1
|
Wang H, Wan Y, Yu M, Ji Z, Zhao G, Dou J, Su W, Liu C. Complete Removal of Residual Particles and Realization of Mechanical Properties to Improve Osseointegration in Additively Manufactured Ti6Al4 V Scaffolds through Flowing Acid Etching. ACS Biomater Sci Eng 2024; 10:3454-3469. [PMID: 38590081 DOI: 10.1021/acsbiomaterials.3c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Massive unmelted Ti6Al4 V (Ti64) particles presented across all surfaces of additively manufactured Ti64 scaffolds significantly impacted the designed surface topography, mechanical properties, and permeability, reducing the osseointegration of the scaffolds. In this study, the proposed flowing acid etching (FAE) method presented high efficiency in eliminating Ti64 particles and enhancing the surface modification capacity across all surfaces of Ti64 scaffolds. The Ti64 particles across all surfaces of the scaffolds were completely removed effectively and evenly. The surface topography of the scaffolds closely resembled the design after the 75 s FAE treatment. The actual elastic modulus of the treated scaffolds (3.206 ± 0.040 GPa) was closer to the designed value (3.110 GPa), and a micrometer-scale structure was constructed on the inner and outer surfaces of the scaffolds after the 90 s FAE treatment. However, the yield strength of scaffolds was reduced to 89.743 ± 0.893 MPa from 118.251 ± 0.982 MPa after the 90 s FAE treatment. The FAE method also showed higher efficiency in decreasing the roughness and enhancing the hydrophilicity and surface energy of all of the surfaces. The FAE treatment improved the permeability of scaffolds efficiently, and the permeability of scaffolds increased to 11.93 ± 0.21 × 10-10 mm2 from 8.57 ± 0.021 × 10-10 mm2 after the 90 s FAE treatment. The treated Ti64 scaffolds after the 90 s FAE treatment exhibited optimized osseointegration effects in vitro and in vivo. In conclusion, the FAE method was an efficient way to eliminate unmelted Ti64 particles and obtain ideal surface topography, mechanical properties, and permeability to promote osseointegration in additively manufactured Ti64 scaffolds.
Collapse
Affiliation(s)
- Hongwei Wang
- College of Artificial Intelligence and Big Data for Medical Science, Shandong First Medical University, Jinan 250117, China
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yi Wan
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Mingzhi Yu
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhenbing Ji
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Geng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jinhe Dou
- College of Artificial Intelligence and Big Data for Medical Science, Shandong First Medical University, Jinan 250117, China
| | - Weidong Su
- College of Artificial Intelligence and Big Data for Medical Science, Shandong First Medical University, Jinan 250117, China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
2
|
Choe Y, Li CJ, Yeo DH, Kim YJ, Lee JH, Lee HH. Hierarchically porous surface of HA-sandblasted Ti implant screw using the plasma electrolytic oxidation: Physical characterization and biological responses. J Biomater Appl 2024; 38:1100-1117. [PMID: 38580320 DOI: 10.1177/08853282241246210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The surface topological features of bioimplants are among the key indicators for bone tissue replacement because they directly affect cell morphology, adhesion, proliferation, and differentiation. In this study, we investigated the physical, electrochemical, and biological responses of sandblasted titanium (SB-Ti) surfaces with pore geometries fabricated using a plasma electrolytic oxidation (PEO) process. The PEO treatment was conducted at an applied voltage of 280 V in a solution bath consisting of 0.15 mol L-1 calcium acetate monohydrate and 0.02 mol L-1 calcium glycerophosphate for 3 min. The surface chemistry, wettability, mechanical properties and corrosion behavior of PEO-treated sandblasted Ti implants using hydroxyapatite particles (PEO-SB-Ti) were improved with the distribution of calcium phosphorous porous oxide layers, and showed a homogeneous and hierarchically porous surface with clusters of nanopores in a bath containing calcium acetate monohydrate and calcium glycerophosphate. To demonstrate the efficacy of PEO-SB-Ti, we investigated whether the implant affects biological responses. The proposed PEO-SB-Ti were evaluated with the aim of obtaining a multifunctional bone replacement model that could efficiently induce osteogenic differentiation as well as antibacterial activities. These physical and biological responses suggest that the PEO-SB-Ti may have a great potential for use an artificial bone replacement compared to that of the controls.
Collapse
Affiliation(s)
- YoungEun Choe
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Dong-Hyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yu-Jin Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Xu C, Xu Y, Chen H, Han Q, Wu W, Zhang L, Liu Q, Wang J, Ren L. Novel-Ink-Based Direct Ink Writing of Ti6Al4V Scaffolds with Sub-300 µm Structural Pores for Superior Cell Proliferation and Differentiation. Adv Healthc Mater 2024; 13:e2302396. [PMID: 38180708 DOI: 10.1002/adhm.202302396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Ti6Al4V scaffolds with pore sizes between 300 and 600 µm are deemed suitable for bone tissue engineering. However, a significant proportion of human bone pores are smaller than 300 µm, playing a crucial role in cell proliferation, differentiation, and bone regeneration. Ti6Al4V scaffolds with these small-sized pores are not successfully fabricated, and their cytocompatibility remains unknown. The study presents a novel ink formula specifically tailored for fabricating Ti6Al4V scaffolds featuring precise and unobstructed sub-300 µm structural pores, achieved by investigating the rheological properties and printability of five inks containing 60-77.5 vol% Ti6Al4V powders and bisolvent binders. Ti6Al4V scaffolds with 50-600 µm pores are fabricated via direct ink writing and subjected to in vitro assays with MC3T3-E1 and bone marrow mesenchymal stem cells. The 100 µm pore-sized scaffolds exhibit the highest cell adhesion and proliferation capacity based on live/dead assay, FITC-phalloidin/4',6-diamidino-2-phenylindole staining, and cell count kit 8 assay. The alizarin red staining, real-time quantitative PCR assay, and immunocytochemical staining demonstrate the superior osteogenic differentiation potential of 100 and 200 µm pore-sized scaffolds. The importance of sub-300 µm structrual pores is highlighted, redefining the optimal pore size for Ti6Al4V scaffolds and advancing bone tissue engineering and clinical medicine development.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, China
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Yan Xu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Hao Chen
