1
|
Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev 2024; 76:414-453. [PMID: 38697854 PMCID: PMC11068841 DOI: 10.1124/pharmrev.123.001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Najah Albadari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Josef F Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Hannah T Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wa Xian
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Frank McKeon
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wei Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Jia Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| |
Collapse
|
2
|
Xu Y, Zhou A, Chen W, Yan Y, Chen K, Zhou X, Tian Z, Zhang X, Wu H, Fu Z, Ning X. An Integrative Bioorthogonal Nanoengineering Strategy for Dynamically Constructing Heterogenous Tumor Spheroids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304172. [PMID: 37801656 DOI: 10.1002/adma.202304172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Indexed: 10/08/2023]
Abstract
Although tumor models have revolutionized perspectives on cancer aetiology and treatment, current cell culture methods remain challenges in constructing organotypic tumor with in vivo-like complexity, especially native characteristics, leading to unpredictable results for in vivo responses. Herein, the bioorthogonal nanoengineering strategy (BONE) for building photothermal dynamic tumor spheroids is developed. In this process, biosynthetic machinery incorporated bioorthogonal azide reporters into cell surface glycoconjugates, followed by reacting with multivalent click ligand (ClickRod) that is composed of hyaluronic acid-functionalized gold nanorod carrying dibenzocyclooctyne moieties, resulting in rapid construction of tumor spheroids. BONE can effectively assemble different cancer cells and immune cells together to construct heterogenous tumor spheroids is identified. Particularly, ClickRod exhibited favorable photothermal activity, which precisely promoted cell activity and shaped physiological microenvironment, leading to formation of dynamic features of original tumor, such as heterogeneous cell population and pluripotency, different maturation levels, and physiological gradients. Importantly, BONE not only offered a promising platform for investigating tumorigenesis and therapeutic response, but also improved establishment of subcutaneous xenograft model under mild photo-stimulation, thereby significantly advancing cancer research. Therefore, the first bioorthogonal nanoengineering strategy for developing dynamic tumor models, which have the potential for bridging gaps between in vitro and in vivo research is presented.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yuxin Yan
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi, 830046, China
| | - Xiaomin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Zhen Fu
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
3
|
Guo Y, Tang Y, Lu G, Gu J. p53 at the Crossroads between Doxorubicin-Induced Cardiotoxicity and Resistance: A Nutritional Balancing Act. Nutrients 2023; 15:nu15102259. [PMID: 37242146 DOI: 10.3390/nu15102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic drug, but its long-term use can cause cardiotoxicity and drug resistance. Accumulating evidence demonstrates that p53 is directly involved in DOX toxicity and resistance. One of the primary causes for DOX resistance is the mutation or inactivation of p53. Moreover, because the non-specific activation of p53 caused by DOX can kill non-cancerous cells, p53 is a popular target for reducing toxicity. However, the reduction in DOX-induced cardiotoxicity (DIC) via p53 suppression is often at odds with the antitumor advantages of p53 reactivation. Therefore, in order to increase the effectiveness of DOX, there is an urgent need to explore p53-targeted anticancer strategies owing to the complex regulatory network and polymorphisms of the p53 gene. In this review, we summarize the role and potential mechanisms of p53 in DIC and resistance. Furthermore, we focus on the advances and challenges in applying dietary nutrients, natural products, and other pharmacological strategies to overcome DOX-induced chemoresistance and cardiotoxicity. Lastly, we present potential therapeutic strategies to address key issues in order to provide new ideas for increasing the clinical use of DOX and improving its anticancer benefits.
Collapse
Affiliation(s)
- Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
4
|
Song M, Fang Z, Wang J, Liu K. A Nano-targeted Co-delivery System Based on Gene Regulation and Molecular Blocking Strategy for Synergistic Enhancement of Platinum Chemotherapy Sensitivity in Ovarian Cancer. Int J Pharm 2023; 640:123022. [PMID: 37156306 DOI: 10.1016/j.ijpharm.2023.123022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Ovarian cancer (OC) has a low five-year survival rate, mainly because of its drug resistance to chemotherapy. It is the key to reverse drug resistance to combine multiple sensitization pathways to play a synergistic role. A nano scaled targeted co-delivery system (P123-PEI-G12, PPG) modified by bifunctional peptide tLyP-1-NLS (G12) was fabricated by using Pluronic P123 conjugated with low molecular weight polyethyleneimine (PEI). This delivery system can co-delivery Olaparib (Ola) and p53 plasmids to synergistically enhance the sensitivity of OC to platinum-based chemotherapy. P53@P123-PEI-G2/Ola (Co-PPGs) can achieve efficient tumor accumulation and cellular internalization through G12-mediated targeting. Co-PPGs then break down in the tumor cells, releasing the drug. Co-PPGs significantly enhanced the sensitivity of cisplatin (DDP) in platinum-resistant ovarian cancer (PROC) and synergistically inhibited the proliferation of PROC in vitro and in vivo. The sensitizing and synergistic effects of Co-PPGs were related to the activation of p53, inhibition of poly-ADP-ribose polymerase (PARP) and p-glycoprotein (P-gp) expression. This work provides a promising strategy for the effective treatment of PROC.
