1
|
Mohajer M, Asefnejad A, Jameie SB, Khanmohammadi M, Hassanzadeh S. Effectiveness of Insolubilized Poly(vinyl alcohol)-Based Electrospun Fiber-Loaded Methylprednisolone by Enzyme-Catalyzed Cross-Linking in a Rat Spinal Cord Injury Model. ACS APPLIED BIO MATERIALS 2024; 7:7466-7482. [PMID: 39436827 DOI: 10.1021/acsabm.4c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Spinal cord injury (SCI) has been implicated in neural loss and, consequently, motor/sensory impairment. Here, we propose an improved formation for fibrous mat fabrication from the derivatives of poly(vinyl alcohol) (PVA) and gelatin (Gela) through horseradish peroxidase-mediated cross-linking, providing a sustained release of methylprednisolone (MP) for SCI repair. After 28 days, the animals were evaluated in terms of remyelination and apoptosis and underwent behavioral tests. The mechanical properties, hydrophobicity, and degradation rate of PVAPh/GelaPh fibrous mats were significantly improved as compared with those of PVAPh samples. This could provide the desired structure for a sustained MP release. The seeded cells could adhere and proliferate to the composite fibers, which indicates the cytocompatibility of the resultant PVAPh/GelaPh fibrous mat. The results showed significant reductions in the number of apoptotic neurons and a substantial improvement in remyelination in the SCI+ PVAPh/GelaPh + MP group. The behavioral tests confirmed improvement in locomotor hindlimb function following treatment. The MP-loaded PVAPh/GelaPh mat developed through the long-term release of MP and the biocompatible fabricated mat could inhibit axonal demyelination, attenuate apoptosis, and improve the functional outcome, which verified the potential of PVAPh/GelaPh + MP nanocomposites as a bioactive scaffold for SCI regeneration.
Collapse
Affiliation(s)
- Maryam Mohajer
- Faculty of Tissue Engineering, Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Seyed Behnamedin Jameie
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mehdi Khanmohammadi
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland
| | - Sajad Hassanzadeh
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran 1449614535, Iran
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran 1445613131, Iran
| |
Collapse
|
2
|
Liang Q, Liang C, Liu X, Xing X, Ma S, Huang H, Liang C, Liu L, Liao L, Tian W. Vascularized dental pulp regeneration using cell-laden microfiber aggregates. J Mater Chem B 2022; 10:10097-10111. [PMID: 36458580 DOI: 10.1039/d2tb01825j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regeneration of dental pulp via the transplantation of dental pulp stem cells (DPSCs) has emerged as a novel therapy for dental pulp necrosis after inflammation and injury. However, providing sufficient oxygen and nutrients to support stem cell survival, self-renewal, and differentiation in the narrow root canal remains a great challenge. In this study, we explored a novel strategy based on cell-laden microfibers for dental pulp regeneration. Firstly, we fabricated suitable GelMA hydrogels that facilitate the survival and proliferation of DPSCs and human umbilical vein endothelial cells (HUVECs) and possess satisfactory biomechanical properties to generate microfibers. Two kinds of GelMA microfibers were fabricated with DPSCs and HUVECs via a silicone-tube-based coagulant bath-free method. Live/dead and Ki-67 immunofluorescence staining assays identified that these two cell lines maintained high survival rate and proliferation ability in GelMA microfibers. Immunofluorescence staining confirmed that DPSCs fully spread in the microfibers and highly expressed CD90 and laminin. HUVECs positively express CD31 and VE-cad in microfibers and could migrate well in the GelMA hydrogel. In vitro permeation experiments confirmed the superiority of microfiber aggregates (MAs) in liquid permeation compared to GelMA hydrogel blocks. We further adopted an ectopic pulp regeneration assay in nude mice to validate the regeneration of the aggregates of mixed DPSC-microfibers and HUVEC-microfibers in vivo. Compared to a conventional mixture of DPSCs and HUVECs in GelMA hydrogel blocks, the aggregates of cell-laden microfibers generated more pulp-like tissue, blood vessels, and odontoblast-like cells that positively express DMP-1 and DSPP. To our knowledge, this is the first attempt to apply cell-laden MAs for pulp regeneration. Our study proposes a new solution to the challenge of pulp regeneration, which might promote the clinical translation and application of stem cell-based therapy.