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qing Han
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Wenzheng Wu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Lu Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, China
- College of Construction Engineering, Jilin University, Changchun, 130026, China
| | - Qingping Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
4
|
Ren Y, Zhang C, Liu Y, Kong W, Yang X, Niu H, Qiang L, Yang H, Yang F, Wang C, Wang J. Advances in 3D Printing of Highly Bioadaptive Bone Tissue Engineering Scaffolds. ACS Biomater Sci Eng 2024; 10:255-270. [PMID: 38118130 DOI: 10.1021/acsbiomaterials.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The number of patients with bone defects caused by trauma, bone tumors, and osteoporosis has increased considerably. The repair of irregular, recurring, and large bone defects poses a great challenge to clinicians. Bone tissue engineering is emerging as an appropriate strategy to replace autologous bone grafting in the repair of critically sized bone defects. However, the suitability of bone tissue engineering scaffolds in terms of structure, mechanics, degradation, and the microenvironment is inadequate. Three-dimensional (3D) printing is an advanced additive-manufacturing technology widely used for bone repair. 3D printing constructs personalized structurally adapted scaffolds based on 3D models reconstructed from CT images. The contradiction between the mechanics and degradation is resolved by altering the stacking structure. The local microenvironment of the implant is improved by designing an internal pore structure and a spatiotemporal factor release system. Therefore, there has been a boom in the 3D printing of personalized bone repair scaffolds. In this review, successful research on the preparation of highly bioadaptive bone tissue engineering scaffolds using 3D printing is presented. The mechanisms of structural, mechanical, degradation, and microenvironmental adaptations of bone prostheses and their interactions were elucidated to provide a feasible strategy for constructing highly bioadaptive bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Ya Ren
- School of Rehabilitation Medicine, Weifang Medical University, Shandong 261041, China
- Southwest JiaoTong University College of Medicine, No. 111 North first Section of Second Ring Road, Chengdu 610036, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiqing Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266000, Shandong Province, China
| | - Xue Yang
- Southwest JiaoTong University College of Medicine, No. 111 North first Section of Second Ring Road, Chengdu 610036, China
| | - Haoyi Niu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Lei Qiang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Han Yang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Fei Yang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Chengwei Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Jinwu Wang
- School of Rehabilitation Medicine, Weifang Medical University, Shandong 261041, China
- Southwest JiaoTong University College of Medicine, No. 111 North first Section of Second Ring Road, Chengdu 610036, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
5
|
Hu Y, Chen H, Liang X, Jia M, Lei J. Microstructure and Biomechanical Properties in Selective Laser Melting of Porous Metal Implants. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1003-1014. [PMID: 37886414 PMCID: PMC10599443 DOI: 10.1089/3dp.2021.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Two kinds of porous structure design strategies, ring-support (RS) and column-support (CS), are proposed for human implants. The accurate design of porosity is realized by adjusting the pore characteristics, such as strut diameter, pore diameter, and unit size. Porous specimens with porosity of 50%, 60%, 70%, and 80% were prepared by selective laser melting. The three-dimensional pore structure is basically consistent with the design characteristics, and the measured porosity is slightly lower than design value. The microstructure, microhardness, and friction and wear properties of the samples were studied. The results show that the performance along the scanning orientation is slightly better than that along the forming orientation. The compression and dynamic elastic modulus of porous specimens with different structures and porosities were analyzed. The CS porous with 60-80% porosity has suitable compressive strength and elastic modulus, which is close to that of human tissue, and effectively avoids the stress shielding phenomenon.
Collapse
Affiliation(s)
- Yabao Hu
- School of Mechanical Engineering, Tiangong University, Tianjin, China
| | - Hanning Chen
- School of Mechanical Engineering, Tiangong University, Tianjin, China
- School of Computer Science and Technology, Tiangong University, Tianjin, China
| | - Xiaodan Liang
- School of Computer Science and Technology, Tiangong University, Tianjin, China
| | - Mo Jia
- Northeast Petroleum University, Daqing, China
| | - Jianbo Lei
- Laser Technology Institute, Tiangong University, Tianjin, China
| |
Collapse
|
6
|
Kwan JC, Flannagan RS, Vásquez Peña M, Heinrichs DE, Holdsworth DW, Gillies ER. Induction Heating Triggers Antibiotic Release and Synergistic Bacterial Killing on Polymer-Coated Titanium Surfaces. Adv Healthc Mater 2023; 12:e2202807. [PMID: 37053473 PMCID: PMC11469058 DOI: 10.1002/adhm.202202807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Infection is a major complication associated with orthopedic implants. It often involves the development of biofilms on metal substrates, which act as barriers to the host's immune system and systemic antibiotic treatment. The current standard of treatment is revision surgery, often involving the delivery of antibiotics through incorporation into bone cements. However, these materials exhibit sub-optimal antibiotic release kinetics and revision surgeries have drawbacks of high cost and recovery time. Herein, a new approach is presented using induction heating of a metal substrate, combined with an antibiotic-loaded poly(ester amide) coating undergoing a glass transition just above physiological temperature to enable thermally triggered antibiotic release. At normal physiological temperature, the coating provides a rifampicin depot for >100 days, while heating of the coating accelerates drug release, with >20% release over a 1-h induction heating cycle. Induction heating or antibiotic-loaded coating alone each reduce Staphylococcus aureus (S. aureus) viability and biofilm formation on Ti, but the combination causes synergistic killing of S. aureus as measured by crystal violet staining, determination of bacterial viability (>99.9% reduction), and fluorescence microscopy of bacteria on surfaces. Overall, these materials provide a promising platform enabling externally triggered antibiotic release to prevent and/or treat bacterial colonization of implants.
