1
|
Lebea L, Desai D, Ngwangwa H, Nemavhola F. Evaluation of 3D Printing Orientation on Volume Parameters and Mechanical Properties of As-Build TI64ELI. METALS 2024; 14:447. [DOI: 10.3390/met14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The discovery of the utility of various titanium alloys as implant biomaterials has resulted in these materials becoming far more popular than other metals in the medical world. However, the production of these materials using additive manufacturing has its own challenges some of those being the surface finish that can be used as an implantology material. As such, the purpose of this study is to evaluate the influence of 3D-printed Ti64ELI on the as-built samples printed at 60°, 90°, and 180° orientations. Such studies are very limited, specifically in the development of the laser shock peening surface modification of dental implants. The study showed that each mechanical test that was performed contributes differently to the printing orientation, e.g., some tests yielded better properties when 180° printing orientation was used, and others had poorer properties when a 180° printing orientation was used. It was observed that 60° testing yielded a micro-hardness value of 349.6, and this value was increased by 0.37% when 90° orientation was measured. The lowest HV value was observed under a 180° orientation with 342.2 HV. The core material volume (Vmc) was 0.05266 mm3/mm2 at a 60° orientation, which increased by 11.48% for the 90° orientation. Furthermore, it was observed that the surface roughness (Sa) at 60° orientation was 43.68 μm. This was further increased by 6% when using the 90° orientation.
Collapse
Affiliation(s)
- Lebogang Lebea
- Department of Mechanical and Mechatronic Engineering, Central University of Technology, Free State, Bloemfontein 9300, South Africa
- Department of Mechanical and Mechatronic Engineering, Tshwane University of Technology, Pretoria 0183, South Africa
- Department of Mechanical Engineering, University of South Africa, Florida Campus, Roodepoort 1709, South Africa
| | - Dawood Desai
- Department of Mechanical and Mechatronic Engineering, Tshwane University of Technology, Pretoria 0183, South Africa
| | - Harry Ngwangwa
- Department of Mechanical Engineering, University of South Africa, Florida Campus, Roodepoort 1709, South Africa
| | - Fulufhelo Nemavhola
- Department of Mechanical Engineering, Faculty of Engineering, and the Built Environment, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
2
|
Mao C, Yu W, Li G, Xu Z, Gong Y, Jin M, Lu E. Effects of immediate loading directionality on the mechanical sensing protein PIEZO1 expression and early-stage healing process of peri-implant bone. Biomed Eng Online 2024; 23:36. [PMID: 38504231 PMCID: PMC10953093 DOI: 10.1186/s12938-024-01223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The reduced treatment time of dental implants with immediate loading protocol is an appealing solution for dentists and patients. However, there remains a significant risk of early peri-implant bone response following the placement of immediately loaded implants, and limited information is available regarding loading directions and the associated in vivo characteristics of peri-implant bone during the early stages. This study aimed to investigate the effects of immediate loading directionality on the expression of mechanical sensing protein PIEZO1 and the healing process of peri-implant bone in the early stage. METHODS Thirty-two implants were inserted into the goat iliac crest models with 10 N static lateral immediate loading applied, followed by histological, histomorphological, immunohistochemical, X-ray microscopy and energy dispersive X-ray spectroscopy evaluations conducted after 10 days. RESULTS From evaluations at the cellular, tissue, and organ levels, it was observed that the expression of mechanical sensing protein PIEZO1 in peri-implant bone was significantly higher in the compressive side compared to the tensile side. This finding coincided with trends observed in interfacial bone extracellular matrix (ECM) contact percentage, bone mass, and new bone formation. CONCLUSIONS This study provides a novel insight into the immediate loading directionality as a potential influence factor for dental implant treatments by demonstrating differential effects on the mechanical sensing protein PIEZO1 expression and related early-stage healing processes of peri-implant bone. Immediate loading directions serve as potential therapeutic influence factors for peri-implant bone during its early healing stage.
