1
|
Krzywanski J, Sosnowski M, Grabowska K, Zylka A, Lasek L, Kijo-Kleczkowska A. Advanced Computational Methods for Modeling, Prediction and Optimization-A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3521. [PMID: 39063813 PMCID: PMC11279266 DOI: 10.3390/ma17143521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
This paper provides a comprehensive review of recent advancements in computational methods for modeling, simulation, and optimization of complex systems in materials engineering, mechanical engineering, and energy systems. We identified key trends and highlighted the integration of artificial intelligence (AI) with traditional computational methods. Some of the cited works were previously published within the topic: "Computational Methods: Modeling, Simulations, and Optimization of Complex Systems"; thus, this article compiles the latest reports from this field. The work presents various contemporary applications of advanced computational algorithms, including AI methods. It also introduces proposals for novel strategies in materials production and optimization methods within the energy systems domain. It is essential to optimize the properties of materials used in energy. Our findings demonstrate significant improvements in accuracy and efficiency, offering valuable insights for researchers and practitioners. This review contributes to the field by synthesizing state-of-the-art developments and suggesting directions for future research, underscoring the critical role of these methods in advancing engineering and technological solutions.
Collapse
Affiliation(s)
- Jaroslaw Krzywanski
- Department of Advanced Computational Methods, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland; (M.S.); (K.G.); (A.Z.)
| | - Marcin Sosnowski
- Department of Advanced Computational Methods, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland; (M.S.); (K.G.); (A.Z.)
| | - Karolina Grabowska
- Department of Advanced Computational Methods, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland; (M.S.); (K.G.); (A.Z.)
| | - Anna Zylka
- Department of Advanced Computational Methods, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland; (M.S.); (K.G.); (A.Z.)
| | - Lukasz Lasek
- Wladyslaw Bieganski Collegium Medicum, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| | - Agnieszka Kijo-Kleczkowska
- Department of Thermal Machinery, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42-201 Czestochowa, Poland;
| |
Collapse
|
2
|
Kheiri S, Chen Z, Yakavets I, Rakhshani F, Young EWK, Kumacheva E. Integrating spheroid-on-a-chip with tubeless rocker platform: A high-throughput biological screening platform. Biotechnol J 2023; 18:e2200621. [PMID: 37436706 DOI: 10.1002/biot.202200621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Spheroid-on-a-chip platforms are emerging as promising in vitro models that enable screening of the efficacy of biologically active ingredients. Generally, the supply of liquids to spheroids occurs in the steady flow mode with the use of syringe pumps; however, the utilization of tubing and connections, especially for multiplexing and high-throughput screening applications, makes spheroid-on-a-chip platforms labor- and cost-intensive. Gravity-induced flow using rocker platforms overcomes these challenges. Here, a robust gravity-driven technique was developed to culture arrays of cancer cell spheroids and dermal fibroblast spheroids in a high-throughput manner using a rocker platform. The efficiency of the developed rocker-based platform was benchmarked to syringe pumps for generating multicellular spheroids and their use for screening biologically active ingredients. Cell viability, internal spheroid structure as well as the effect of vitamin C on spheroids' protein synthesis was studied. The rocker-based platform not only offers comparable or enhanced performance in terms of cell viability, spheroids formation, and protein production by dermal fibroblast spheroids but also, from a practical perspective, offers a smaller footprint, requires a lower cost, and offers an easier method for handling. These results support the application of rocker-based microfluidic spheroid-on-a-chip platforms for in vitro screening in a high-throughput manner with industrial scaling-up opportunities.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Faeze Rakhshani
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Rebane I, Priks H, Levin KJ, Sarigül İ, Mäeorg U, Johanson U, Piirimägi P, Tenson T, Tamm T. Microbial growth and adhesion of Escherichia coli in elastomeric silicone foams with commonly used additives. Sci Rep 2023; 13:8541. [PMID: 37237045 DOI: 10.1038/s41598-023-35239-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Silicone is often used in environments where water repellency is an advantage. Contact with water promotes the adhesion of microorganisms and biofilm formation. Depending on the application, this may increase the possibility of food poisoning and infections, the material's degrading appearance, and the likelihood of manufacturing defects. The prevention of microbial adhesion and biofilm formation is also essential for silicone-based elastomeric foams, which are used in direct contact with human bodies but are often difficult to clean. In this study, the microbial attachment in and the retention from the pores of silicone foams of different compositions is described and compared to those of commonly used polyurethane foams. The growth of the gram-negative Escherichia coli in the pores and their leaching during wash cycles is characterised by bacterial growth/inhibition, adhesion assay, and SEM imaging. The structural and surface properties of the materials are compared. Despite using common antibacterial additives, we have found that non-soluble particles stay isolated in the silicone elastomer layer, thus affecting surface microroughness. Water-soluble tannic acid dissolves into the medium and seems to aid in inhibiting planktonic bacterial growth, with a clear indication of the availability of tannic acid on the surfaces of SIFs.
