1
|
Rohilla R, Kaur A, Rani S, Prabhakar N. Ultrasensitive detection of holoTC for analysis of Vitamin B12 levels using Ag 2MoO 4 deposited PEDOT sensing platform. Biosens Bioelectron 2025; 267:116783. [PMID: 39316865 DOI: 10.1016/j.bios.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Vitamin B12 is an essential micronutrient required for the proper functioning of the human body. Vitamin B12 deficiency is primarily causative of various neurolological disorders alongwith recurrence of oral ulcers and burning sensations which are early signs of condition such as pernicious anemia. Other complications associated with Vitamin B12 deficiency include risk of heart failure due to anemia, risk of developing autoimmune disorders and gastric cancer. Therefore, to obstruct these communal health issues, early detection of Vit B12 is highly needed. However, screening of vitamin B12 insufficiency is hindered by the low sensitivity of the conventional vitamin B12 test. Holotranscobalamin (holoTC) is an early indicator of the negative vitamin B12 balance as it is the first protein to decline in the serum. We report a novel impedimetric immunosensor based on flower-like poly (3,4-ethylenedioxythiophene) (PEDOT) nanostructural film impregnated with silver molybdate nanoparticles (Ag2MoO₄ NPs) deposited on fluorine-doped tin oxide electrode. The prepared electrodes were characterized by Field emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and electrochemical studies. The activated anti-holoTC antibody was immobilized and optimized to capture the target in a response time of 15 min. The electrochemical performance of the sensor was carried out by using the electrochemical impedance spectroscopy technique (EIS) and a good linear relationship between ΔRct and holoTC was obtained in the range from 0.1 pg mL-1 to 100 ng mL-1 with a detection limit of 0.093 pg mL-1. The proposed sensor was successfully applied in human serum samples for holoTC detection. The experimental results showed that the immunosensor is highly selective towards holoTC and presented an acceptable stability of 20 days with reproducibility RSD ≤4%. To the best of our knowledge, this is the first developed electrochemical immunosensor for holoTC detection.
Collapse
Affiliation(s)
- Rishika Rohilla
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Amandeep Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India; Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Sonia Rani
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Kapil P, Verma D, Pradhan R, Kalkal A, Packirisamy G. A bioinspired porous and electroactive reduced graphene oxide hydrogel based biosensing platform for efficient detection of tumor necrosis factor-α. J Mater Chem B 2024. [PMID: 39420620 DOI: 10.1039/d4tb01216j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Oral cancer is one of the leading cancer types, which is frequently diagnosed at an advanced stage, giving patients a poor prognosis and fewer therapeutic choices. To address this gap, exploiting biosensors utilizing anti-biofouling hydrogels for early-stage oral cancer detection in non-invasive body fluids is gaining utter importance. Herein, we have demonstrated the fabrication of an innovative electrochemical immunosensor for the rapid, label-free, non-invasive, and affordable detection of tumor necrosis factor-α (TNF-α), a biomarker associated with oral cancer progression in artificial saliva samples. The gold screen-printed electrodes (gSPEs) are modified with a green synthesized porous and electroactive reduced graphene oxide (rGO) hydrogel utilizing L-cystine (L-cys) as both in situ reducing and surface functionalization agent, followed by covalent immobilization of anti-TNF-α and blocking of residual sites with bovine serum albumin (BSA) to fabricate the BSA/anti-TNF-α/L-cys_rGO hydrogel/gSPE immunosensing platform. The fabricated platform demonstrates excellent performance, with a low limit of detection of 1.20 pg mL-1, a broad linear range from 1 to 200 pg mL-1, and a high sensitivity of 2.10 μA pg-1 mL cm-2 carried out with differential pulse voltammetry (DPV) technique. Moreover, it exhibits specificity towards TNF-α, even in the presence of potential interferents and other cancer biomarkers. Besides, the biosensor showed good reproducibility and repeatability with a relative standard deviation (%RSD) of 5.11% and 1.85%, respectively. Thus, integrating the L-cys_rGO hydrogel in the immunosensor design offers enhanced performance, paving the way for its application in early-stage oral cancer diagnosis.