Collapse
Affiliation(s)
- Chuanyuan Mao
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Weijun Yu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Guanglong Li
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ziyuan Xu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yuhua Gong
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Min Jin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
3
|
Yang X, Wu L, Li C, Li S, Hou W, Hao Y, Lu Y, Li L. Synergistic Amelioration of Osseointegration and Osteoimmunomodulation with a Microarc Oxidation-Treated Three-Dimensionally Printed Ti-24Nb-4Zr-8Sn Scaffold via Surface Activity and Low Elastic Modulus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3171-3186. [PMID: 38205810 DOI: 10.1021/acsami.3c16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomaterial scaffolds, including bone substitutes, have evolved from being primarily a biologically passive structural element to one in which material properties such as surface topography and chemistry actively direct bone regeneration by influencing stem cells and the immune microenvironment. Ti-6Al-4V(Ti6Al4V) implants, with a significantly higher elastic modulus than human bone, may lead to stress shielding, necessitating improved stability at the bone-titanium alloy implant interface. Ti-24Nb-4Zr-8Sn (Ti2448), a low elastic modulus β-type titanium alloy devoid of potentially toxic elements, was utilized in this study. We employed 3D printing technology to fabricate a porous scaffold structure to further decrease the structural stiffness of the implant to approximate that of cancellous bone. Microarc oxidation (MAO) surface modification technology is then employed to create a microporous structure and a hydrophilic oxide ceramic layer on the surface and interior of the scaffold. In vitro studies demonstrated that MAO treatment enhances the proliferation, adhesion, and osteogenesis capabilities on the scaffold surface. The chemical composition of the MAO-Ti2448 oxide layer is found to enhance the transcription and expression of osteogenic genes in bone mesenchymal stem cells (BMSCs), potentially related to the enrichment of Nb2O5 and SnO2 in the oxide layer. The MAO-Ti2448 scaffold, with its synergistic surface activity and low stiffness, significantly activates the anti-inflammatory macrophage phenotype, creating an immune microenvironment that promotes the osteogenic differentiation of BMSCs. In vivo experiments in a rabbit model demonstrated a significant improvement in the quantity and quality of the newly formed bone trabeculae within the scaffold under the contact osteogenesis pattern with a matched elastic modulus. These trabeculae exhibit robust connections to the external structure of the scaffold, accelerating the formation of an interlocking structure between the bone and implant and providing higher implantation stability. These findings suggest that the MAO-Ti2448 scaffold has significant potential as a bone defect repair material by regulating osteoimmunomodulation and osteogenesis to enhance osseointegration. This study demonstrates an optional strategy that combines the mechanism of reducing the elastic modulus with surface modification treatment, thereby extending the application scope of β-type titanium alloy.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110055, P.R. China
| | - Lijun Wu
- Engineering Research Center of High Entropy Alloy Materials (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Cheng Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110055, P.R. China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China
| | - Yulin Hao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P.R. China
| | - Yiping Lu
- Engineering Research Center of High Entropy Alloy Materials (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110055, P.R. China
| |
Collapse
|
4
|
Zhang C, Wang Y. Biomechanical Analysis of Axial Gradient Porous Dental Implants: A Finite Element Analysis. J Funct Biomater 2023; 14:557. [PMID: 38132811 PMCID: PMC10743419 DOI: 10.3390/jfb14120557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
The porous structure can reduce the elastic modulus of a dental implant and better approximate the elastic characteristics of the material to the alveolar bone. Therefore, it has the potential to alleviate bone stress shielding around the implant. However, natural bone is heterogeneous, and, thus, introducing a porous structure may produce pathological bone stress. Herein, we designed a porous implant with axial gradient variation in porosity to alleviate stress shielding in the cancellous bone while controlling the peak stress value in the cortical bone margin region. The biomechanical distribution characteristics of axial gradient porous implants were studied using a finite element method. The analysis showed that a porous implant with an axial gradient variation in porosity ranging from 55% to 75% was the best structure. Under vertical and oblique loads, the proportion of the area with a stress value within the optimal stress interval at the bone-implant interface (BII) was 40.34% and 34.57%, respectively, which was 99% and 65% higher compared with that of the non-porous implant in the control group. Moreover, the maximum equivalent stress value in the implant with this pore parameter was 64.4 MPa, which was less than 1/7 of its theoretical yield strength. Axial gradient porous implants meet the strength requirements for bone implant applications. They can alleviate stress shielding in cancellous bone without increasing the stress concentration in the cortical bone margin, thereby optimizing the stress distribution pattern at the BII.