Collapse
Affiliation(s)
- Ingrid Rebane
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia.
| | - Hans Priks
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Karl Jakob Levin
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - İsmail Sarigül
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Uno Mäeorg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Urmas Johanson
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | | | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Tarmo Tamm
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
4
|
Alvand ZM, Rahimi M, Rafati H. Chitosan decorated essential oil nanoemulsions for enhanced antibacterial activity using a microfluidic device and response surface methodology. Int J Biol Macromol 2023; 239:124257. [PMID: 36996964 DOI: 10.1016/j.ijbiomac.2023.124257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
In this work, the antibacterial activity of Satureja Khuzestanica essential oil nanoemulsions improved by employing chitosan (ch/SKEO NE) against E. coli bacterium. The optimum ch/SKEO NE with mean droplet size of 68 nm was attained at 1.97, 1.23, and 0.10%w/w of surfactant, essential oil and chitosan, using Response Surface Methodology (RSM). Applying microfluidic platform, the ch/SKEO NE resulted in improved antibacterial activity owing to the modification of surface properties. The nanoemulsion samples showed a significant rupturing effect on the E. coli bacterial cell membrane which resulted in a rapid release of cellular contents. This action was remarkably intensified by executing microfluidic chip in parallel to the conventional method. Having treated the bacteria in the microfluidic chip for 5 min with a 8 μg/mL concentration of ch/SKEO NE, the bacterial integrity disrupted quickly, and the activity was totally lost in a 10-min period at 37 μg/mL, while it took 5 h for a complete inhibition in the conventional method using the same concentration of ch/SKEO NE. It can be concluded that nanoemulsification of EOs using chitosan coating can intensify the interaction of nanodroplets with the bacterial membrane, especially within the microfluidic chips which provides high contact surface area.
Collapse
|
5
|
Qiu Y, Wu Z, Wang J, Zhang C, Zhang H. Introduction of Materials Genome Technology and Its Applications in the Field of Biomedical Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1906. [PMID: 36903027 PMCID: PMC10004319 DOI: 10.3390/ma16051906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Traditional research and development (R&D) on biomedical materials depends heavily on the trial and error process, thereby leading to huge economic and time burden. Most recently, materials genome technology (MGT) has been recognized as an effective approach to addressing this problem. In this paper, the basic concepts involved in the MGT are introduced, and the applications of MGT in the R&D of metallic, inorganic non-metallic, polymeric, and composite biomedical materials are summarized; in view of the existing limitations of MGT for R&D of biomedical materials, potential strategies are proposed on the establishment and management of material databases, the upgrading of high-throughput experimental technology, the construction of data mining prediction platforms, and the training of relevant materials talents. In the end, future trend of MGT for R&D of biomedical materials is proposed.
Collapse
Affiliation(s)
| | | | | | - Chao Zhang
- Correspondence: (C.Z.); (H.Z.); Tel.: +86-20-39332145 (C.Z. & H.Z.)
| | - Heye Zhang
- Correspondence: (C.Z.); (H.Z.); Tel.: +86-20-39332145 (C.Z. & H.Z.)
