeted therapy, which could provide a promising way for HCC clinical practice. However, a successful cancer management depends on accurate diagnosis of the tumour along with precise therapeutic protocol, thereby predicting the tumour response to existing therapies. The synergistic effect of targeted therapeutic systems and imaging approaches (also called 'imaging-guided cancer treatment') may establish a more effective platform for individual cancer care. This review outlines the recent advanced nano-targeted and -traceable therapeutic strategies for HCC management. The multifunctional nano agents that have both diagnosis and therapy abilities are highlighted. Finally, we conclude with our perspectives on the future development and challenges of HCC nanotheranostics.
Collapse
Affiliation(s)
- Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Miao Z, Wang Y, Li S, Zhang M, Xu M. One-pot synthesis chlorin e6 nano-precipitation for colorectal cancer treatment Ce6 NPs for colorectal cancer treatment. IET Nanobiotechnol 2021; 15:680-685. [PMID: 34694720 PMCID: PMC8675780 DOI: 10.1049/nbt2.12065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
The drug nanoparticles free of additional carriers hold great promise in drug delivery and are suitable for the therapy of cancers. Herein, we developed a one-pot method to prepare chlorin e6 (Ce6) nano-precipitations (Ce6 NPs) for effective photodynamic therapy of colorectal cancer. The drug loading of Ce6 NPs was around 81% and showed acceptable stability, high biocompatibility as well as effective reactive oxygen species (ROS) generation capability. As a result, the Ce6 NPs can produce significantly elevated ROS upon laser irradiations and achieved better anticancer benefits than free Ce6.
Collapse
Affiliation(s)
- Zhongxing Miao
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Yujie Wang
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Shengjie Li
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Min Zhang
- Department of Department of Anorectal SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Meng Xu
- Department of Department of Anorectal SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| |
Collapse
|
11
|
Hu Y, Zhao Z, Li S, Xu X, Xie Y, Yan D, Zou Y, Liu H. Investigation of the Physical Properties and Clinical Application of Embosphere Microspheres. Chemotherapy 2021; 66:139-155. [PMID: 34344008 DOI: 10.1159/000517680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/05/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim of this study was to understand physical characteristics of Embosphere microspheres for the clinical use of microsphere chemotherapy embolization of liver cancer. METHODS The morphology of Embosphere microspheres in different states, including static, oscillating, and in a magnetic field was observed with the naked eye. Ninety-five patients diagnosed with primary hepatocellular carcinoma (HCC) were separated into 3 groups based on the types of embolic material as follows: 32 cases of sole microspheres, 34 cases of iodinated oil (17 cases with additional application of gelatin sponge particle), and 29 cases of iodinated oil + Embosphere microspheres. RESULTS The diameter of the microspheres ranged from 100 to 300 μm, with a sedimentation rate υ = 0.0375 cm/s in physiological saline. The diameter of microspheres ranged from 300 to 500 μm, with a sedimentation rate υ = 0.1875 cm/s. The swelling rate of microspheres was 90%. Microspheres showed nondirectional movement in a 1.5- or 3.0-T magnetic field during magnetic resonance imaging. A volumetric ratio of 1:1.4-1:1.5 between microspheres and contrast agent resulted in optimal suspension properties. Microspheres appeared circular with a smooth surface upon water adsorption. Microsphere embolism was observable in blood vessels of pathological sections. The surface of microspheres can adsorb 5-fluorouracil and arsenic trioxide. There are statistically significant differences in local-regional tumor control conditions among patients treated with sole microspheres, iodinated oil, and iodinated oil + microspheres during transarterial chemoembolization. CONCLUSIONS Embosphere microspheres can be used to embolize patients with rupture and hemorrhage of HCC. Embosphere microsphere embolization is superior to iodinated oil and iodinated oil + microsphere for HCC.
Collapse
Affiliation(s)
- Yinbao Hu
- Department of Interventional Radiology, Panzhihua Central Hospital, Panzhihua, China
| | - Zhangping Zhao
- Department of Interventional Radiology, Panzhihua Central Hospital, Panzhihua, China
| | - Songwei Li
- Department of Interventional Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingming Xu
- Department of Interventional Radiology, Panzhihua Central Hospital, Panzhihua, China
| | - Ying Xie
- Department of Interventional Radiology, Panzhihua Central Hospital, Panzhihua, China
| | - Dong Yan
- Department of Interventional Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Youjian Zou
- Department of Interventional Radiology, Panzhihua Central Hospital, Panzhihua, China
| | - Hui Liu
- Department of Interventional Radiology, Panzhihua Central Hospital, Panzhihua, China
| |
Collapse
|
12
|
Wu H, Wang MD, Liang L, Xing H, Zhang CW, Shen F, Huang DS, Yang T. Nanotechnology for Hepatocellular Carcinoma: From Surveillance, Diagnosis to Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005236. [PMID: 33448111 DOI: 10.1002/smll.202005236] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Indexed: 06/12/2023]
Abstract
Hepatocellular carcinoma (HCC) remains the fourth leading cause of cancer-related death worldwide. However, the clinical diagnosis and treatment modalities are still relatively limited, which urgently require the development of new effective technologies. Recently, nanotechnology has gained extensive attention in HCC surveillance, imaging and pathological diagnosis, and therapeutic strategies. Typically, nanomedicines have been focused on early HCC diagnosis and precise treatment of advanced HCC, which has developed and improved a variety of new technologies and agents for future clinical practice. Furthermore, strategies of facilitating drug release and delivery in current treatment processes such as ablation, systematic therapy, transcatheter arterial chemoembolization, molecular targeted therapy, and immune-modulating therapy have also been studied widely. This review summarizes the recent advances in this area according to current clinical HCC guidelines: 1) Nanoparticle-based HCC surveillance; 2) Nanotechnology for HCC diagnosis; 3) Therapeutic advances for HCC Management; 4) Limitations of applications in nanotechnology for HCC; 5) Conclusions and perspectives. Although there are still many limitations and difficulties to overcome, the investigations of nanomedicines are believed to show potential applications in clinical practice.