Collapse
Affiliation(s)
- Mengdi Song
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Zhou Fang
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Jun Wang
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Kehai Liu
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Abdella S, Abid F, Youssef SH, Kim S, Afinjuomo F, Malinga C, Song Y, Garg S. pH and its applications in targeted drug delivery. Drug Discov Today 2023; 28:103414. [PMID: 36273779 DOI: 10.1016/j.drudis.2022.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
Abstract
Physiologic pH is vital for the normal functioning of tissues and varies in different parts of the body. The varying pH of the body has been exploited to design pH-sensitive smart oral, transdermal and vaginal drug delivery systems (DDS). The DDS demonstrated promising results in hard-to-treat diseases such as cancer and Helicobacter pylori infection. In some cases, a change in pH of tissues or body fluids has also been employed as a useful diagnostic biomarker. This paper aims to comprehensively review the development and applications of pH-sensitive DDS as well as recent advances in the field.
Collapse
Affiliation(s)
- Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia; Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Zambia St, Addis Ababa, Ethiopia
| | - Fatima Abid
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Souha H Youssef
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Constance Malinga
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
6
|
Duan Q, Zhang Q, Shi J, Zhang B, Zhou L, Sang S, Xue J. Synergistic Effect of Drug Delivery System Combining DOX and V9302 on Gastric Cancer Cells**. ChemistrySelect 2022. [DOI: 10.1002/slct.202202187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qianqian Duan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception College of Information and Computer Taiyuan University of Technology Taiyuan 030024 China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education Taiyuan University of Technology Taiyuan 030024 China
| | - Qi Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception College of Information and Computer Taiyuan University of Technology Taiyuan 030024 China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education Taiyuan University of Technology Taiyuan 030024 China
| | - Jiaying Shi
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception College of Information and Computer Taiyuan University of Technology Taiyuan 030024 China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education Taiyuan University of Technology Taiyuan 030024 China
| | - Boye Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception College of Information and Computer Taiyuan University of Technology Taiyuan 030024 China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education Taiyuan University of Technology Taiyuan 030024 China
| | - Lan Zhou
- Key laboratory of Cellular Physiology at Shanxi Medical University Ministry of Education Taiyuan 030024 China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception College of Information and Computer Taiyuan University of Technology Taiyuan 030024 China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education Taiyuan University of Technology Taiyuan 030024 China
| | - Juanjuan Xue
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception College of Information and Computer Taiyuan University of Technology Taiyuan 030024 China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education Taiyuan University of Technology Taiyuan 030024 China
| |
Collapse
|
7
|
Huang JZ, Li LL, Tan XY, Wu ZY, Chen DW, Luo X. The effect of calycosin-7-O-β-D-glucoside and its synergistic augmentation of cisplatin-induced apoptosis in SK-OV-3 cells. Curr Pharm Des 2022; 28:2161-2166. [PMID: 35702792 DOI: 10.2174/1381612828666220610164100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study aims to examine the synergetic augmentation of calycosin-7-O-β-D-glucoside (CG) on cisplatin (CDDP) to induce apoptosis of human epithelial ovarian SK-OV-3 cancer cells. METHODS The SK-OV-3 cells were divided into four groups: control, CDDP monotherapy, CG monotherapy, and combined CDDP and CG treatment. The cell counting kit-8 method was used to detect cell proliferation at different times and under different treatments. Hoechst 33258 staining and annexin V-FITC/propidium iodide double staining methods were used to observe the apoptosis of the SK-OV-3 cells. The caspase-3 enzyme activity detection method, quantitative reverse transcription-polymerase chain reaction, and western blot were used to detect the apoptosis-related factors and the activities of the enzyme in SK-OV-3 cells. RESULTS The inhibition rates of SK-OV-3 cell proliferation when exposed to 10 μM of CDDP, 50 μM of CG, and a combination of 10 μM of CDDP and 50 μM of CG were 23.2% ± 1.1%, 26.7% ± 2.0%, and 46.7% ± 1.3% after 48 h, respectively. Following the use of the drug combination, the apoptosis rate and caspase-3 enzyme activity were significantly higher than in the single-drug treatment group; in addition, the data differences were significant (p < 0.05). At the protein and ribonucleic acid levels, CG significantly enhanced the effect of CDDP on p53, caspase-3, caspase-9, Bax, and Bcl-2. CONCLUSION In vitro, CG significantly increases the CDDP-induced apoptosis of the SK-OV-3 cells through the p53 pathway at the cellular level. In addition, using the drugs in combination reduces the toxicity and side effects caused by using CDDP alone.
