1
|
Wathoni N, Puluhulawa LE, Joni IM, Muchtaridi M, Mohammed AFA, Elamin KM, Milanda T, Gozali D. Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Deliv 2022; 29:2959-2970. [PMID: 36085575 PMCID: PMC9467540 DOI: 10.1080/10717544.2022.2120566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lung cancer is the second most common type of cancer after breast cancer. It ranks first in terms of mortality rate among all types of cancer. Lung cancer therapies are still being developed, one of which makes use of nanoparticle technology. However, conjugation with specific ligands capable of delivering drugs more precisely to cancer sites is still required to enhance nanoparticle targeting performance. Monoclonal antibodies are one type of mediator that can actively target nanoparticles. Due to the large number of antigens on the surface of cancer cells, monoclonal antibodies are widely used to deliver nanoparticles and improve drug targeting to cancer cells. Unfortunately, these antibodies have some drawbacks, such as rapid elimination, which results in a short half-life and ineffective dose. As a result, many of them are formulated in nanoparticles to minimize their major drawbacks and enhance drug targeting. This review summarizes and discusses articles on developing and applying various types of monoclonal antibody ligand nanoparticles as lung cancer target drugs. This review will serve as a guide for the choice of nanoparticle systems containing monoclonal antibody ligands for drug delivery in lung cancer therapy.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, Indonesia
| | - Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ahmed Fouad Abdelwahab Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
- Graduate school of Pharmaceutical sciences, Kumamoto University, Kumamoto, Japan
| | - Khaled M. Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tiana Milanda
- Departement of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
2
|
Tunki L, Ganthala PD, Kulhari DP, Andugulapati SB, Kulhari H, Sistla R, Bhargava SK. Ameliorating the antitumor activity of gemcitabine against breast tumor using α vβ 3 integrin-targeting lipid nanoparticles. Drug Dev Ind Pharm 2022; 48:384-396. [PMID: 36047536 DOI: 10.1080/03639045.2022.2120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The main objective is to formulate solid lipid nanoparticles conjugated with cyclic RGDfk peptide encapsulated with gemcitabine hydrochloride drug for targeting breast cancer. SIGNIFICANCE The hydrophilic nature of gemcitabine hampers passive transport by cell membrane permeation that may lead to drug resistance as it has to enter the cells via nucleoside transporters. The art of encapsulating the drug in nanovesicle and then anchoring it with targeting ligand is one of the present areas of research in cancer chemotherapy. METHODS In this study solid lipid nanoparticles were prepared by double emulsification and solvent evaporation method. Cyclic RGDfk and gemcitabine hydrochloride were used as targeting ligand and chemotherapeutic drug, respectively, for targeting breast cancer. The prepared nanoparticles were evaluated for in vitro and in vivo performance to showcase the targeting efficiency and therapeutic benefits of the gemcitabine loaded ligand conjugated nanoparticles. RESULTS When compared with gemcitabine (GEM) and GEM loaded nanoparticles (GSLN), the ligand conjugated GEM nanoparticles (cGSLN) showed superior cytotoxicity, apoptosis and inhibition of 3D multicellular spheroids in human breast cancer cells (MDA MB 231). The in vivo tumor regression studies in orthotopic breast cancer induced Balb/C mice showed that cGSLN displayed superior tumor suppression and also the targeting potential of the cGSLN towards induced breast cancer. CONCLUSION Prepared nanoformulations showed enhanced anticancer activity in both 2D and 3D cell culture models along with antitumor efficacy in orthotopic breast cancer mouse models.
Collapse
Affiliation(s)
- Lakshmi Tunki
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Parimala Devi Ganthala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Deep Pooja Kulhari
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 302030, India
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| |
Collapse
|
3
|
Ladju RB, Ulhaq ZS, Soraya GV. Nanotheranostics: A powerful next-generation solution to tackle hepatocellular carcinoma. World J Gastroenterol 2022; 28:176-187. [PMID: 35110943 PMCID: PMC8776531 DOI: 10.3748/wjg.v28.i2.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an epidemic burden and remains highly prevalent worldwide. The significant mortality rates of HCC are largely due to the tendency of late diagnosis and the multifaceted, complex nature of treatment. Meanwhile, current therapeutic modalities such as liver resection and transplantation are only effective for resolving early-stage HCC. Hence, alternative approaches are required to improve detection and enhance the efficacy of current treatment options. Nanotheranostic platforms, which utilize biocompatible nanoparticles to perform both diagnostics and targeted delivery, has been considered a potential approach for cancer management in the past few decades. Advancement of nanomaterials and biomedical engineering techniques has led to rapid expansion of the nanotheranostics field, allowing for more sensitive and specific diagnosis, real-time monitoring of drug delivery, and enhanced treatment efficacies across various malignancies. The focus of this review is on the applications of nanotheranostics for HCC. The review first explores the current epidemiology and the commonly encountered obstacles in HCC diagnosis and treatment. It then presents the current technological and functional advancements in nanotheranostic technology for cancer in general, and then specifically explores the use of nanotheranostic modalities as a promising option to address the key challenges present in HCC management.
Collapse
Affiliation(s)
- Rusdina Bte Ladju
- Department of Anatomic Pathology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Zulvikar Syambani Ulhaq
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University, Malang 65151, Indonesia
- National Research and Innovation Agency, Central Jakarta 10340, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|