Collapse
Affiliation(s)
- Han Wu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Lei Liang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Hao Xing
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Cheng-Wu Zhang
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Dong-Sheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Tian Yang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
13
|
Petrov RA, Mefedova SR, Yamansarov EY, Maklakova SY, Grishin DA, Lopatukhina EV, Burenina OY, Lopukhov AV, Kovalev SV, Timchenko YV, Ondar EE, Ivanenkov YA, Evteev SA, Vaneev AN, Timoshenko RV, Klyachko NL, Erofeev AS, Gorelkin PV, Beloglazkina EK, Majouga AG. New Small-Molecule Glycoconjugates of Docetaxel and GalNAc for Targeted Delivery to Hepatocellular Carcinoma. Mol Pharm 2020; 18:461-468. [PMID: 33264010 DOI: 10.1021/acs.molpharmaceut.0c00980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, we have developed covalent and low molecular weight docetaxel delivery systems based on conjugation with N-acetyl-d-galactosamine and studied their properties related to hepatocellular carcinoma cells. The resulting glycoconjugates have an excellent affinity to the asialoglycoprotein receptor (ASGPR) in the nanomolar range of concentrations and a high cytotoxicity level comparable to docetaxel. Likewise, we observed the 21-75-fold increase in water solubility in comparison with parent docetaxel and prodrug lability to intracellular conditions with half-life values from 25.5 to 42 h. We also found that the trivalent conjugate possessed selective toxicity against hepatoma cells vs control cell lines (20-35 times). The absence of such selectivity in the case of monovalent conjugates indicates the effect of ligand valency. Specific ASGPR-mediated cellular uptake of conjugates was proved in vitro using fluorescent-labeled analogues. In addition, we showed an enhanced generation of reactive oxygen species in the HepG2 cells, which could be inhibited by the natural ligand of ASGPR. Overall, the obtained results highlight the potential of ASGPR-directed cytostatic taxane drugs for selective therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rostislav A Petrov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) of the Ufa Federal Research Centre, Oktyabrya Prospekt 71, Ufa 450054, Russian Federation
| | - Sofiia R Mefedova
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Emil Yu Yamansarov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISIS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Svetlana Yu Maklakova
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISIS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Dmitrii A Grishin
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Elena V Lopatukhina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Olga Y Burenina
- Skolkovo Institute of Science and Technology, 3 Nobel str., Skolkovo 143026, Russian Federation
| | - Anton V Lopukhov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Sergey V Kovalev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Yury V Timchenko
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Evgenia E Ondar
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Yan A Ivanenkov
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) of the Ufa Federal Research Centre, Oktyabrya Prospekt 71, Ufa 450054, Russian Federation.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow 141700, Russian Federation
| | - Sergei A Evteev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Alexander N Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISIS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Roman V Timoshenko
- National University of Science and Technology MISIS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Natalia L Klyachko
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,Skolkovo Institute of Science and Technology, 3 Nobel str., Skolkovo 143026, Russian Federation
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISIS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Petr V Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISIS, 9 Leninskiy pr., Moscow 119049, Russian Federation
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory, Building 1/3, GSP-1, Moscow 119991, Russian Federation.,National University of Science and Technology MISIS, 9 Leninskiy pr., Moscow 119049, Russian Federation.,Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| |
Collapse
|
14
|
Sun M, Shang P, Bai J, Li S, Li M. High-intensity focused ultrasound ablation combined with transcatheter arterial chemoembolization improves long-term efficacy and prognosis of primary liver cancer. J Clin Lab Anal 2020; 35:e23633. [PMID: 33099812 PMCID: PMC7891537 DOI: 10.1002/jcla.23633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background To investigate the clinical efficacy of high‐intensity focused ultrasound (HIFU) combined with transcatheter arterial chemoembolization (TACE) in the treatment of primary liver cancer (PLC) and its effect on the prognosis of patients. Methods A total of 132 patients with PLC admitted to our hospital were selected for the study, among whom 68 patients received TACE combined with HIUF and were assigned to the observation group (OG), whereas the remaining 54 patients were treated with TACE alone and were assigned to the control group (CG). The factors influencing the patients’ prognosis were also evaluated by multivariate analysis. Results The total effective rate of the OG was 83.82%, which was significantly higher than that of 55.56% of the CG (P < .05). No significant difference was found in incidence of adverse reactions between the two groups (P > .05). After treatment, the increases of CD3+, CD4+, CD4+/CD8+, and NK cells in the OG were more significant than those in the CG (P < .05). However, the decrease of CD8+ cells was more significant in the OG than that in the CG (P < .05). The 3‐year survival rate of patients in the OG was 61.76%, which was significantly higher than that of 40.74% in the CG (P < .05). Conclusion The application of TACE combined with HIFU is effective in treating PLC, which can prolong the life expectancy and improve the prognosis of patients with PLC without increasing the incidence of adverse reactions.
Collapse
Affiliation(s)
- Meng Sun
- Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Pengyan Shang
- Baoding maternal and Child Health Hospital, Baoding, Hebei, China
| | - Jiangtao Bai
- Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Shanfeng Li
- Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Meng Li
- Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|