Collapse
Affiliation(s)
- Jan C. Kwan
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
| | - Ronald S. Flannagan
- Department of Microbiology and ImmunologyThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - Mónica Vásquez Peña
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
| | - David E. Heinrichs
- Department of Microbiology and ImmunologyThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - David W. Holdsworth
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
- Imaging Research LaboratoriesRobarts Research InstituteThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 2B8Canada
- Department of Medical BiophysicsThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - Elizabeth R. Gillies
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
- Department of ChemistryThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B7Canada
- Department of Chemical and Biochemical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
| |
Collapse
|
7
|
Okano H, Tasaka A, Matsunaga S, Kasahara M, Wadachi J, Hattori M, Abe S, Yamashita S. Effects of hollow structures added by selective laser sintering on the mechanical properties of Co-Cr alloy. J Prosthodont Res 2023; 67:460-467. [PMID: 36403960 DOI: 10.2186/jpr.jpr_d_22_00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE This study investigates the effects of hollow structures, added by selective laser sintering (SLS), on the mechanical properties of a Co-Cr alloy for providing an optimal structural property to the framework components of removable partial dentures (RPDs). METHODS The specimens produced using the 3D data of the dumbbell-shaped cylinders were divided into four groups based on the manufacturing method: Cast, Mill, SLS-solid, and SLS-hollow. Tensile tests were performed to measure the mechanical properties of the specimens. The mechanical property values among the four groups were statistically compared using the Kruskal-Wallis test followed by the Steel-Dwass test (α = 0.05). RESULTS The median elastic modulus was the largest in the Cast, followed by SLS-solid, Mill, and SLS-hollow, with no significant differences observed between all conditions. The median ultimate tensile strength was the largest in the order of SLS-solid, Mill, SLS-hollow, and Cast. The median 0.2% proof stress was the largest in SLS-solid, followed by SLS-hollow, Cast, and Mill. The median elongation was the highest in the order of Mill, SLS-solid, SLS-hollow, and Cast. CONCLUSIONS With the addition of hollow structures, the elastic modulus decreased while the mechanical strength and proof stress remained high in SLS specimens. In addition, the ISO 22674 standard for dental metals was met, suggesting that SLS may be a possible method to design RPD frameworks with high strength and optimal structural properties.
Collapse
Affiliation(s)
- Haruna Okano
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - Akinori Tasaka
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | | | - Masaaki Kasahara
- Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan
| | - Juro Wadachi
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Hattori
- Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Shuichiro Yamashita
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
8
|
Al-Shalawi FD, Mohamed Ariff AH, Jung DW, Mohd Ariffin MKA, Seng Kim CL, Brabazon D, Al-Osaimi MO. Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Polymers (Basel) 2023; 15:2601. [PMID: 37376247 PMCID: PMC10303232 DOI: 10.3390/polym15122601] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Patients suffering bone fractures in different parts of the body require implants that will enable similar function to that of the natural bone that they are replacing. Joint diseases (rheumatoid arthritis and osteoarthritis) also require surgical intervention with implants such as hip and knee joint replacement. Biomaterial implants are utilized to fix fractures or replace parts of the body. For the majority of these implant cases, either metal or polymer biomaterials are chosen in order to have a similar functional capacity to the original bone material. The biomaterials that are employed most often for implants of bone fracture are metals such as stainless steel and titanium, and polymers such as polyethene and polyetheretherketone (PEEK). This review compared metallic and synthetic polymer implant biomaterials that can be employed to secure load-bearing bone fractures due to their ability to withstand the mechanical stresses and strains of the body, with a focus on their classification, properties, and application.
Collapse
Affiliation(s)
- Faisal Dakhelallah Al-Shalawi
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Azmah Hanim Mohamed Ariff
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
- Research Center Advanced Engineering Materials and Composites (AEMC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Dong-Won Jung
- Faculty of Applied Energy System, Major of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea
| | - Mohd Khairol Anuar Mohd Ariffin
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Collin Looi Seng Kim
- Department of Orthopaedic, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Dermot Brabazon
- Advanced Manufacturing Research Centre, and Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, D09 V209 Dublin 9, Ireland;
| | - Maha Obaid Al-Osaimi
- Department of Microbiology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
9
|
TiO 2/HA and Titanate/HA Double-Layer Coatings on Ti6Al4V Surface and Their Influence on In Vitro Cell Growth and Osteogenic Potential. J Funct Biomater 2022; 13:jfb13040271. [PMID: 36547531 PMCID: PMC9787412 DOI: 10.3390/jfb13040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hydroxyapatite (HA) layers are appropriate biomaterials for use in the modification of the surface of implants produced inter alia from a Ti6Al4V alloy. The issue that must be solved is to provide implants with appropriate biointegration properties, enabling the permanent link between them and bone tissues, which is not so easy with the HA layer. Our proposition is the use of the intermediate layer ((IL) = TiO2, and titanate layers) to successfully link the HA coating to a metal substrate (Ti6Al4V). The morphology, structure, and chemical composition of Ti6Al4V/IL/HA systems were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). We evaluated the apatite-forming ability on the surface of the layer in simulated body fluid. We investigated the effects of the obtained systems on the viability and growth of human MG-63 osteoblast-like cells, mouse L929 fibroblasts, and adipose-derived human mesenchymal stem cells (ADSCs) in vitro, as well as on their osteogenic properties. Based on the obtained results, we can conclude that both investigated systems reflect the physiological environment of bone tissue and create a biocompatible surface supporting cell growth. However, the nanoporous TiO2 intermediate layer with osteogenesis-supportive activity seems most promising for the practical application of Ti6Al4V/TiO2/HA as a system of bone tissue regeneration.
Collapse
|
10
|
Alipour S, Nour S, Attari SM, Mohajeri M, Kianersi S, Taromian F, Khalkhali M, Aninwene GE, Tayebi L. A review on in vitro/ in vivo response of additively manufactured Ti-6Al-4V alloy. J Mater Chem B 2022; 10:9479-9534. [PMID: 36305245 DOI: 10.1039/d2tb01616h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone replacement using porous and solid metallic implants, such as Ti-alloy implants, is regarded as one of the most practical therapeutic approaches in biomedical engineering. The bone is a complex tissue with various mechanical properties based on the site of action. Patient-specific Ti-6Al-4V constructs may address the key needs in bone treatment for having customized implants that mimic the complex structure of the natural tissue and diminish the risk of implant failure. This review focuses on the most promising methods of fabricating such patient-specific Ti-6Al-4V implants using additive manufacturing (AM) with a specific emphasis on the popular subcategory, which is powder bed fusion (PBF). Characteristics of the ideal implant to promote optimized tissue-implant interactions, as well as physical, mechanical/chemical treatments and modifications will be discussed. Accordingly, such investigations will be classified into 3B-based approaches (Biofunctionality, Bioactivity, and Biostability), which mainly govern native body response and ultimately the success in implantation.