Collapse
Affiliation(s)
- Chunyu Zhang
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha 410008, China
- Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha 410008, China
| | - Yuehong Wang
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha 410008, China
- Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha 410008, China
| |
Collapse
|
5
|
Wang L, Huang H, Yuan H, Yao Y, Park JH, Liu J, Geng X, Zhang K, Hollister SJ, Fan Y. In vitro fatigue behavior and in vivo osseointegration of the auxetic porous bone screw. Acta Biomater 2023; 170:185-201. [PMID: 37634835 DOI: 10.1016/j.actbio.2023.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
The incidence of screw loosening, migration, and pullout caused by the insufficient screw-bone fixation stability is relatively high in clinical practice. To solve this issue, the auxetic unit-based porous bone screw (AS) has been put forward in our previous work. Its favorable auxetic effect can improve the primary screw-bone fixation stability after implantation. However, porous structure affected the fatigue behavior and in vivo longevity of bone screw. In this study, in vitro fatigue behaviors and in vivo osseointegration performance of the re-entrant unit-based titanium auxetic bone screw were studied. The tensile-tensile fatigue behaviors of AS and nonauxetic bone screw (NS) with the same porosity (51%) were compared via fatigue experiments, fracture analysis, and numerical simulation. The in vivo osseointegration of AS and NS were compared via animal experiment and biomechanical analysis. Additionally, the effects of in vivo dynamic tensile loading on the osseointegration of AS and NS were investigated and analyzed. The fatigue strength of AS was approximately 43% lower while its osseointegration performance was better than NS. Under in vivo dynamic tensile loading, the osseointegration of AS and NS both improved significantly, with the maximum increase of approximately 15%. Preferrable osseointegration of AS might compensate for the shortage of fatigue resistance, ensuring its long-term stability in vivo. Adequate auxetic effect and long-term stability of the AS was supposed to provide enough screw-bone fixation stability to overcome the shortages of the solid bone screw, developing the success of surgery and showing significant clinical application prospects in orthopedic surgery. STATEMENT OF SIGNIFICANCE: This research investigated the high-cycle fatigue behavior of re-entrant unit-based auxetic bone screw under tensile-tensile cyclic loading and its osseointegration performance, which has not been focused on in existing studies. The fatigue strength of auxetic bone screw was lower while the osseointegration was better than non-auxetic bone screw, especially under in vivo tensile loading. Favorable osseointegration of auxetic bone screw might compensate for the shortage of fatigue resistance, ensuring its long-term stability and longevity in vivo. This suggested that with adequate auxetic effect and long-term stability, the auxetic bone screw had significant application prospects in orthopedic surgery. Findings of this study will provide a theoretical guidance for design optimization and clinical application of the auxetic bone screw.