Collapse
Affiliation(s)
- Qingqing Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaojing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shixing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chao Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Wu X, Zhu H, Xu Y, Kong B, Tan Q. Chronic wounds: pathological characteristics and their stem cell-based therapies. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Gao Y, Kang Y, Wang T, Li C, Shen S, Qu C, Gong S, Liu P, Yang L, Liu J, Han B, Li C. Alginate microspheres-collagen hydrogel, as a novel 3D culture system, enhanced skin wound healing of hUCMSCs in rats model. Colloids Surf B Biointerfaces 2022; 219:112799. [PMID: 36095954 DOI: 10.1016/j.colsurfb.2022.112799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
Abstract
While stem cell transplantation has emerged as a promising approach to improving wound healing outcomes, the application of stem cells to date has been limited by the poor survival and retention of these cells once transplanted. The survival, development, and migratory activity of transplanted cells can be improved through the use of three-dimensional (3D) culture systems. Here, a novel alginate microsphere-collage hydrogel (AMS-Col gel) 3D culture system was developed and found to improve human umbilical cord mesenchymal stem cell (hUCMSC) survival, permitting their sustained release so as to promote wound healing. Through hematoxylin and eosin staining and Masson's trichrome staining, the prepared hUCMSCs-AMS-Col gel was found to exhibit wound healing activity. On day 7 following the hUCMSCs-AMS-Col gel treatment of model wounds, improved collagen fiber deposition and re-epithelialization were evident, with complete epithelial regeneration as of day 14 and near-total wound healing was evident as of day 21. This hUCMSCs-AMS-Col gel was also associated with increased VEGF and FGF2 expression. Together, these data indicate that AMS-Col gels are a promising and novel form of 3D cell culture system capable of improving hUCMSC-mediated wound healing, highlighting the potential clinical utility of this regenerative strategy.
Collapse
Affiliation(s)
- Yonglin Gao
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Yating Kang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Tong Wang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Chengbo Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Shengbiao Shen
- Yantai Longstrong Biotechnology Co., Ltd., Yantai 264670, PR China
| | - Chenglei Qu
- Yantai Longstrong Biotechnology Co., Ltd., Yantai 264670, PR China
| | - Shizhou Gong
- Yantai Longstrong Biotechnology Co., Ltd., Yantai 264670, PR China
| | - Ping Liu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Lintong Yang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Jingmin Liu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Bing Han
- Luye Pharma Group Ltd., Yantai 264003, PR China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
5
|
Sardelli L, Vangosa FB, Merli M, Ziccarelli A, Visentin S, Visai L, Petrini P. Bioinspired in vitro intestinal mucus model for 3D-dynamic culture of bacteria. BIOMATERIALS ADVANCES 2022; 139:213022. [PMID: 35891596 DOI: 10.1016/j.bioadv.2022.213022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The intestinal mucus is a biological barrier that supports the intestinal microbiota growth and filters molecules. To perform these functions, mucus possesses optimized microstructure and viscoelastic properties and it is steadily replenished thus flowing along the gut. The available in vitro intestinal mucus models are useful tools in investigating the microbiota-human cells interaction, and are used as matrices for bacterial culture or as static component of microfluidic devices like gut-on-chips. The aim of this work is to engineer an in vitro mucus models (I-Bac3Gel) addressing in a single system physiological viscoelastic properties (i.e., 2-200 Pa), 3D structure and suitability for dynamic bacterial culture. Homogeneously crosslinked alginate hydrogels are optimized in composition to obtain target viscoelastic and microstructural properties. Then, rheological tests are exploited to assess a priori the hydrogels capability to withstand the flow dynamic condition. We experimentally assess the suitability of I-Bac3Gels in the evolving field of microfluidics by applying a dynamic flow to a bacterial-loaded mucus model and by monitoring E. coli growth and survival. The engineered models represent a step forward in the modelling of the mucus, since they can answer to different urgent needs such as a 3D structure, bioinspired properties and compatibility with dynamic system.