Collapse
Affiliation(s)
- Saeid Alipour
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Shirin Nour
- Tissue Engineering Group, Department of Biomedical Engineering, University of Melbourne, VIC 3010, Australia.,Polymer Science Group, Department of Chemical Engineering, University of Melbourne, VIC 3010, Australia
| | - Seyyed Morteza Attari
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, TX, USA
| | - Sogol Kianersi
- CÚRAM, SFI Centre for Research in Medical Devices, Biomedical Sciences, University of Galway, Galway, Ireland
| | - Farzaneh Taromian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadparsa Khalkhali
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - George E Aninwene
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
11
|
Gong X, Zhang A, Han Q, Wang Y, Liu Y, Jiao J, Yue J, Chen H, Luo W, Wang J, Wu M. Biomechanical effects of individualized artificial titanium alloy lamina implantation after laminectomy: A finite element analysis. Front Bioeng Biotechnol 2022; 10:1019510. [DOI: 10.3389/fbioe.2022.1019510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background and objectives: Laminectomy is a common surgical procedure in spine surgery. However, disruption of the posterior ligamentous complex of the spine may lead to a range of postoperative complications. Artificial lamina as a kind of bionic implant can well restore the posterior spinal structure. In this study, an individualized artificial titanium alloy lamina was designed to reconstruct the posterior spinal structure after laminectomy and explored its biomechanical effects, which could provide a theoretical basis for the clinical application of the artificial lamina.Methods: Three finite element models were constructed, namely the nonlinear and non-homogeneous intact model of the whole lumbar spine, the lumbar decompression alone surgical model, and the artificial lamina implantation surgical model. The range of motion, intradiscal pressure, and annulus fibrosus peak stress were compared between the three models at the surgical and adjacent segments. The stresses of the artificial lamina and fixation screws were also analyzed for the four movement states.Results: Compared with the intact model, the lumbar decompression alone surgical model showed an increase in range of motion, intradiscal pressure, and annulus fibrosus peak stresses at the surgical segment and adjacent segments under all conditions. The artificial lamina implantation surgical model showed an increase in these measurements only in flexion, increasing by 7.5%–22.5%, 7.6%–17.9%, and 6.4%–19.3%, respectively, over the intact model, while there was little difference under other conditions. The peak stresses in both the screw and the artificial lamina were highest in axial rotation, i. e. 46.53 MPa and 53.84 MPa, respectively. Screw stresses were concentrated on the connection between the screw and the artificial lamina, and artificial lamina stresses were concentrated on the spinous root, around the screw hole, and the contact with the vertebral body.Conclusion: An individualized artificial titanium alloy lamina can effectively reduce the range of motion, intradiscal pressure, and annulus fibrosus stress at the surgical segment and adjacent segments. The application of artificial lamina could better preserve the biomechanical properties of the intact lumbar spine and reduce the risk of adjacent segmental disease.
Collapse
|
12
|
Kaewmanee R, Wang F, Pan Y, Mei S, Meesane J, Li F, Wu Z, Wei J. Microporous surface containing flower-like molybdenum disulfide submicro-spheres of sulfonated polyimide with antibacterial effect and promoting bone regeneration and osteointegration. Biomater Sci 2022; 10:4243-4256. [PMID: 35762466 DOI: 10.1039/d2bm00622g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Implanted materials with both osteogenic and antibacterial functions are promising for facilitating osteointegration and preventing infection for orthopedic applications. In this work, we synthesized flower-like molybdenum disulfide (fMD) submicro-spheres containing nanosheets, which were incorporated onto the microporous surface of polyimide (PI) via concentrated sulfuric acid, suspending fMD contents of 5 wt% (SPM1) and 10 wt% (SPM2). Compared with sulfonated polyimide (SPM0), both SPM1 and SPM2 with microporous surfaces containing fMD exhibited nano-submicro-microporous surfaces, which improved the surface roughness, wettability, and surface energy. Due to there being more fMD submicro-spheres on the microporous surface, SPM2 revealed a better antibacterial effect than SPM1. In addition, compared with SPM1 and SPM0, SPM2 with more fMD significantly promoted rat bone marrow-derived stromal cell response in vitro. Moreover, SPM2 remarkably enhanced new bone formation and osteointegration in vivo. In summary, the combination of fMD with the microporous surface of SPM2 resulted in a nano-submicro-microporous surface with optimized surface performance, which possessed not only osteogenic bioactivity but also an antibacterial effect. As a bone implant, SPM2 with osteogenic and antibacterial functions may have enormous potential as a bone tissue substitute.
Collapse
Affiliation(s)
- Rames Kaewmanee
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Fan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yongkang Pan
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Shiqi Mei
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Fengqian Li
- Shanghai Eighth People's Hospital, Shanghai 200235, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
13
|
Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties. METALS 2022. [DOI: 10.3390/met12060986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ti6Al4V alloy is an ideal lightweight structural metal for a huge variety of engineering applications due to its distinguishing combination of high specific mechanical properties, excellent corrosion resistance and biocompatibility. In this review, the mechanical properties of selective laser-melted Ti6Al4V parts are addressed in detail, as well as the main processing and microstructural parameters that influence the final properties. Fundamental knowledge is provided by linking the microstructural features and the final mechanical properties of Ti6Al4V parts, including tensile strength, tensile strain, fatigue resistance, hardness and wear performance. A comparison between Laser Powder Bed Fusion and conventional processing routes is also addressed. The presence of defects in as-built Ti6Al4V parts and their influences on the mechanical performance are also critically discussed. The results available in the literature show that typical Laser Powder Bed–Fused Ti6Al4V tensile properties (>900 MPa yield strength and >1000 MPa tensile strength) are adequate when considering the minimum values of the standards for implants and for aerospace applications (e.g., ASTM F136–13; ASTM F1108–14; AMS4930; AMS6932).
Collapse
|
14
|
Xiang S, Yuan Y, Zhang C, Chen J. Effects of Process Parameters on the Corrosion Resistance and Biocompatibility of Ti6Al4V Parts Fabricated by Selective Laser Melting. ACS OMEGA 2022; 7:5954-5961. [PMID: 35224356 PMCID: PMC8867574 DOI: 10.1021/acsomega.1c06246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/26/2022] [Indexed: 05/17/2023]
Abstract
Excellent biocompatibility and corrosion resistance of implants are essential for Ti6Al4V parts fabricated by selective laser melting (SLM) for biomedical applications. To achieve better corrosion resistance and biocompatibility of Ti6Al4V parts, the effects of SLM processing parameters on the corrosion resistance and the biocompatibility of Ti6Al4V parts are investigated by changing the scanning speeds and laser powers. The detailed influence mechanism of processing parameters on the properties of Ti6Al4V parts is studied from two aspects, including microstructure and defects. It is found that the corrosion resistance and biocompatibility of Ti6Al4V parts can be adjusted by changing the scanning speed and the laser power due to the constituent phase and the number and size of defect holes of Ti6Al4V parts. Compared with the laser power, the scanning speed has a stronger influence on the performance of the part, which can be used as "coarse tuning" based on the performance requirements. At the scanning speed of 1100 mm/s and the laser power of 280 W, Ti6Al4V parts with better corrosion resistance can be obtained. Ti6Al4V parts with better biocompatibility are fabricated at the scanning speed of 1200 mm/s and the laser power of 200 W.