| |
Collapse
|
6
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Tran UPN, Nguyen DTC, Tran TV. A critical review on the bio-mediated green synthesis and multiple applications of magnesium oxide nanoparticles. CHEMOSPHERE 2023; 312:137301. [PMID: 36410506 DOI: 10.1016/j.chemosphere.2022.137301] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, advancements in nanotechnology have efficiently solved many global problems, such as environmental pollution, climate change, and infectious diseases. Nano-scaled materials have played a central role in this evolution. Chemical synthesis of nanomaterials, however, required hazardous chemicals, unsafe, eco-unfriendly, and cost-ineffective, calling for green synthesis methods. Here, we review the green synthesis of MgO nanoparticles and their applications in biochemical, environmental remediation, catalysis, and energy production. Green MgO nanoparticles can be safely produced using biomolecules extracted from plants, fungus, bacteria, algae, and lichens. They exhibited fascinating and unique properties in morphology, surface area, particle size, and stabilization. Green MgO nanoparticles served as excellent antimicrobial agents, adsorbents, colorimetric sensors, and had enormous potential in biomedical therapies against cancers, oxidants, diseases, and the sensing detection of dopamine. In addition, green MgO nanoparticles are of great interests in plant pathogens, phytoremediation, plant cell and organ culture, and seed germination in the agricultural sector. This review also highlighted recent advances in using green MgO nanoparticles as nanocatalysts, nano-fertilizers, and nano-pesticides. Thanks to many emerging applications, green MgO nanoparticles can become a promising platform for future studies.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Uyen P N Tran
- Faculty of Engineering and Technology, Van Hien University, Ho Chi Minh City, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
7
|
Interaction of a natural compound nanoemulsion with Gram negative and Gram positive bacterial membrane; a mechanism based study using a microfluidic chip and DESI technique. Int J Pharm 2022; 626:122181. [PMID: 36087628 DOI: 10.1016/j.ijpharm.2022.122181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
The antibacterial activity of a nanoemulsion prepared from Satureja Khusitanica essential oil against a Gram-negative (Escherichia coli) and a Gram-positive (Bacillus atrophaeus) bacteria evaluated using microfluidic and conventional techniques. The effect of different residence time and concentrations on the antibacterial activity of nanoemulsion was studied by measuring the release of protein, nucleic acids, potassium, and also recording the MIC, MBC and time killing assays. Remarkable intensification was observed by employing microfluidic chip regarding a high-contact surface area between nanodroplets and bacterial membrane. The MIC and MBC values for E. coli and B. atrophaeus in conventional method were 400 and 1600 µg mL-1, respectively, whereas these values reduced to 11 to 50 µg mL-1 using microfluidic system. B. atrophaeus seemed to be more resistant than E. coli to the nanoemulsion treatment, perhaps due to different cell wall structures. Bacterial cell wall changes were examined using a desorption electrospray ionization (DESI) technique. It was found that the structural changes were more imminent in Gram negative E. coli by detecting a number of released lipids including phosphatidyl glycerol and phosphatidyl ethanolamines. The DESI spectra of B. atrophaeus revealed no M/Z related lipid release. These findings may help providing novel nano based natural antibacterials.
Collapse
|
8
|
Kheiri S, Kumacheva E, Young EWK. Computational Modelling and Big Data Analysis of Flow and Drug Transport in Microfluidic Systems: A Spheroid-on-a-Chip Study. Front Bioeng Biotechnol 2021; 9:781566. [PMID: 34888303 PMCID: PMC8650096 DOI: 10.3389/fbioe.2021.781566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Microfluidic tumour spheroid-on-a-chip platforms enable control of spheroid size and their microenvironment and offer the capability of high-throughput drug screening, but drug supply to spheroids is a complex process that depends on a combination of mechanical, biochemical, and biophysical factors. To account for these coupled effects, many microfluidic device designs and operating conditions must be considered and optimized in a time- and labour-intensive trial-and-error process. Computational modelling facilitates a systematic exploration of a large design parameter space via in silico simulations, but the majority of in silico models apply only a small set of conditions or parametric levels. Novel approaches to computational modelling are needed to explore large parameter spaces and accelerate the optimization of spheroid-on-a-chip and other organ-on-a-chip designs. Here, we report an efficient computational approach for simulating fluid flow and transport of drugs in a high-throughput arrayed cancer spheroid-on-a-chip platform. Our strategy combines four key factors: i) governing physical equations; ii) parametric sweeping; iii) parallel computing; and iv) extensive dataset analysis, thereby enabling a complete “full-factorial” exploration of the design parameter space in combinatorial fashion. The simulations were conducted in a time-efficient manner without requiring massive computational time. As a case study, we simulated >15,000 microfluidic device designs and flow conditions for a representative multicellular spheroids-on-a-chip arrayed device, thus acquiring a single dataset consisting of ∼10 billion datapoints in ∼95 GBs. To validate our computational model, we performed physical experiments in a representative spheroid-on-a-chip device that showed excellent agreement between experimental and simulated data. This study offers a computational strategy to accelerate the optimization of microfluidic device designs and provide insight on the flow and drug transport in spheroid-on-a-chip and other biomicrofluidic platforms.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Edmond W K Young
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
10
|
Alamry KA, Almehmadi SJ, Elfaky M, Al-Shareef HF, J. A. S, Hussein MA. Enhanced antimicrobial activity of new arylidene-based polyketone nanocomposite materials. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1784213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Khalid A. Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar J. Almehmadi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M.A. Elfaky
- Faculty of Pharmacy, Natural Products and Alternative Medicine Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H. F. Al-Shareef
- Departement of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samah J. A.
- Department of Biochemistry, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud A. Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Polymer Chemistry Lab., Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Zhou B, Li JX. One-step to synthesize multilevel structured ZnO films with exceptional wettability. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abb589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|