Collapse
Affiliation(s)
- Parth Kapil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Damini Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Rangadhar Pradhan
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Ashish Kalkal
- Nanostructured System Laboratory, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, W1W 7TS, UK
| | - Gopinath Packirisamy
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
3
|
Zhou Z, Lin J, Yue D, Chen H, Chen S. Sandwich-like voltametric immunosensing of interleukin-8 based on β-cyclodextrin/carbon nanotubes and methylthionine chloride@UIO-66 framework. ANAL SCI 2024; 40:1357-1363. [PMID: 38662337 DOI: 10.1007/s44211-024-00574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 04/26/2024]
Abstract
The level of interleukin-8 (IL-8) in the body is an effective factor for the early diagnosis of acute tubular necrosis and oral tumor. In this work, a novel sandwich-like voltametric immunosensor (SVS) of IL-8 was constructed by preparing β-cyclodextrin/carbon nanotube (CD/CNT) to immobilize primary antibody (PAb) of IL-8 and UIO-66-NH2 MOFs structure to immobilize second antibody (SAb) and methylene blue (Mb) probe. In this designed SVS, the prepared CD/CNT nanohybrid with large surface area and conductivity can immobilize PAb via simple host-guest recognition, and UIO-66-NH2 provided an ideal platform to accommodate SAb and a large number of Mb molecules as signal-amplifier. In the existence of target IL-8, the current peak of Mb from the SVS assay increases with the increasement of IL-8 level. Through optimizing and adjusting various factors, a wide linearity (0.001-2.5 ng mL-1) and low analytical limit (0.2 pg mL-1) of IL-8 were realized, so it's expected the developed SVS strategy has significant applications for the detection of IL-8.
Collapse
Affiliation(s)
- Zhihua Zhou
- Department of Urology, Meng Chao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jiajia Lin
- Department of Neonatology, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People's Republic of China
- Department of Neonatology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research (Fujian Maternity and Child Health Hospital), Fuzhou, People's Republic of China
| | - Daoping Yue
- Ningde City Hospital, Ningde Normal University, Ningde, People's Republic of China
| | - Huaiyu Chen
- Department of Intensive Care Unit, the People's Hospital of Fujian Traditional Medical University, Fuzhou, People's Republic of China.
| | - Sheng Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.
| |
Collapse
|
4
|
Liu C, Guan C, Li Y, Li Z, Wang Y, Han G. Advances in Electrochemical Biosensors for the Detection of Common Oral Diseases. Crit Rev Anal Chem 2024:1-21. [PMID: 38366356 DOI: 10.1080/10408347.2024.2315112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Limiting and preventing oral diseases remains a major challenge to the health of populations around the world, so finding ways to detect early-stage diseases (e.g., caries, periodontal disease, and oral cancer) and aiding in their prevention has always been an important clinical treatment concept. The development and application of electrochemical detection technology can provide important support for the early detection and non-invasive diagnosis of oral diseases and make up for the shortcomings of traditional diagnostic methods, which are highly sensitive, non-invasive, cost-effective, and less labor-intensive. It detects specific disease markers in body fluids through electrochemical reactions, discovers early warning signals of diseases, and realizes rapid and reliable diagnosis. This paper comprehensively summarizes the development and application of electrochemical biosensors in the detection and diagnosis of common oral diseases in terms of application platforms, sensing types, and disease detection, and discusses the challenges faced by electrochemical biosensors in the detection of oral diseases as well as the great prospects for future applications, in the hope of providing important insights for the future development of electrochemical biosensors for the early detection of oral diseases.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanchun Wang
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
5
|
Yang M, Wang Y, Huang L, Jiang Y, Ke Y, Chen W, Yang L, Chen L, Duan Y. A Simple and Sensitive Electrochemical Sandwich‐Like Immunosensor for Interleukin‐8 Utilizing Carbon Black as a Sensing Platform and Silver‐Ferrocene as a Signal Amplifier. ChemistrySelect 2023. [DOI: 10.1002/slct.202203909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Miao Yang
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Yongjie Wang
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Lingling Huang