Collapse
Affiliation(s)
- Shibo Xiang
- Institute
of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key
Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing
Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| | - Yanping Yuan
- Institute
of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key
Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing
Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| | - Chengyu Zhang
- Institute
of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key
Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing
Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| | - Jimin Chen
- Institute
of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key
Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing
Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
15
|
Gogolewski D, Kozior T, Zmarzły P, Mathia TG. Morphology of Models Manufactured by SLM Technology and the Ti6Al4V Titanium Alloy Designed for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6249. [PMID: 34771778 PMCID: PMC8584946 DOI: 10.3390/ma14216249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
This paper presents the results of an experimental study to evaluate the possibility of using SLM additive technology to produce structures with specific surface morphological features. Qualitative and quantitative tests were conducted on samples fabricated by 3D printing from titanium (Ti6Al4V)-powder-based material and analysed in direct relation to the possibility of their use in medicine for the construction of femoral stem and models with a specific degree of porosity predicted by process-control in the self-decision-making 3D printing machine. This paper presents the results of the study, limitations of the method, recommendations that should be used in the design of finished products, and design proposals to support the fabrication process of 3D printers. Furthermore, the study contains an evaluation of how the printing direction affects the formation of certain structures on the printed surface. The research can be used in the development of 3D printing standardization, particularly in the consideration of process control and surface control.
Collapse
Affiliation(s)
- Damian Gogolewski
- Department of Manufacturing Technology and Metrology, Kielce University of Technology, 25-314 Kielce, Poland; (T.K.); (P.Z.)
| | - Tomasz Kozior
- Department of Manufacturing Technology and Metrology, Kielce University of Technology, 25-314 Kielce, Poland; (T.K.); (P.Z.)
| | - Paweł Zmarzły
- Department of Manufacturing Technology and Metrology, Kielce University of Technology, 25-314 Kielce, Poland; (T.K.); (P.Z.)
| | - Thomas G. Mathia
- Laboratoire de Tribologie et Dynamique des Systemes (LTDS)—CNRS Ecole Centrale de Lyon, 69134 Lyon, France;
| |
Collapse
|
16
|
Dantas T, Padrão J, da Silva MR, Pinto P, Madeira S, Vaz P, Zille A, Silva F. Bacteria co-culture adhesion on different texturized zirconia surfaces. J Mech Behav Biomed Mater 2021; 123:104786. [PMID: 34428693 DOI: 10.1016/j.jmbbm.2021.104786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Zirconia is becoming reckoned as a promising solution for different applications, in particular those within the dental implant investigation field. It has been proved to successfully overcome important limitations of the commonly used titanium implants. The adhesion of microorganisms to the implants, in particular of bacteria, may govern the success or the failure of a dental implant, as the accumulation of bacteria on the peri-implant bone may rapidly evolve into periodontitis. However, bacterial adhesion on different zirconia architectures is still considerably unknown. Therefore, the adhesion of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa to zirconia surfaces with different finishings was evaluated and compared to a titanium surface. The adhesion interaction between S. aureus and P. aeruginosa was also evaluated using a co-culture since these bacteria are infamous due to their common presence in chronic wound infections. Results showed that different bacterium species possess different properties which influence their propensity to adhere to different roughness levels and architectures. E. coli revealed a higher propensity to adhere to zirconia channelled surfaces (7.15 × 106 CFU/mL), whereas S. aureus and P. aeruginosa adhered more to the titanium control group (1.07 × 105 CFU/mL and 8.43 × 106 CFU/mL, respectively). Moreover, the co-culture denoted significant differences on the adhesion behaviour of bacteria. Despite not having shown an especially better behaviour regarding bacterial adhesion, zirconia surfaces with micro-channels are expected to improve the vascularization around the implants and ultimately enhance osseointegration, thus being a promising solution for dental implants.
Collapse
Affiliation(s)
- Telma Dantas
- CMEMS - Center for MicroElectroMechanical Systems, University of Minho, Portugal; MIT Portugal Program - School of Engineering, University of Minho, Portugal.
| | - Jorge Padrão
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058, Guimarães, Portugal
| | | | - Paulo Pinto
- CMEMS - Center for MicroElectroMechanical Systems, University of Minho, Portugal
| | - Sara Madeira
- CMEMS - Center for MicroElectroMechanical Systems, University of Minho, Portugal
| | - Paula Vaz
- Fixed Prosthodontics, Genetics- Faculty of Dental Medicine, University of Porto, Portugal
| | - Andrea Zille
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058, Guimarães, Portugal
| | - Filipe Silva
- CMEMS - Center for MicroElectroMechanical Systems, University of Minho, Portugal
| |
Collapse
|
17
|
Kang J, Dong E, Li X, Guo Z, Shi L, Li D, Wang L. Topological design and biomechanical evaluation for 3D printed multi-segment artificial vertebral implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112250. [PMID: 34225889 DOI: 10.1016/j.msec.2021.112250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/02/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Customized spinal implants fabricated by additive manufacturing have been increasingly used clinically to restore the physiological functions. However, the mechanisms and methods about the design for the spinal implants are not clear, especially for the reconstruction of multi-segment vertebral. This study aims to develop a novel multi-objective optimization methodology based on various normal spinal activities, to design the artificial vertebral implant (AVI) with lightweight, high-strength and high-stability. The biomechanical performance for two types of AVI was analyzed and compared under different loading conditions by finite element method. These implants were manufactured via selective laser melting technology and evaluated via compressive testing. Results showed the maximum Mises stress of the optimized implant under various load cases were about 41.5% of that of the trussed implant, and below fatigue strength of 3D printed titanium materials. The optimized implant was about 2 times to trussed implant in term of the maximum compression load and compression stiffness to per unit mass, which indicated the optimized implant can meet the safety requirement. Finally, the optimized implant has been used in clinical practice and good short-term clinical outcomes were achieved. Therefore, the novel developed method provides a favorable guarantee for the design of 3D printed multi-segment artificial vertebral implants.