Collapse
Affiliation(s)
- Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Huiwen Huang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hao Yuan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yan Yao
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jeong Hun Park
- Wallace H. Coulter Department of Biomedical Engineering and Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Jinglong Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xuezheng Geng
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Kuo Zhang
- Laboratory Animal Science Center, Peking University Health Science Center, Beijing 100083, China
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering and Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
6
|
Yang S, Jiang W, Ma X, Wang Z, Sah RL, Wang J, Sun Y. Nanoscale Morphologies on the Surface of 3D-Printed Titanium Implants for Improved Osseointegration: A Systematic Review of the Literature. Int J Nanomedicine 2023; 18:4171-4191. [PMID: 37525692 PMCID: PMC10387278 DOI: 10.2147/ijn.s409033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Three-dimensional (3D) printing is serving as the most promising approach to fabricate personalized titanium (Ti) implants for the precise treatment of complex bone defects. However, the bio-inert nature of Ti material limits its capability for rapid osseointegration and thus influences the implant lifetime in vivo. Despite the macroscale porosity for promoting osseointegration, 3D-printed Ti implant surface morphologies at the nanoscale have gained considerable attention for their potential to improve specific outcomes. To evaluate the influence of nanoscale surface morphologies on osseointegration outcomes of 3D-printed Ti implants and discuss the available strategies, we systematically searched evidence according to the PRISMA on PubMed, Embase, Web of Science, and Cochrane (until June 2022). The inclusion criteria were in vivo (animal) studies reporting the osseointegration outcomes of nanoscale morphologies on the surface of 3D-printed Ti implants. The risk of bias (RoB) was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE's) tool. The quality of the studies was evaluated using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. (PROSPERO: CRD42022334222). Out of 119 retrieved articles, 9 studies met the inclusion criteria. The evidence suggests that irregular nano-texture, nanodots and nanotubes with a diameter of 40-105nm on the surface of porous/solid 3D-printed Ti implants result in better osseointegration and vertical bone ingrowth compared to the untreated/polished ones by significantly promoting cell adhesion, matrix mineralization, and osteogenic differentiation through increasing integrin expression. The RoB was low in 41.1% of items, unclear in 53.3%, and high in 5.6%. The quality of the studies achieved a mean score of 17.67. Our study demonstrates that nanostructures with specific controlled properties on the surface of 3D-printed Ti implants improve their osseointegration. However, given the small number of studies, the variability in experimental designs, and lack of reporting across studies, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Shiyan Yang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Weibo Jiang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Xiao Ma
- Department of Orthopedics, the China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, Jilin, 130000, People's Republic of China
| | - Robert L Sah
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, 92037, USA
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California-San Diego, La Jolla, CA, 92037, USA
| | - Jincheng Wang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Yang Sun
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| |
Collapse
|
7
|
Li Z, Zhang Q, Yang S, Li Y, Atrens A, Kanwar JR, Zhong W, Lin B, Wen C, Zhou Y, Xiao Y. An Optimized Method for Microcomputed Tomography Analysis of Trabecular Parameters of Metal Scaffolds for Bone Ingrowth. Tissue Eng Part C Methods 2023; 29:276-283. [PMID: 37233718 DOI: 10.1089/ten.tec.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Owing to its superior mechanical and biological properties, titanium metal is widely used in dental implants, orthopedic devices, and bone regenerative materials. Advances in 3D printing technology have led to more and more metal-based scaffolds being used in orthopedic applications. Microcomputed tomography (μCT) is commonly applied to evaluate the newly formed bone tissues and scaffold integration in animal studies. However, the presence of metal artifacts dramatically hinders the accuracy of μCT analysis of new bone formation. To acquire reliable and accurate μCT results that reflect new bone formation in vivo, it is crucial to lessen the impact of metal artifacts. Herein, an optimized procedure for calibrating μCT parameters using histological data was developed. In this study, the porous titanium scaffolds were fabricated by powder bed fusion based on computer-aided design. These scaffolds were implanted in femur defects created in New Zealand rabbits. After 8 weeks, tissue samples were collected to assess new bone formation using μCT analysis. Resin-embedded tissue sections were then used for further histological analysis. A series of deartifact two-dimensional (2D) μCT images were obtained by setting the erosion radius and the dilation radius in the μCT analysis software (CTan) separately. To get the μCT results closer to the real value, the 2D μCT images and corresponding parameters were subsequently selected by matching the histological images in the particular region. After applying the optimized parameters, more accurate 3D images and more realistic statistical data were obtained. The results demonstrate that the newly established method of adjusting μCT parameters can effectively reduce the influence of metal artifacts on data analysis to some extent. For further validation, other metal materials should be analyzed using the process established in this study.