Collapse
Affiliation(s)
- Jin-Zhi Huang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.,Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Liang-Liang Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.,Department of Obstetrics, Central Hospital of Longhua District, Shenzhen 518109, China
| | - Xiao-Yu Tan
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhao-Yi Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dan-Wei Chen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
8
|
Mahmoud K, Swidan S, El-Nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnology 2022; 20:109. [PMID: 35248080 PMCID: PMC8898455 DOI: 10.1186/s12951-022-01309-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is considered one of the deadliest diseases with one of the highest disease burdens worldwide. Among the different types of liver cancer, hepatocellular carcinoma is considered to be the most common type. Multiple conventional approaches are being used in treating hepatocellular carcinoma. Focusing on drug treatment, regular agents in conventional forms fail to achieve the intended clinical outcomes. In order to improve the treatment outcomes, utilizing nanoparticles-specifically lipid based nanoparticles-are considered to be one of the most promising approaches being set in motion. Multiple forms of lipid based nanoparticles exist including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, phytosomes, lipid coated nanoparticles, and nanoassemblies. Multiple approaches are used to enhance the tumor uptake as well tumor specificity such as intratumoral injection, passive targeting, active targeting, and stimuli responsive nanoparticles. In this review, the effect of utilizing lipidic nanoparticles is being discussed as well as the different tumor uptake enhancement techniques used.
Collapse
Affiliation(s)
- Khaled Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
9
|
Yu XQ, Zhan YR, Tan J, Hei MW, Zhang S, Zhang J. Construction of GSH-triggered cationic fluoropolymer as two-in-one nanoplatform for combined chemo/gene therapy. J Mater Chem B 2022; 10:1308-1318. [DOI: 10.1039/d1tb02602j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combined chemo-gene therapy has become a promising approach for enhanced anti-cancer treatment. However, effective co-delivery of therapeutic gene and drug into target cells and tissues remains a major obstacle....
Collapse
|
10
|
Magnetic-fluorescent nanoliposomes decorated with folic acid for active delivery of cisplatin and gemcitabine to cancer cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Pakdaman Goli P, Bikhof Torbati M, Parivar K, Akbarzadeh Khiavi A, Yousefi M. Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021; 16:6593-6644. [PMID: 34611400 PMCID: PMC8487283 DOI: 10.2147/ijn.s323831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotherapy is a part of nanomedicine that involves nanoparticles as carriers to deliver drugs to target locations. This novel targeting approach has been found to resolve various problems, especially those associated with cancer treatment. In nanotherapy, the carrier plays a crucial role in handling many of the existing challenges, including drug protection before early-stage degradations of active substances, allowing them to reach targeted cells and overcome cell resistance mechanisms. The present review comprises the following sections: the first part presents the introduction of pharmacoeconomics as a branch of healthcare economics, the second part covers various beneficial aspects of the use of nanocarriers for in vitro, in vivo, and pre- and clinical studies, as well as discussion on drug resistance problem and present solutions to overcome it. In the third part, progress in drug manufacturing and optimization of the process of nanoparticle synthesis were discussed. Finally, pharmacokinetic and toxicological properties of nanoformulations due to up-to-date studies were summarized. In this review, the most recent developments in the field of nanotechnology's economic impact, particularly beneficial applications in medicine were presented. Primarily focus on cancer treatment, but also discussion on other fields of application, which are strongly associated with cancer epidemiology and treatment, was made. In addition, the current limitations of nanomedicine and its huge potential to improve and develop the health care system were presented.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | | | - Piotr Nowicki
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| |
Collapse
|