Collapse
Affiliation(s)
- Jianfeng Kang
- Jihua Laboratory, Foshan, Guangdong, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaan Xi, China
| | - Enchun Dong
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaan Xi, China
| | - Xiangdong Li
- Department of Orthopedics, Xijing Hospital, Air Force Medical University of PLA, Xi'an, Shaan Xi, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Air Force Medical University of PLA, Xi'an, Shaan Xi, China
| | - Lei Shi
- Department of Orthopedics, Xijing Hospital, Air Force Medical University of PLA, Xi'an, Shaan Xi, China
| | - Dichen Li
- Jihua Laboratory, Foshan, Guangdong, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaan Xi, China; Guangdong Xi'an Jiaotong University Academy, Guangdong, China.
| | - Ling Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaan Xi, China.
| |
Collapse
|
18
|
Influence of Successive Chemical and Thermochemical Treatments on Surface Features of Ti6Al4V Samples Manufactured by SLM. METALS 2021. [DOI: 10.3390/met11020313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ti6Al4V samples, obtained by selective laser melting (SLM), were subjected to successive treatments: acid etching, chemical oxidation in hydrogen peroxide solution and thermochemical processing. The effect of temperature and time of acid etching on the surface roughness, morphology, topography and chemical and phase composition after the thermochemical treatment was studied. The surfaces were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and contact profilometry. The temperature used in the acid etching had a greater influence on the surface features of the samples than the time. Acid etching provided the original SLM surface with a new topography prior to oxidation and thermochemical treatments. A nanostructure was observed on the surfaces after the full process, both on their protrusions and pores previously formed during the acid etching. After the thermochemical treatment, the samples etched at 40 °C showed macrostructures with additional submicro and nanoscale topographies. When a temperature of 80 °C was used, the presence of micropores and a thicker anatase layer, detectable by X-ray diffraction, were also observed. These surfaces are expected to generate greater levels of bioactivity and high biomechanics fixation of implants as well as better resistance to fatigue.
Collapse
|
19
|
Lei H, Yi T, Fan H, Pei X, Wu L, Xing F, Li M, Liu L, Zhou C, Fan Y, Zhang X. Customized additive manufacturing of porous Ti6Al4V scaffold with micro-topological structures to regulate cell behavior in bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111789. [PMID: 33545915 DOI: 10.1016/j.msec.2020.111789] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Scaffold micro-topological structure plays an important role in the regulation of cell behavior in bone tissue engineering. This paper investigated the effect of 3D printing parameters on the scaffold micro-topological structure and its subsequent cell behaviors. By setting of different 3D printing parameters, i.e., the 3D printing laser power, the scanning interval and the thickness of sliced layers, the highest resolution up to 20 μm can be precisely fabricated. Scaffolds' characterization results indicated that the laser power affected the forming quality of melt tracks, the scanning interval distance determined the size of regularly arranged pores, and the thickness of sliced layers affected the morphological and structural characteristics. By regulating of these printing parameters, customized porous Ti6Al4V scaffold with varied hierarchical micro-topological structure can be obtained. In vitro cell culturing results showed that the regular porous micro-topological structure of scaffolds with the aperture close to cell size was more suitable for cell proliferation and adhesion. The overall distribution of cells on regular porous scaffolds was similar to the orderly arrangement of cultivated crops in the field. The findings suggested that customization of the scaffold provided an effective way to regulate cellular behavior and biological properties.
Collapse
Affiliation(s)
- Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Tao Yi
- School of Mechanical Engineering, Sichuan University, 610065 Chengdu, China
| | - Hongyuan Fan
- School of Mechanical Engineering, Sichuan University, 610065 Chengdu, China.
| | - Xuan Pei
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxin Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| |
Collapse
|
20
|
Gherasim O, Grumezescu AM, Grumezescu V, Negut I, Dumitrescu MF, Stan MS, Nica IC, Holban AM, Socol G, Andronescu E. Bioactive Coatings Based on Hydroxyapatite, Kanamycin, and Growth Factor for Biofilm Modulation. Antibiotics (Basel) 2021; 10:160. [PMID: 33562515 PMCID: PMC7914914 DOI: 10.3390/antibiotics10020160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The occurrence of opportunistic local infections and improper integration of metallic implants results in severe health conditions. Protective and tunable coatings represent an attractive and challenging selection for improving the metallic devices' biofunctional performances to restore or replace bone tissue. Composite materials based on hydroxyapatite (HAp), Kanamycin (KAN), and fibroblast growth factor 2 (FGF2) are herein proposed as multifunctional coatings for hard tissue implants. The superior cytocompatibility of the obtained composite coatings was evidenced by performing proliferation and morphological assays on osteoblast cell cultures. The addition of FGF2 proved beneficial concerning the metabolic activity, adhesion, and spreading of cells. The KAN-embedded coatings exhibited significant inhibitory effects against bacterial biofilm development for at least two days, the results being superior in the case of Gram-positive pathogens. HAp-based coatings embedded with KAN and FGF2 protein are proposed as multifunctional materials with superior osseointegration potential and the ability to reduce device-associated infections.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Marius Florin Dumitrescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
| | - Miruna Silvia Stan
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ionela Cristina Nica
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
| |
Collapse
|
21
|
Edelmann A, Dubis M, Hellmann R. Selective Laser Melting of Patient Individualized Osteosynthesis Plates-Digital to Physical Process Chain. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5786. [PMID: 33352930 PMCID: PMC7767064 DOI: 10.3390/ma13245786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
We report on the exemplified realization of a digital to physical process chain for a patient individualized osteosynthesis plate for the tarsal bone area. Anonymized patient-specific data of the right feet were captured by computer tomography, which were then digitally processed to generate a surface file format (standard tessellation language, STL) ready for additive manufacturing. Physical realization by selective laser melting in titanium using optimized parameter settings and post-processing by stress relief annealing results in a customized osteosynthesis plate with superior properties fulfilling medical demands. High fitting accuracy was demonstrated by applying the osteosynthesis plate to an equally good 3D printed bone model, which likewise was generated using the patient-specific computer tomography (CT) data employing selective laser sintering and polyamid 12. Proper fixation has been achieved without any further manipulation of the plate using standard screws, proving that based on CT data, individualized implants well adapted to the anatomical conditions can be accomplished without the need for additional steps, such as bending, cutting and shape trimming of precast bone plates during the surgical intervention. Beyond parameter optimization for selective laser melting, this exemplified digital to physical process chain highlights the potential of additive manufacturing for individualized osteosynthesis.