Collapse
Affiliation(s)
- Lorenzo Sardelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
| | - Francesco Briatico Vangosa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Marta Merli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Anna Ziccarelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Sonja Visentin
- Molecular Biotechnology and Health Sciences Department, University of Torino, Torino, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici (ICS) Maugeri, IRCCS, Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
6
|
Upregulation of biochemical and biophysical properties of cell-laden microfiber, silk-hyaluronic acid composite. Int J Biol Macromol 2022; 211:700-710. [PMID: 35588975 DOI: 10.1016/j.ijbiomac.2022.05.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 01/06/2023]
Abstract
Cell-laden filament-like hydrogels are advantageous for many applications including drug screening, tissue engineering, and regenerative medicine. However, most of the designed filament vehicles hold weak mechanical properties, which hinder their applications in specific tissue engineering. We present a binary hybrid silk and hyaluronic acid hydrogel microfiber generated through a microfluidic system to encapsulate cells with superior mechanical properties and biocompatibility. Cell-laden hydrogel microfibers were continuously produced through coaxial double orifice microfluidic device and horseradish peroxidase mediated crosslinking, which conjugated introduce phenolic moieties in the backbone of silk fibroin and HA derivatives (Silk-Ph and HA-Ph, respectively). The iterative hybrid Silk-Ph + HA-Ph fibers were fabricated in tunable size distribution between 195 and 680 μm through control of outer flow velocity. Tensile strength and maximum stain of prepared Silk-Ph + HA-Ph sample upregulated more than three times higher than the single HA-Ph sample, which demonstrated significant impacts of synthesized silk derivative in hydrogel fiber composition. The proteolytic degradation of microfibers manipulated by hyaluronidase and collagenase treatment. Encapsulation process and crosslinking did not insert any harmful effect on cell viability (> 90%) and the cells maintained their growth ability after encapsulation process. Cellular filament-like tissue fabricated from proliferation of cells in Silk-Ph + HA-Ph microfiber.
Collapse
|
7
|
Pitton M, Fiorati A, Buscemi S, Melone L, Farè S, Contessi Negrini N. 3D Bioprinting of Pectin-Cellulose Nanofibers Multicomponent Bioinks. Front Bioeng Biotechnol 2021; 9:732689. [PMID: 34926414 PMCID: PMC8678092 DOI: 10.3389/fbioe.2021.732689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pectin has found extensive interest in biomedical applications, including wound dressing, drug delivery, and cancer targeting. However, the low viscosity of pectin solutions hinders their applications in 3D bioprinting. Here, we developed multicomponent bioinks prepared by combining pectin with TEMPO-oxidized cellulose nanofibers (TOCNFs) to optimize the inks' printability while ensuring stability of the printed hydrogels and simultaneously print viable cell-laden inks. First, we screened several combinations of pectin (1%, 1.5%, 2%, and 2.5% w/v) and TOCNFs (0%, 0.5%, 1%, and 1.5% w/v) by testing their rheological properties and printability. Addition of TOCNFs allowed increasing the inks' viscosity while maintaining shear thinning rheological response, and it allowed us to identify the optimal pectin concentration (2.5% w/v). We then selected the optimal TOCNFs concentration (1% w/v) by evaluating the viability of cells embedded in the ink and eventually optimized the writing speed to be used to print accurate 3D grid structures. Bioinks were prepared by embedding L929 fibroblast cells in the ink printed by optimized printing parameters. The printed scaffolds were stable in a physiological-like environment and characterized by an elastic modulus of E = 1.8 ± 0.2 kPa. Cells loaded in the ink and printed were viable (cell viability >80%) and their metabolic activity increased in time during the in vitro culture, showing the potential use of the developed bioinks for biofabrication and tissue engineering applications.