- Department of Stomatology The First Affiliated Hospital Fujian Medical University Fuzhou 350005 PR China
| | - Yuling Jiang
- Department of Stomatology Xiangyang No.1 People's Hospital Hubei University of Medicine Xiangyang 441053 PR China
| | - Yue Ke
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Wenjie Chen
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Lei Yang
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Lina Chen
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| | - Yanjun Duan
- Department of Stomatology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 PR China
| |
Collapse
|
6
|
Aydın EB, Aydın M, Sezgintürk MK. Biosensors for saliva biomarkers. Adv Clin Chem 2023; 113:1-41. [PMID: 36858644 DOI: 10.1016/bs.acc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The analysis of salivary biomarkers has gained interest and is advantageous for simple, safe, and non-invasive testing in diagnosis as well as treatment. This chapter explores the importance of saliva biomarkers and summarizes recent advances in biosensor fabrication. The identification of diagnostic, prognostic and therapeutic markers in this matrix enables more rapid and frequent testing when combined with the use of biosensor technology. Challenges and future goals are highlighted and examined.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
7
|
Sanko V, Kuralay F. Label-Free Electrochemical Biosensor Platforms for Cancer Diagnosis: Recent Achievements and Challenges. BIOSENSORS 2023; 13:bios13030333. [PMID: 36979545 PMCID: PMC10046346 DOI: 10.3390/bios13030333] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 05/31/2023]
Abstract
With its fatal effects, cancer is still one of the most important diseases of today's world. The underlying fact behind this scenario is most probably due to its late diagnosis. That is why the necessity for the detection of different cancer types is obvious. Cancer studies including cancer diagnosis and therapy have been one of the most laborious tasks. Since its early detection significantly affects the following therapy steps, cancer diagnosis is very important. Despite researchers' best efforts, the accurate and rapid diagnosis of cancer is still challenging and difficult to investigate. It is known that electrochemical techniques have been successfully adapted into the cancer diagnosis field. Electrochemical sensor platforms that are brought together with the excellent selectivity of biosensing elements, such as nucleic acids, aptamers or antibodies, have put forth very successful outputs. One of the remarkable achievements of these biomolecule-attached sensors is their lack of need for additional labeling steps, which bring extra burdens such as interference effects or demanding modification protocols. In this review, we aim to outline label-free cancer diagnosis platforms that use electrochemical methods to acquire signals. The classification of the sensing platforms is generally presented according to their recognition element, and the most recent achievements by using these attractive sensing substrates are described in detail. In addition, the current challenges are discussed.
Collapse
Affiliation(s)
- Vildan Sanko
- Department of Chemistry, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
8
|
Sánchez-Tirado E, Agüí L, González-Cortés A, Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical (Bio)Sensing Devices for Human-Microbiome-Related Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:837. [PMID: 36679633 PMCID: PMC9864681 DOI: 10.3390/s23020837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The study of the human microbiome is a multidisciplinary area ranging from the field of technology to that of personalized medicine. The possibility of using microbiota biomarkers to improve the diagnosis and monitoring of diseases (e.g., cancer), health conditions (e.g., obesity) or relevant processes (e.g., aging) has raised great expectations, also in the field of bioelectroanalytical chemistry. The well-known advantages of electrochemical biosensors-high sensitivity, fast response, and the possibility of miniaturization, together with the potential for new nanomaterials to improve their design and performance-position them as unique tools to provide a better understanding of the entities of the human microbiome and raise the prospect of huge and important developments in the coming years. This review article compiles recent applications of electrochemical (bio)sensors for monitoring microbial metabolites and disease biomarkers related to different types of human microbiome, with a special focus on the gastrointestinal microbiome. Examples of electrochemical devices applied to real samples are critically discussed, as well as challenges to be faced and where future developments are expected to go.