Collapse
Affiliation(s)
- Zhengmao Li
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Yang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Andrej Atrens
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Jagat Rakesh Kanwar
- Faculty of Health, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Wen Zhong
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bingpeng Lin
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Yinghong Zhou
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Yin Xiao
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
8
|
Huang S, Wei H, Li D. Additive manufacturing technologies in the oral implant clinic: A review of current applications and progress. Front Bioeng Biotechnol 2023; 11:1100155. [PMID: 36741746 PMCID: PMC9895117 DOI: 10.3389/fbioe.2023.1100155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Additive manufacturing (AM) technologies can enable the direct fabrication of customized physical objects with complex shapes, based on computer-aided design models. This technology is changing the digital manufacturing industry and has become a subject of considerable interest in digital implant dentistry. Personalized dentistry implant treatments for individual patients can be achieved through Additive manufacturing. Herein, we review the applications of Additive manufacturing technologies in oral implantology, including implant surgery, and implant and restoration products, such as surgical guides for implantation, custom titanium meshes for bone augmentation, personalized or non-personalized dental implants, custom trays, implant casts, and implant-support frameworks, among others. In addition, this review also focuses on Additive manufacturing technologies commonly used in oral implantology. Stereolithography, digital light processing, and fused deposition modeling are often used to construct surgical guides and implant casts, whereas direct metal laser sintering, selective laser melting, and electron beam melting can be applied to fabricate dental implants, personalized titanium meshes, and denture frameworks. Moreover, it is sometimes required to combine Additive manufacturing technology with milling and other cutting and finishing techniques to ensure that the product is suitable for its final application.
Collapse
Affiliation(s)
| | - Hongbo Wei
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dehua Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Zhang Y, Luo W, Zheng L, Hu J, Nie L, Zeng H, Tan X, Jiang Y, Li Y, Zhao T, Yang Z, He TC, Zhang H. Efficient bone regeneration of BMP9-stimulated human periodontal ligament stem cells (hPDLSCs) in decellularized bone matrix (DBM) constructs to model maxillofacial intrabony defect repair. Stem Cell Res Ther 2022; 13:535. [PMID: 36575551 PMCID: PMC9795631 DOI: 10.1186/s13287-022-03221-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND BMP9-stimulated DPSCs, SCAPs and PDLSCs are effective candidates for repairing maxillofacial bone defects in tissue engineering, while the most suitable seed cell source among these three hDMSCs and the optimal combination of most suitable type of hDMSCs and BMP9 have rarely been explored. Moreover, the orthotopic maxillofacial bone defect model should be valuable but laborious and time-consuming to evaluate various candidates for bone regeneration. Thus, inspired from the maxillofacial bone defects and the traditional in vivo ectopic systems, we developed an intrabony defect repair model to recapitulate the healing events of orthotopic maxillofacial bone defect repair and further explore the optimized combinations of most suitable hDMSCs and BMP9 for bone defect repair based on this modified ectopic system. METHODS Intrabony defect repair model was developed by using decellularized bone matrix (DBM) constructs prepared from the cancellous part of porcine lumbar vertebral body. We implanted DBM constructs subcutaneously on the flank of each male NU/NU athymic nude mouse, followed by directly injecting the cell suspension of different combinations of hDMSCs and BMP9 into the central hollow area of the constructs 7 days later. Then, the quality of the bony mass, including bone volume fraction (BV/TV), radiographic density (in Hounsfield units (HU)) and the height of newly formed bone, was measured by micro-CT. Furthermore, the H&E staining and immunohistochemical staining were performed to exam new bone and new blood vessel formation in DBM constructs. RESULTS BMP9-stimulated periodontal ligament stem cells (PDLSCs) exhibited the most effective bone regeneration among the three types of hDMSCs in DBM constructs. Furthermore, an optimal dose of PDLSCs with a specific extent of BMP9 stimulation was confirmed for efficacious new bone and new blood vessel formation in DBM constructs. CONCLUSIONS The reported intrabony defect repair model can be used to identify optimized combinations of suitable seed cells and biological factors for bone defect repair and subsequent development of efficacious bone tissue engineering therapies.