Collapse
Affiliation(s)
- Matteo Pitton
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Silvia Buscemi
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy.,Centro di Ricerca per l'Energia, l'Ambiente e il Territorio (CREAT), Università Telematica eCampus, Novedrate, Italy
| | - Silvia Farè
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Nicola Contessi Negrini
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| |
Collapse
|
8
|
Engineering injectable vascularized tissues from the bottom-up: Dynamics of in-gel extra-spheroid dermal tissue assembly. Biomaterials 2021; 279:121222. [PMID: 34736148 DOI: 10.1016/j.biomaterials.2021.121222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Modular tissue engineering approaches open up exciting perspectives for the biofabrication of vascularized tissues from the bottom-up, using micro-sized units such as spheroids as building blocks. While several techniques for 3D spheroid formation from multiple cell types have been reported, strategies to elicit the extra-spheroid assembly of complex vascularized tissues are still scarce. Here we describe an injectable approach to generate vascularized dermal tissue, as an example application, from spheroids combining fibroblasts and endothelial progenitors (OEC) in a xeno-free (XF) setting. Short-term cultured spheroids (1 day) were selected over mature spheroids (7 days), as they showed significantly higher angiogenic sprouting potential. Embedding spheroids in fibrin was crucial for triggering cell migration into the external milieu, while providing a 3D framework for in-gel extra-spheroid morphogenesis. Migrating fibroblasts proliferated and produced endogenous ECM forming a dense tissue, while OEC self-assembled into stable capillaries with lumen and basal lamina. Massive in vitro interconnection between sprouts from neighbouring spheroids rapidly settled an intricate vascular plexus. Upon injection into the chorioallantoic membrane of chick embryos, fibrin-entrapped pre-vascularized XF spheroids developed into a macrotissue with evident host vessel infiltration. After only 4 days, perfused chimeric capillaries with human cells were present in proximal areas, showing fast and functional inosculation between host and donor vessels. This method for generating dense vascularized tissue from injectable building blocks is clinically relevant and potentially useful for a range of applications.
Collapse
|
9
|
Campiglio CE, Carcano A, Draghi L. RGD-pectin microfiber patches for guiding muscle tissue regeneration. J Biomed Mater Res A 2021; 110:515-524. [PMID: 34423891 DOI: 10.1002/jbm.a.37301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Opportunely arranged microscaled fibers offer an attractive 3D architecture for tissue regeneration as they may enhance and stimulate specific tissue regrowth. Among different scaffolding options, encapsulating cells in degradable hydrogel microfibers appears as particularly attractive strategy. Hydrogel patches, in fact, offer a highly hydrated environment, allow easy incorporation of biologically active molecules, and can easily adapt to implantation site. In addition, microfiber architecture is intrinsically porous and can improve mass transport, vascularization, and cell survival after grafting. Anionic polysaccharides, as pectin or the more popular alginate, represent a particularly promising choice for the fabrication of cell-laden patches, due to their extremely mild gelation in the presence of divalent ions and widely accepted biocompatibility. In this study, to combine the favorable properties of hydrogel and fibrous architecture, a simple coaxial flow wet-spinning system was used to prepare cell-laden, 3D fibrous patches using RGD-modified pectin. Rapid fabrication of coherent self-standing patches, with diameter in the range of 100-200 μm and high cell density, was possible by accurate choice of pectin and calcium ions concentrations. Cells were homogeneously dispersed throughout the microfibers and remained highly viable for up to 2 weeks, when the initial stage of myotubes formation was observed. Modified-pectin microfibers appear as promising scaffold to support muscle tissue regeneration, due to their inherent porosity, the favorable cell-material interaction, and the possibility to guide cell alignment toward a functional tissue.
Collapse
Affiliation(s)
- Chiara Emma Campiglio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM-National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Anna Carcano
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM-National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| |
Collapse
|
10
|
Teixeira FC, Chaves S, Torres AL, Barrias CC, Bidarra SJ. Engineering a Vascularized 3D Hybrid System to Model Tumor-Stroma Interactions in Breast Cancer. Front Bioeng Biotechnol 2021; 9:647031. [PMID: 33791288 PMCID: PMC8006407 DOI: 10.3389/fbioe.2021.647031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 01/23/2023] Open
Abstract
The stromal microenvironment of breast tumors, namely the vasculature, has a key role in tumor development and metastatic spread. Tumor angiogenesis is a coordinated process, requiring the cooperation of cancer cells, stromal cells, such as fibroblasts and endothelial cells, secreted factors and the extracellular matrix (ECM). In vitro models capable of capturing such complex environment are still scarce, but are pivotal to improve success rates in drug development and screening. To address this challenge, we developed a hybrid alginate-based 3D system, combining hydrogel-embedded mammary epithelial cells (parenchymal compartment) with a porous scaffold co-seeded with fibroblasts and endothelial cells (vascularized stromal compartment). For the stromal compartment, we used porous alginate scaffolds produced by freeze-drying with particle leaching, a simple, low-cost and non-toxic approach that provided storable ready-to-use scaffolds fitting the wells of standard 96-well plates. Co-seeded endothelial cells and fibroblasts were able to adhere to the surface, spread and organize into tubular-like structures. For the parenchymal compartment, a designed alginate gel precursor solution load with mammary epithelial cells was added to the pores of pre-vascularized scaffolds, forming a hydrogel in situ by ionic crosslinking. The 3D hybrid system supports epithelial morphogenesis in organoids/tumoroids and endothelial tubulogenesis, allowing heterotypic cell-cell and cell-ECM interactions, while presenting excellent experimental tractability for whole-mount confocal microscopy, histology and mild cell recovery for down-stream analysis. It thus provides a unique 3D in vitro platform to dissect epithelial-stromal interactions and tumor angiogenesis, which may assist in the development of selective and more effective anticancer therapies.