Collapse
Affiliation(s)
| | | | | | | | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense of Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
9
|
Chakraborty D, Ghosh D, Kumar S, Jenkins D, Chandrasekaran N, Mukherjee A. Nano-diagnostics as an emerging platform for oral cancer detection: Current and emerging trends. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1830. [PMID: 35811418 DOI: 10.1002/wnan.1830] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 01/31/2023]
Abstract
Globally, oral cancer kills an estimated 150,000 individuals per year, with 300,000 new cases being diagnosed annually. The high incidence rate of oral cancer among the South-Asian and American populations is majorly due to overuse of tobacco, alcohol, and poor dental hygiene. Additionally, socio-economic issues and lack of general awareness delay the primary screening of the disease. The availability of early screening techniques for oral cancer can help in carving out a niche for accurate disease prognosis and also its prevention. However, conventional diagnostic approaches and therapeutics are still far from optimal. Thus, enhancing the analytical performance of diagnostic platforms in terms of specificity and precision can help in understanding the disease progression paradigm. Fabrication of efficient nanoprobes that are sensitive, noninvasive, cost-effective, and less labor-intensive can reduce the global cancer burden. Recent advances in optical, electrochemical, and spectroscopy-based nano biosensors that employ noble and superparamagnetic nanoparticles, have been proven to be extremely efficient. Further, these sensitive nanoprobes can also be employed for predicting disease relapse after chemotherapy, when the majority of the biomarker load is eliminated. Herein, we provide the readers with a brief summary of conventional and new-age oral cancer detection techniques. A comprehensive understanding of the inherent challenges associated with conventional oral cancer detection techniques is discussed. We also elaborate on how nanoparticles have shown tremendous promise and effectiveness in radically transforming the approach toward oral cancer detection. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Debolina Chakraborty
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.,Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Debayan Ghosh
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore, India
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science & Engineering, University of Plymouth, Devon, UK
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
10
|
Lopes FHP, Noleto LFG, Vieira VEM, de Sousa PB, Jucá ACS, Oliveira YL, Costa KRBS, Almeida MAP, Gouveia AF, Cavalcante LS. Experimental and Theoretical Correlation of Modulated Architectures of β-Ag2MoO4 Microcrystals: Effect of Different Synthesis Routes on the Morphology, Optical, Colorimetric, and Photocatalytic Properties. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Tang X, Li H, Zhang T, Zhong J, Du H. P123-assisted hydrothermal synthesis of Ag2MoO4 with enhanced photocatalytic performance. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
|
13
|
Osajima JA, Silva LAL, Silva AAL, Rios MAS, De Carvalho TAF, Araújo AR, Silva DA, Magalhães JL, Matos JME, Silva-Filho EC. Facile synthesis of H-CoMoO4 nanosheets for antibacterial approaches. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Sri S, Lakshmi GBVS, Gulati P, Chauhan D, Thakkar A, Solanki PR. Simple and facile carbon dots based electrochemical biosensor for TNF-α targeting in cancer patient's sample. Anal Chim Acta 2021; 1182:338909. [PMID: 34602194 DOI: 10.1016/j.aca.2021.338909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Tumour Necrosis Factor (TNF-α) is a pro-inflammatory cytokine having key roles in cell death, differentiation, survival, proliferation, migration and is a modulator of immune system. Therefore, TNF-α is an ideal biomarker for several disease diagnosis including cancer. However, out of all the biomarkers of cancer, TNF-α) is less explored for cancer detection. Only a few reports are available of developing biosensors for TNF-α targeting in human serum samples. Also, Carbon Dots (CDs) remains less explored in biosensor application. In this regard, for the first time, a sensitive and low-cost electrochemical biosensor based on CDs has developed. CDs were synthesized by simple yet facile microwave pyrolysis. Poly methyl methacrylate (PMMA) was selected as the matrix to hold CDs to fabricate the biosensing platform. This novel CD-PMMA nanocomposite featuring excellent biocompatibility, exceptional electrocatalytic conductivity, and large surface area. CD-PMMA was applied as transducing material to efficiently conjugate antibodies specific towards TNF-α and fabricate electrochemical immunosensor for specific detection of TNF-α. The fabricated immunosensor was used for the detection of TNF-α within a wide dynamic range of 0.05-160 pg mL-1 with a lower detection limit of 0.05 pg mL-1 and sensitivity of 5.56 pg mL-1 cm-2. Furthermore, this CDs based immunosensor retains high sensitivity, selectivity, and stability. This immunosensor demonstrated a high correlation with the conventional technique, Enzyme-Linked Immunosorbent Assay for early screening of cancer patient serum samples.
Collapse
Affiliation(s)
- Smriti Sri
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - G B V S Lakshmi
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Payal Gulati
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Deepika Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Alok Thakkar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
15
|
Goldoni R, Scolaro A, Boccalari E, Dolci C, Scarano A, Inchingolo F, Ravazzani P, Muti P, Tartaglia G. Malignancies and Biosensors: A Focus on Oral Cancer Detection through Salivary Biomarkers. BIOSENSORS-BASEL 2021; 11:bios11100396. [PMID: 34677352 PMCID: PMC8533918 DOI: 10.3390/bios11100396] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Oral cancer is among the deadliest types of malignancy due to the late stage at which it is usually diagnosed, leaving the patient with an average five-year survival rate of less than 50%. The booming field of biosensing and point of care diagnostics can, in this regard, play a major role in the early detection of oral cancer. Saliva is gaining interest as an alternative biofluid for non-invasive diagnostics, and many salivary biomarkers of oral cancer have been proposed. While these findings are promising for the application of salivaomics tools in routine practice, studies on larger cohorts are still needed for clinical validation. This review aims to summarize the most recent development in the field of biosensing related to the detection of salivary biomarkers commonly associated with oral cancer. An introduction to oral cancer diagnosis, prognosis and treatment is given to define the clinical problem clearly, then saliva as an alternative biofluid is presented, along with its advantages, disadvantages, and collection procedures. Finally, a brief paragraph on the most promising salivary biomarkers introduces the sensing technologies commonly exploited to detect oral cancer markers in saliva. Hence this review provides a comprehensive overview of both the clinical and technological advantages and challenges associated with oral cancer detection through salivary biomarkers.