Collapse
Affiliation(s)
- André Edelmann
- Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, 63743 Aschaffenburg, Germany; (M.D.); (R.H.)
| | | | | |
Collapse
|
22
|
Porous Tantalum VS. Titanium Implants: Enhanced Mineralized Matrix Formation after Stem Cells Proliferation and Differentiation. J Clin Med 2020; 9:jcm9113657. [PMID: 33203015 PMCID: PMC7697356 DOI: 10.3390/jcm9113657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023] Open
Abstract
Titanium dental implants are used routinely, with surgical procedure, to replace missing teeth. Even though they lead to satisfactory results, novel developments with implant materials can still improve implant treatment outcomes. The aim of this study was to investigate the efficiency of porous tantalum (Ta) dental implants for osseointegration, in comparison to classical titanium (Ti). Mesenchymal stem cells from the dental pulp (DPSC) were incubated on Ta, smooth titanium (STi), and rough titanium (RTi) to assess their adhesion, proliferation, osteodifferentiation, and mineralized matrix production. Cell proliferation was measured at 4 h, 24 h, 48 h with MTT test. Early osteogenic differentiation was followed after 4, 8, 12 days by alkaline phosphatase (ALP) quantification. Cells organization and matrix microstructure were studied with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Collagen production and matrix mineralization were evaluated by immunostaining and histological staining. MTT test showed significantly higher proliferation of DPSC on Ta at 24 h and 48 h. However, APL quantification after 8 and 12 days was significantly lower for Ta, revealing a delayed differentiation, where cells were proliferating the more. After 3 weeks, collagen immunostaining showed an efficient production of collagen on all samples. However, Red Alizarin staining clearly revealed a higher calcification on Ta. The overall results tend to demonstrate that DPSC differentiation is delayed on Ta surface, due to a longer proliferation period until cells cover the 3D porous Ta structure. However, after 3 weeks, a more abundant mineralized matrix is produced on and inside Ta implants. Cell populations on porous Ta proliferate greater and faster, leading to the production of more calcium phosphate deposits than cells on roughened and smooth titanium surfaces, revealing a potential enhanced capacity for osseointegration.
Collapse
|
23
|
Imagawa N, Inoue K, Matsumoto K, Ochi A, Omori M, Yamamoto K, Nakajima Y, Kato-Kogoe N, Nakano H, Matsushita T, Yamaguchi S, Thi Minh Le P, Maruyama S, Ueno T. Mechanical, Histological, and Scanning Electron Microscopy Study of the Effect of Mixed-Acid and Heat Treatment on Additive-Manufactured Titanium Plates on Bonding to the Bone Surface. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5104. [PMID: 33198250 PMCID: PMC7696444 DOI: 10.3390/ma13225104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
The additive manufacturing (AM) technique has attracted attention as one of the fully customizable medical material technologies. In addition, the development of new surface treatments has been investigated to improve the osteogenic ability of the AM titanium (Ti) plate. The purpose of this study was to evaluate the osteogenic activity of the AM Ti with mixed-acid and heat (MAH) treatment. Fully customized AM Ti plates were created with a curvature suitable for rat calvarial bone, and they were examined in a group implanted with the MAH-treated Ti in comparison with the untreated (UN) group. The AM Ti plates were fixed to the surface of rat calvarial bone, followed by extraction of the calvarial bone 1, 4, 8, and 12 weeks after implantation. The bonding between the bone and Ti was evaluated mechanically. In addition, AM Ti plates removed from the bone were examined histologically by electron microscopy and Villanueva-Goldner stain. The mechanical evaluation showed significantly stronger bone-bonding in the MAH group than in the UN group. In addition, active bone formation was seen histologically in the MAH group. Therefore, these findings indicate that MAH resulted in rapid and strong bonding between cortical bone and Ti.
Collapse
Affiliation(s)
- Naoko Imagawa
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Kazuya Inoue
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Keisuke Matsumoto
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Ayako Ochi
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Michi Omori
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Kayoko Yamamoto
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Yoichiro Nakajima
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Nahoko Kato-Kogoe
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Hiroyuki Nakano
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| | - Tomiharu Matsushita
- Department of Biomedical Science, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; (T.M.); (S.Y.); (P.T.M.L.)
| | - Seiji Yamaguchi
- Department of Biomedical Science, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; (T.M.); (S.Y.); (P.T.M.L.)
| | - Phuc Thi Minh Le
- Department of Biomedical Science, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; (T.M.); (S.Y.); (P.T.M.L.)
| | - Shinpei Maruyama
- Osaka Yakin Kogyo Co., Ltd., 4-4-28, Zuiko, Yodogawa-ku, Osaka 533-0005, Japan;
| | - Takaaki Ueno
- Division of Medicine for Function and Morphology of Sensor Organs, Department of Dentistry and Oral Surgery, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (N.I.); (K.M.); (A.O.); (M.O.); (K.Y.); (Y.N.); (N.K.-K.); (H.N.); (T.U.)
| |
Collapse
|
24
|
Bartolomeu F, Costa MM, Alves N, Miranda G, Silva FS. Selective Laser Melting of Ti6Al4V sub-millimetric cellular structures: Prediction of dimensional deviations and mechanical performance. J Mech Behav Biomed Mater 2020; 113:104123. [PMID: 33032011 DOI: 10.1016/j.jmbbm.2020.104123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Ti6Al4V sub-millimetric cellular structures arise as promising solutions concerning the progress of conventional orthopedic implants due to its ability to address a combination of mechanical, physical and topological properties. Such ability can improve the interaction between implant materials and surrounding bone leading to long-term successful orthopedic implants. Selective Laser Melting (SLM) capability to produce high quality Ti6Al4V porous implants is in great demand towards orthopedic biomaterials. In this study, Ti6Al4V cellular structures were designed, modeled, SLM produced and characterized targeting orthopedic implants. For that purpose, a set of tools is proposed to overcome SLM limited accuracy to produce porous biomaterials with desired dimensions and mechanical properties. Morphological analyses were performed to evaluate the dimensional deviations noticed between the model CAD and the SLM produced structures. Tensile tests were carried out to estimate the elastic modulus of the Ti6Al4V cellular structures. The present work proposes a design methodology showing the linear correlations found for the dimensions, the porosity and the elastic modulus when comparing the model CAD designs with Ti6Al4V structures by SLM.