Collapse
Affiliation(s)
- Yuxin Zhang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liwen Zheng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jing Hu
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Li Nie
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Huan Zeng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xi Tan
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yucan Jiang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yeming Li
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tianyu Zhao
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhuohui Yang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- grid.412578.d0000 0000 8736 9513Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Hongmei Zhang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Yang J, Siow L, Zhang X, Wang Y, Wang H, Wang B. Dental Reimplantation Treatment and Clinical Care for Patients with Previous Implant Failure-A Retrospective Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15939. [PMID: 36498015 PMCID: PMC9735569 DOI: 10.3390/ijerph192315939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
(1) Objectives: This study evaluated the clinical outcomes of dental implants placed in previously failed sites and discussed the risk factors that mattered in reimplantation. (2) Methods: All the cases by one specific implantologist during his first five years of clinical practice were screened, with a focus on those who received reimplantation. The clinical outcomes were assessed, including the implant survival, peri-implant health, and patients' satisfaction. (3) Results: 28 patients (31 implants) were recorded as failures from 847 patients (1269 implants), with a 2.4% overall failure rate at the implant level, of whom 19 patients (21 implants) received reimplantation treatment. After a mean follow-up of 33.7 ± 10.1 months (95% CI 29.1-38.3 months), 20 implants remained functional, but 1 implant revealed a secondary early failure, indicating a 95.2% overall survival rate. The mean probing depth (PD), modified sulcus bleeding index (mSBI), and marginal bone loss (MBL) of the surviving reinserted implants were 2.7 ± 0.6 mm (95% CI 2.5-3.0 mm), 0.7 ± 0.5 (95% CI 0.5-1.0), and 0.5 ± 0.6 mm (95% CI 0.3-0.8 mm), respectively. Embedded healing occurred more frequently in the reinserted implants than in the primary implants (p = 0.052). The patients' satisfaction suffered from implant failure, but a successful reimplantation could reverse it with close doctor-patient communication. (4) Conclusions: Reimplantation treatment was recommended, based on a thorough evaluation and consideration of the risk factors combined with effective communication with the patients.
Collapse
Affiliation(s)
| | | | | | | | - Huiming Wang
- Correspondence: (H.W.); (B.W.); Tel.: +86-13858092696 (H.W.); +86-18358190519 (B.W.)
| | - Baixiang Wang
- Correspondence: (H.W.); (B.W.); Tel.: +86-13858092696 (H.W.); +86-18358190519 (B.W.)
| |
Collapse
|
11
|
Huang S, Guo F, Liu N, Li Y, Wang C, Hu M, Liu C. 3D-Printed Porous Titanium Root-Analogue Implant for the Treatment of Longitudinal Fracture of Mandibular Molars with Periapical Periodontitis: A Case Report. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Customized porous titanium root-analogue implant (RAI) can be produced using CBCT data acquisition and three-dimensional image processing, combined with selective laser melting (SLM) technology. However, there is no report on the treatment of chronic periapical periodontitis with RAI.
We report a case of longitudinal fissure of mandibular molars with periapical periodontitis and immediately implanted RAI after extraction. After a continuous observation for one year, it was found that the bone around the root grew into RAI and achieved a good effect of osseointegration.