Collapse
Affiliation(s)
- Riccardo Goldoni
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Alessandra Scolaro
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Elisa Boccalari
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Carolina Dolci
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy;
| | - Paolo Ravazzani
- National Research Council, Institute of Electronics, Computer and Telecommunication Engineering (CNR IEIIT), 20133 Milano, Italy;
| | - Paola Muti
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
| | - Gianluca Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milano, Italy; (R.G.); (A.S.); (E.B.); (C.D.); (P.M.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20100 Milano, Italy
- Correspondence:
| |
Collapse
|
16
|
Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer. Appl Microbiol Biotechnol 2021; 105:7651-7660. [PMID: 34568962 DOI: 10.1007/s00253-021-11582-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/12/2023]
Abstract
Among gut microbiota-derived metabolites, trimethylamine-N-oxide (TMAO) is receiving increased attention due to its possible role in the carcinogenesis of colorectal cancer (CRC). In spite of numerous reports implicating TMAO with CRC, there is a lack of empirical mechanistic evidences to concretize the involvement of TMAO in the carcinogenesis of CRC. Possible mechanisms such as inflammation, oxidative stress, DNA damage, and protein misfolding by TMAO have been discussed in this review in the light of the latest advancements in the field. This review is an attempt to discuss the probable correlation between TMAO and CRC but this linkage can be concretized only once we get sufficient empirical evidences from the mechanistic studies. We believe, this review will augment the understanding of linking TMAO with CRC and will motivate researchers to move towards mechanistic study for reinforcing the idea of implicating TMAO with CRC causation. KEY POINTS: • TMAO is a gut bacterial metabolite which has been implicated in CRC in recent years. • The valid mechanistic approach of CRC causation by TMAO is unknown. • The article summarizes the possible mechanisms which need to be explored for validation.
Collapse
|
17
|
Aydın EB, Sezgintürk MK. Fabrication of Electrochemical Immunosensor for Detection of Interleukin 8 Biomarker via Layer‐by‐layer Self‐assembly Process on Cost‐effective Fluorine Tin Oxide Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202060603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University Scientific and Technological Research Center Tekirdağ Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University Faculty of Engineering Bioengineering Department Çanakkale Turkey
| |
Collapse
|
18
|
Pankratova N, Jović M, Pfeifer ME. Electrochemical sensing of blood proteins for mild traumatic brain injury (mTBI) diagnostics and prognostics: towards a point-of-care application. RSC Adv 2021; 11:17301-17319. [PMID: 34094508 PMCID: PMC8114542 DOI: 10.1039/d1ra00589h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Traumatic Brain Injury (TBI) being one of the principal causes of death and acquired disability in the world imposes a large burden on the global economy. Mild TBI (mTBI) is particularly challenging to assess due to the frequent lack of well-pronounced post-injury symptoms. However, if left untreated mTBI (especially when repetitive) can lead to serious long-term implications such as cognitive and neuropathological disorders. Computer tomography and magnetic resonance imaging commonly used for TBI diagnostics require well-trained personnel, are costly, difficult to adapt for on-site measurements and are not always reliable in identifying small brain lesions. Thus, there is an increasing demand for sensitive point-of-care (POC) testing tools in order to aid mTBI diagnostics and prediction of long-term effects. Biomarker quantification in body fluids is a promising basis for POC measurements, even though establishing a clinically relevant mTBI biomarker panel remains a challenge. Actually, a minimally invasive, rapid and reliable multianalyte detection device would allow the efficient determination of injury biomarker release kinetics and thus support the preclinical evaluation and clinical validation of a proposed biomarker panel for future decentralized in vitro diagnostics. In this respect electrochemical biosensors have recently attracted great attention and the present article provides a critical study on the electrochemical protocols suggested in the literature for detection of mTBI-relevant protein biomarkers. The authors give an overview of the analytical approaches for transduction element functionalization, review recent technological advances and highlight the key challenges remaining in view of an eventual integration of the proposed concepts into POC diagnostic solutions.