Collapse
Affiliation(s)
- Filipa C Teixeira
- i3S - Instituto de Inovação e Investigação em Saúde, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Sara Chaves
- i3S - Instituto de Inovação e Investigação em Saúde, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Luísa Torres
- i3S - Instituto de Inovação e Investigação em Saúde, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Cristina C Barrias
- i3S - Instituto de Inovação e Investigação em Saúde, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sílvia J Bidarra
- i3S - Instituto de Inovação e Investigação em Saúde, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Shao F, Yu L, Zhang Y, An C, Zhang H, Zhang Y, Xiong Y, Wang H. Microfluidic Encapsulation of Single Cells by Alginate Microgels Using a Trigger-Gellified Strategy. Front Bioeng Biotechnol 2020; 8:583065. [PMID: 33154965 PMCID: PMC7591722 DOI: 10.3389/fbioe.2020.583065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Microfluidics-based alginate microgels have shown great potential to encapsulate cells in a high-throughput and controllable manner. However, cell viability and biological functions are substantially compromised due to the harsh conditions for gelation, which remains a major challenge for cell encapsulation. Herein, we presented an efficient and biocompatible method by on-chip triggered gelation to generate microfluidic alginate microgels for single-cell encapsulation. Two calcium complexes of calcium–ethylenediaminetetraacetic acid (Ca-EDTA) and calcium–nitrilotriacetic (Ca-NTA) as crosslinkers for triggered gelation of alginate were compared and investigated for feasible application. By triggered release of Ca2+ ions from the calcium complex via adding acetic acid in the oil phase, the alginate precursor in the aqueous droplets can be crosslinked to form alginate microgels. Although using Ca-EDTA and Ca-NTA both achieved on-chip gelation, Ca-NTA led to significantly higher cell viability since the dissociation of Ca2+ ions from Ca-NTA can be obtained using less concentration of acid compared to Ca-EDTA. We further demonstrated the functionality of encapsulated mesenchymal stem cells (MSCs) in alginate microgels prepared using Ca-NTA, as evidenced by the osteogenesis of encapsulated MSCs upon inductive culture. In summary, our study provided a biocompatible strategy to prepare alginate microgels for single-cell encapsulation which can be further used for applications in tissue engineering and cell therapies.
Collapse
Affiliation(s)
- Fei Shao
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lei Yu
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yang Zhang
- Laboratory of Regenerative Biomaterials, Department of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chuanfeng An
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Haoyue Zhang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yujie Zhang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yi Xiong
- Laboratory of Regenerative Biomaterials, Department of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
12
|
Cross-Linking Optimization for Electrospun Gelatin: Challenge of Preserving Fiber Topography. Polymers (Basel) 2020; 12:polym12112472. [PMID: 33113784 PMCID: PMC7692762 DOI: 10.3390/polym12112472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Opportunely arranged micro/nano-scaled fibers represent an extremely attractive architecture for tissue engineering, as they offer an intrinsically porous structure, a high available surface, and an ideal microtopography for guiding cell migration. When fibers are made with naturally occurring polymers, matrices that closely mimic the architecture of the native extra-cellular matrix and offer specific chemical cues can be obtained. Along this track, electrospinning of collagen or gelatin is a typical and effective combination to easily prepare fibrous scaffolds with excellent properties in terms of biocompatibility and biomimicry, but an appropriate cross-linking strategy is required. Many common protocols involve the use of swelling solvents and can result in significant impairment of fibrous morphology and porosity. As a consequence, the efforts for processing gelatin into a fiber network can be vain, as a film-like morphology will be eventually presented to cells. However, this appears to be a frequently overlooked aspect. Here, the effect on fiber morphology of common cross-linking protocols was analyzed, and different strategies to improve the final morphology were evaluated (including alternative solvents, cross-linker concentration, mechanical constraint, and evaporation conditions). Finally, an optimized, fiber-preserving protocol based on carbodiimide (EDC) chemistry was defined.