This report describes a situation in which traditional immediate implantation is untreatable, and the use of customized porous titanium RAI may open up new indications for immediate implantation.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Stomatology, Xi’an Medical University, Xi’an 710021, Shaanxi, China
| | - Fang Guo
- Department of Stomatology, Xi’an Medical University, Xi’an 710021, Shaanxi, China
| | - Ning Liu
- Department of Stomatology, Xi’an Medical University, Xi’an 710021, Shaanxi, China
| | - Yongfeng Li
- Department of Stomatology, General Hospital of the People’s Liberation Army, Beijing 100000, China
| | - Chao Wang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Min Hu
- Department of Stomatology, General Hospital of the People’s Liberation Army, Beijing 100000, China
| | - Changkui Liu
- Department of Stomatology, Xi’an Medical University, Xi’an 710021, Shaanxi, China
| |
Collapse
|
12
|
Zhang RZ, Shi Q, Zhao H, Pan GQ, Shao LH, Wang JF, Liu HW. In vivo study of dual functionalized mussel-derived bioactive peptides promoting 3D-printed porous Ti6Al4V scaffolds for repair of rabbit femoral defects. J Biomater Appl 2022; 37:942-958. [PMID: 35856165 DOI: 10.1177/08853282221117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 3D printed porous titanium alloy scaffolds are beneficial to enhance angiogenesis, osteoblast adhesion, and promote osseointegration. However, titanium alloys are biologically inert, which makes the bond between the implant and bone tissue weak and prone to loosening. Inspired by the natural biological marine mussels, we designed four-claw-shaped mussel-derived bioactive peptides for the decoration of porous titanium alloy scaffolds: adhesion peptide-DOPA, anchoring peptide-RGD and osteogenic-inducing peptide-BMP-2. And the bifunctionalization of 3D-printed porous titanium alloy scaffolds was evaluated in vivo in a rabbit model of bone defect with excellent promotion of osseointegration and mechanical stability. Our results show that the in vivo osseointegration ability of the modified 3D printed porous titanium alloy test piece is significantly improved, and the bifunctional polypeptide coating group E has the strongest osseointegration ability. In conclusion, our experimental design partially solves the problems of stress shielding effect and biological inertness, and provides a convenient and feasible method for the clinical application of titanium alloy implants in biomedical implant materials.
Collapse
Affiliation(s)
| | - Qin Shi
- 12582Suzhou University, Suzhou, China
| | - Huan Zhao
- 12582Suzhou University, Suzhou, China
| | | | | | | | - Hong Wei Liu
- 599923Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
13
|
Gu Y, Sun Y, Shujaat S, Braem A, Politis C, Jacobs R. 3D-printed porous Ti6Al4V scaffolds for long bone repair in animal models: a systematic review. J Orthop Surg Res 2022; 17:68. [PMID: 35109907 PMCID: PMC8812248 DOI: 10.1186/s13018-022-02960-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/21/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Titanium and its alloys have been widely employed for bone tissue repair and implant manufacturing. The rapid development of three-dimensional (3D) printing technology has allowed fabrication of porous titanium scaffolds with controllable microstructures, which is considered to be an effective method for promoting rapid bone formation and decreasing bone absorption. The purpose of this systematic review was to evaluate the osteogenic potential of 3D-printed porous Ti6Al4V (Ti64) scaffold for repairing long bone defects in animal models and to investigate the influential factors that might affect its osteogenic capacity. METHODS Electronic literature search was conducted in the following databases: PubMed, Web of Science, and Embase up to September 2021. The SYRCLE's tool and the modified CAMARADES list were used to assess the risk of bias and methodological quality, respectively. Due to heterogeneity of the selected studies in relation to protocol and outcomes evaluated, a meta-analysis could not be performed. RESULTS The initial search revealed 5858 studies. Only 46 animal studies were found to be eligible based on the inclusion criteria. Rabbit was the most commonly utilized animal model. A pore size of around 500-600 µm and porosity of 60-70% were found to be the most ideal parameters for designing the Ti64 scaffold, where both dodecahedron and diamond pores optimally promoted osteogenesis. Histological analysis of the scaffold in a rabbit model revealed that the maximum bone area fraction reached 59.3 ± 8.1% at weeks 8-10. Based on micro-CT assessment, the maximum bone volume fraction was found to be 34.0 ± 6.0% at weeks 12. CONCLUSIONS Ti64 scaffold might act as a promising medium for providing sufficient mechanical support and a stable environment for new bone formation in long bone defects. Trail registration The study protocol was registered in the PROSPERO database under the number CRD42020194100.