Collapse
Affiliation(s)
- F Bartolomeu
- Center for Micro-Electro Mechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal.
| | - M M Costa
- Center for Micro-Electro Mechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - N Alves
- Centre for Rapid and Sustainable Product Development Polytechnic Institute of Leiria, Rua General Norton de Matos, Apartado 4133, 2411-901, Leiria, Portugal
| | - G Miranda
- Center for Micro-Electro Mechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; CICECO, Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - F S Silva
- Center for Micro-Electro Mechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| |
Collapse
|
25
|
Bartolomeu F, Costa M, Alves N, Miranda G, Silva F. Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting. J Mech Behav Biomed Mater 2020; 110:103891. [DOI: 10.1016/j.jmbbm.2020.103891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
|
26
|
Tissue Integration and Biological Cellular Response of SLM-Manufactured Titanium Scaffolds. METALS 2020. [DOI: 10.3390/met10091192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: SLM (Selective Laser Melting)–manufactured Titanium (Ti) scaffolds have a significant value for bone reconstructions in the oral and maxillofacial surgery field. While their mechanical properties and biocompatibility have been analysed, there is still no adequate information regarding tissue integration. Therefore, the aim of this study is a comprehensive systematic assessment of the essential parameters (porosity, pore dimension, surface treatment, shape) required to provide the long-term performance of Ti SLM medical implants. Materials and methods: A systematic literature search was conducted via electronic databases PubMed, Medline and Cochrane, using a selection of relevant search MeSH terms. The literature review was conducted using the preferred reporting items for systematic reviews and meta-analysis (PRISMA). Results: Within the total of 11 in vitro design studies, 9 in vivo studies, and 4 that had both in vitro and in vivo designs, the results indicated that SLM-generated Ti scaffolds presented no cytotoxicity, their tissue integration being assured by pore dimensions of 400 to 600 µm, high porosity (75–88%), hydroxyapatite or SiO2–TiO2 coating, and bioactive treatment. The shape of the scaffold did not seem to have significant importance. Conclusions: The SLM technique used to fabricate the implants offers exceptional control over the structure of the base. It is anticipated that with this technique, and a better understanding of the physical interaction between the scaffold and bone tissue, porous bases can be tailored to optimize the graft’s integrative and mechanical properties in order to obtain structures able to sustain osseous tissue on Ti.
Collapse
|
27
|
Physicochemical properties and cytocompatibility assessment of non-degradable scaffolds for bone tissue engineering applications. J Mech Behav Biomed Mater 2020; 112:103997. [PMID: 32836095 DOI: 10.1016/j.jmbbm.2020.103997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 11/21/2022]
Abstract
Bone is a dynamic tissue with an amazing but yet limited capacity of self-healing. Bone is the second most transplanted tissue in the world and there is a huge need for bone grafts and substitutes which lead to a decrease in bone banks donors. In this study, we developed three-dimensional scaffolds based on Ti6Al4V, ZrO2 and PEEK targeting bone tissue engineering applications. Experimental mechanical compressive tests and finite element analyses were carried out to study the mechanical performance of the scaffolds. Overall, the scaffolds presented different hydrophilicity properties and a reduced elastic modulus when compared with the corresponding solid materials which can in some extension minimize the phenomenon of stress shielding. The ability as a scaffold material for bone tissue regeneration applications was evaluated in vitro by seeding human osteosarcoma (SaOS-2) cells onto the scaffolds. Then, the successful culture of SaOS-2 cells on developed scaffolds was monitored by assessment of cell's viability, proliferation and alkaline phosphatase (ALP) activity up to 14 days of culturing. The in vitro results revealed that Ti6Al4V, ZrO2 and PEEK scaffolds were cytocompatible allowing the successful culture of an osteoblastic cell line, suggesting their potential application in bone tissue engineering. Statement of Significance. The work presented is timely and relevant since it gathers both the mechanical and cellular study of non-degradable cellular structures with the potential to be used as bone scaffolds. This work allow to investigate three possible bone scaffolds solutions which exhibit a significantly reduced elastic modulus when compared with conventional solid materials. While it is generally accepted that the Ti6Al4V, ZrO2 and PEEK are candidates for such applications a further study of their features and their comparison is extremely important for a better understanding of their potential.
Collapse
|
28
|
Yu T, Zheng L, Chen G, Wang X, Chi H, Song C, Xi C, Yan J. A novel dynamic fixation system with biodegradable components on lumbar fusion between articular processes in a canine model. Proc Inst Mech Eng H 2020; 234:738-748. [PMID: 32419625 DOI: 10.1177/0954411920921679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to design a novel dynamic fixation system with biodegradable components, apply it for lumbar fusion between articular processes and compare the fusion results and biomechanical changes to those of conventional rigid fixation. The novel dynamic fixation system was designed using a finite element model, stress distributions were compared and 24 mongrel dogs were randomly assigned to two groups and subjected to either posterior lumbar fusion surgery with a novel dynamic fixation system or titanium rods at the L5-L6 segments. Lumbar spines were assessed in both groups to detect radiographic, manual palpation and biomechanical changes. Histological examination was performed on organs and surrounding tissues. In the novel dynamic fixation system, stress was mainly distributed on the meshing teeth of the magnesium alloy spacer. The magnesium alloy components maintained their initial shape 8 weeks after the operation, but the meshing teeth were almost completely degraded at 16 weeks. The novel dynamic fixation system revealed an increased lateral bending range of motion at 8 weeks; however, both groups showed similar radiographic grades, fusion stiffness, manual palpation and histological results. The novel dynamic fixation system design is suitable, and its degradation in vivo is safe. The novel dynamic fixation system can be applied for posterior lumbar fusion between articular processes and complete the fusion like titanium rods.
Collapse
Affiliation(s)
- Tailong Yu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Leyu Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Chen
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Chi
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengchao Song
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunyang Xi
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|