Collapse
Affiliation(s)
- Nadezda Pankratova
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Milica Jović
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Marc E Pfeifer
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| |
Collapse
|
19
|
Structural, morphological and photoluminescence properties of β-Ag2MoO4 doped with Eu3+. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01489-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Kaur J, Srivastava R, Borse V. Recent advances in point-of-care diagnostics for oral cancer. Biosens Bioelectron 2021; 178:112995. [PMID: 33515983 DOI: 10.1016/j.bios.2021.112995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Early-stage diagnosis is a crucial step in reducing the mortality rate in oral cancer cases. Point-of-care (POC) devices for oral cancer diagnosis hold great future potential in improving the survival rates as well as the quality of life of oral cancer patients. The conventional oral examination followed by needle biopsy and histopathological analysis have limited diagnostic accuracy. Besides, it involves patient discomfort and is not feasible in resource-limited settings. POC detection of biomarkers and diagnostic adjuncts has emerged as non- or minimally invasive tools for the diagnosis of oral cancer at an early stage. Various biosensors have been developed for the rapid detection of oral cancer biomarkers at the point-of-care. Several optical imaging methods have also been employed as adjuncts to detect alterations in oral tissue indicative of malignancy. This review summarizes the different POC platforms developed for the detection of oral cancer biomarkers, along with various POC imaging and cytological adjuncts that aid in oral cancer diagnosis, especially in low resource settings. Various immunosensors and nucleic acid biosensors developed to detect oral cancer biomarkers are summarized with examples. The different imaging methods used to detect oral tissue malignancy are also discussed herein. Additionally, the currently available commercial devices used as adjuncts in the POC detection of oral cancer are emphasized along with their characteristics. Finally, we discuss the limitations and challenges that persist in translating the developed POC techniques in the clinical settings for oral cancer diagnosis, along with future perspectives.
Collapse
Affiliation(s)
- Jasmeen Kaur
- NanoBios Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Rohit Srivastava
- NanoBios Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Vivek Borse
- NanoBioSens Laboratory, Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
21
|
Della Rocca DG, Peralta RM, Peralta RA, Peralta Muniz Moreira RDF. Recent development on Ag2MoO4-based advanced oxidation processes: a review. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01934-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Islam T, Hasan MM, Awal A, Nurunnabi M, Ahammad AJS. Metal Nanoparticles for Electrochemical Sensing: Progress and Challenges in the Clinical Transition of Point-of-Care Testing. Molecules 2020; 25:E5787. [PMID: 33302537 PMCID: PMC7763225 DOI: 10.3390/molecules25245787] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
With the rise in public health awareness, research on point-of-care testing (POCT) has significantly advanced. Electrochemical biosensors (ECBs) are one of the most promising candidates for the future of POCT due to their quick and accurate response, ease of operation, and cost effectiveness. This review focuses on the use of metal nanoparticles (MNPs) for fabricating ECBs that has a potential to be used for POCT. The field has expanded remarkably from its initial enzymatic and immunosensor-based setups. This review provides a concise categorization of the ECBs to allow for a better understanding of the development process. The influence of structural aspects of MNPs in biocompatibility and effective sensor design has been explored. The advances in MNP-based ECBs for the detection of some of the most prominent cancer biomarkers (carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), Herceptin-2 (HER2), etc.) and small biomolecules (glucose, dopamine, hydrogen peroxide, etc.) have been discussed in detail. Additionally, the novel coronavirus (2019-nCoV) ECBs have been briefly discussed. Beyond that, the limitations and challenges that ECBs face in clinical applications are examined and possible pathways for overcoming these limitations are discussed.
Collapse
Affiliation(s)
- Tamanna Islam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md. Mahedi Hasan
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Abdul Awal
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - A. J. Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh; (T.I.); (M.M.H.); (A.A.)
| |
Collapse
|
23
|
Kajana T, Velauthapillai D, Shivatharsiny Y, Ravirajan P, Yuvapragasam A, Senthilnanthanan M. Structural and photoelectrochemical characterization of heterostructured carbon sheet/Ag2MoO4-SnS/Pt photocapacitor. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|