Collapse
Affiliation(s)
- Yifei Gu
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Yi Sun
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Sohaib Shujaat
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Annabel Braem
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, 3000, Leuven, Belgium
| | - Constantinus Politis
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium. .,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium. .,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Zheng J, Zhao H, Dong E, Kang J, Liu C, Sun C, Li D, Wang L. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112333. [PMID: 34474884 DOI: 10.1016/j.msec.2021.112333] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Polyetheretherketone (PEEK) was widely applied into fabricating of orthopaedic implants, benefitting its excellent biocompatibility and similar mechanical properties to native bones. However, the inertness of PEEK hinders its integration with the surrounding bone tissue. Here PEEK scaffolds with a series of hydroxyapatite (HA) contents in gradient were manufactured via fused filament fabrication (FFF) 3D printing techniques. The influence of the pore size, HA content and printing direction on the mechanical properties of the PEEK/HA scaffolds was systematically evaluated. By adjusting the pore size and HA contents, the elastic modulus of the PEEK/HA scaffolds can be widely tuned in the range of 624.7-50.6 MPa, similar to the variation range of natural cancellous bone. Meanwhile, the scaffolds exhibited higher Young's modulus and lower compressive strength along Z printing direction. The mapping relationship among geometric parameters, HA content, printing direction and mechanical properties was established, which gave more accurate predictions and controllability of the modulus and strength of scaffolds. The PEEK/HA scaffolds with the micro-structured surface could promote cell attachment and mineralization in vitro. Therefore, the FFF-printed PEEK/HA composites scaffolds can be a good candidate for bone grafting and tissue engineering.
Collapse
Affiliation(s)
- Jibao Zheng
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Huiyu Zhao
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Enchun Dong
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | | | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Changning Sun
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China.
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China.
| |
Collapse
|
15
|
Wu LJ, Hsieh KH, Lin CL. Integrating Finite Element Death Technique and Bone Remodeling Theory to Predict Screw Loosening Affected by Radiation Treatment after Mandibular Reconstruction Surgery. Diagnostics (Basel) 2020; 10:diagnostics10100844. [PMID: 33086684 PMCID: PMC7589701 DOI: 10.3390/diagnostics10100844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 11/27/2022] Open
Abstract
This study developed a numerical simulation to understand bone mechanical behavior and micro-crack propagation around a fixation screw with severe mandibular defects. A mandible finite element (FE) model was constructed in a rabbit with a right unilateral body defect. The reconstruction implant was designed to be fixed using six screws distributed on the distal and mesial sides. The element death technique provided in FE analysis was combined with bone remodeling theory to simulate bone necrosis around the fixation screw in which the strain value reached the overload threshold. A total of 20 iterations were performed to observe the micro-crack propagation pattern for each screw according to the high strain locations occurring in each result from consecutive iterations. A parallel in vivo animal study was performed to validate the FE simulation by placing specific metal 3D printing reconstruction implants in rabbits to compare the differences in bone remodeling caused by radiation treatment after surgery. The results showed that strain values of the surrounding distal bone fixation screws were much larger than those at the mesial side. With the increase in the number of iteration analyses, the micro-crack prorogation trend for the distal fixation screws can be represented by the number and element death locations during the iteration analysis process. The corresponding micro-movement began to increase gradually and induced screw loosening after iteration calculation. The strained bone results showed that relatively high bone loss (damage) existed around the distal fixation screws under radiation treatment. This study concluded that the FE simulation developed in this study can provide a better predictive diagnosis method for understanding fixation screw loosening and advanced implant development before surgery.
Collapse
Affiliation(s)
- Le-Jung Wu
- Division of Radiation Therapy, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - Kai-Hung Hsieh
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chun-Li Lin
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 112, Taiwan;
- Correspondence:
| |
Collapse
|