Collapse
|
13
|
Neves MI, Moroni L, Barrias CC. Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. Front Bioeng Biotechnol 2020; 8:665. [PMID: 32695759 PMCID: PMC7338591 DOI: 10.3389/fbioe.2020.00665] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The rational choice and design of biomaterials for biomedical applications is crucial for successful in vitro and in vivo strategies, ultimately dictating their performance and potential clinical applications. Alginate, a marine-derived polysaccharide obtained from seaweeds, is one of the most widely used polymers in the biomedical field, particularly to build three dimensional (3D) systems for in vitro culture and in vivo delivery of cells. Despite their biocompatibility, alginate hydrogels often require modifications to improve their biological activity, namely via inclusion of mammalian cell-interactive domains and fine-tuning of mechanical properties. These modifications enable the addition of new features for greater versatility and control over alginate-based systems, extending the plethora of applications and procedures where they can be used. Additionally, hybrid systems based on alginate combination with other components can also be explored to improve the mimicry of extracellular microenvironments and their dynamics. This review provides an overview on alginate properties and current clinical applications, along with different strategies that have been reported to improve alginate hydrogels performance as 3D matrices and 4D dynamic systems.
Collapse
Affiliation(s)
- Mariana Isabel Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.,CNR NANOTEC - Institute of Nanotechnology, Università del Salento, Lecce, Italy
| | - Cristina Carvalho Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Huang Y, Feng Q, Jiang H, Zhou W, Chen J, Gao J, Wang K, Wan X, Yu Y. Mimicking the Endometrial Cancer Tumor Microenvironment to Reprogram Tumor-Associated Macrophages in Disintegrable Supramolecular Gelatin Hydrogel. Int J Nanomedicine 2020; 15:4625-4637. [PMID: 32636622 PMCID: PMC7326693 DOI: 10.2147/ijn.s252074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Besides the tumor cells themselves, solid tumors are comprised of numerous cell types including infiltrating immune cells such as tumor-associated macrophages (TAMs). TAMs are vital stromal components of host immune system and play a critical role in the development of cancer. TAMs can be divided into two subtypes: M1 tumor-suppressive macrophage and M2 tumor-supportive macrophage. To better address the observations of TAMs functional performance, we describe an in vitro system that mimics the populations of TAMs infiltrated into the tumor mass by using our disintegrable supramolecular gelatin (DSG) hydrogels, which are physically crosslinked by host-guest complexations. Materials and Methods The host–guest interaction was adopted between the aromatic groups of gelatin and the photocrosslinkable acrylated β-cyclodextrins (Ac-β-CDs) to form the DSG hydrogels. The convenient macrophage/endometrial cancer cells heterospheroid 3D model was set up by DSG hydrogels. RT-PCR and Western blot assays were developed to evaluate the efficiencies of inducers on the macrophages. The ELISA and oxygen saturation assays were performed to measure the secretion of VEGF and consumption of oxygen of tumor and/or macrophages, respectively. To determine the antitumor effects of M2 reprogrammed macrophages in vitro and in vivo, migration assay and tumor xenograft model were used, respectively. Results The host-guest complexations of DSG hydrogels were controllably broken efficiently by soaking into the solution of competitive guest monomers 1-adamantanamine hydrochloride. The DSG hydrogels help IFN-γ reprogram the M2 to M1 and then decrease the tumor/M2 reprogrammed macrophage cells heterospheroid secretion of VEGF and increase the relative oxygen saturation. Significantly, the co-cultural tumor/M2 reprogrammed group from the disintegrated DSG hydrogels reduced the migration of cancer cells in vitro and the tumor growth in vivo. Conclusion We obtain a TAMs/tumor microenvironment-responsive 3D model based on the novel DSG hydrogels, and will be of utility in cancer therapy and drug discovery.
Collapse
Affiliation(s)
- Yujia Huang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Qian Feng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, People's Republic of China
| | - Huabo Jiang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wanding Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jinhong Chen
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jie Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, People's Republic of China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|