1
|
Chen S, Cao L, Wu T, Zhao J, Liu J, An M, Guo R, Li H, Chen W. Fabrication and in vitro biocompatibility of hierarchical cellulose acetate/polyvinylpyrrolidone@titania nanowire hollow microfibers. Int J Biol Macromol 2024; 280:136095. [PMID: 39341306 DOI: 10.1016/j.ijbiomac.2024.136095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
In this study, hierarchical cellulose acetate/polyvinylpyrrolidone hollow microfibers (CA/PVP HMFs) were first prepared via a dip coating method using a steel wire as tubular template and then supported a sol-gel deposition of titania nanoparticles (NPs) to derive CA/PVP@titania NP HMFs. After hydrothermally treated in NaOH solution, CA/PVP@titania NP HMFs were transformed to CA/PVP@titania nanowire (NW) HMFs. SEM observation showed that CA/PVP@titania NW HMFs had a hollow structure with diameters of 450-600 μm and exhibited a hierarchical and nanofibrous structure. Their surfaces were constructed by numerous titania NWs with diameters of 10-30 nm and lengths of 1-5 μm. The incorporation of PVP not only caused a significant change in surface wettability from hydrophobic CA HMFs to hydrophilic CA/PVP HMFs, but also promoted the sol-gel deposition of titania NPs on CA/PVP HMFs. CA/PVP@titania NW HMFs exhibited the highest hydrophilicity with water contact angle of 32° and the largest specific surface area of 86.1 m2/g. In vitro biocompatible evaluation indicated that CA/PVP@titania NW HMFs exhibited much higher cell adhesion and proliferation than CA/PVP@titania NP HMFs and CA/PVP HMFs within 7 days due to the presence of nanofibrous surface architecture. Thus, the present CA/PVP titania NW HMFs have potential as biocompatible cell supporting matrices.
Collapse
Affiliation(s)
- Song Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Like Cao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Tingting Wu
- Oral Translational Medicine Research Center, Shanxi Key Laboratory of Oral Maxillofacial Repair, Reconstruction and Regeneration Joint Training Base, The First People's Hospital of Jinzhong, Jinzhong 030600, China
| | - Jie Zhao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinfeng Liu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Meiwen An
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Ren Guo
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hao Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
2
|
Zuo F, Zhu Y, Wu T, Li C, Liu Y, Wu X, Ma J, Zhang K, Ouyang H, Qiu X, He J. Titanium Dioxide Nanomaterials: Progress in Synthesis and Application in Drug Delivery. Pharmaceutics 2024; 16:1214. [PMID: 39339250 PMCID: PMC11434736 DOI: 10.3390/pharmaceutics16091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Recent developments in nanotechnology have provided efficient and promising methods for the treatment of diseases to achieve better therapeutic results and lower side effects. Titanium dioxide (TiO2) nanomaterials are emerging inorganic nanomaterials with excellent properties such as low toxicity and easy functionalization. TiO2 with special nanostructures can be used as delivery vehicles for drugs, genes and antigens for various therapeutic options. The exploration of TiO2-based drug delivery systems shows great promise for translating nanotechnology into clinical applications; Methods: Comprehensive data on titanium dioxide were collected from reputable online databases including PubMed, GreenMedical, Web of Science, Google Scholar, China National Knowledge Infrastructure Database, and National Intellectual Property Administration; Results: In this review, we discuss the synthesis pathways and functionalization strategies of TiO2. Recent advances of TiO2 as a drug delivery system, including sustained and controlled drug release delivery systems were introduced. Rigorous long-term systematic toxicity assessment is an extremely critical step in application to the clinic, and toxicity is still a problem that needs to be closely monitored; Conclusions: Despite the great progress made in TiO2-based smart systems, there is still a great potential for development. Future research may focus on developing dual-reaction delivery systems and single-reaction delivery systems like redox and enzyme reactions. Undertaking thorough in vivo investigations is necessary prior to initiating human clinical trials. The high versatility of these smart drug delivery systems will drive the development of novel nanomedicines for personalized treatment and diagnosis of many diseases with poor prognosis.
Collapse
Affiliation(s)
- Fanjiao Zuo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yameng Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiantian Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Caixia Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yang Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiwei Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinyue Ma
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kaili Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huizi Ouyang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xilong Qiu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Langwald SV, Ehrmann A, Sabantina L. Measuring Physical Properties of Electrospun Nanofiber Mats for Different Biomedical Applications. MEMBRANES 2023; 13:488. [PMID: 37233549 PMCID: PMC10220787 DOI: 10.3390/membranes13050488] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Electrospun nanofiber mats are nowadays often used for biotechnological and biomedical applications, such as wound healing or tissue engineering. While most studies concentrate on their chemical and biochemical properties, the physical properties are often measured without long explanations regarding the chosen methods. Here, we give an overview of typical measurements of topological features such as porosity, pore size, fiber diameter and orientation, hydrophobic/hydrophilic properties and water uptake, mechanical and electrical properties as well as water vapor and air permeability. Besides describing typically used methods with potential modifications, we suggest some low-cost methods as alternatives in cases where special equipment is not available.
Collapse
Affiliation(s)
- Sarah Vanessa Langwald
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany;
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, School of Culture + Design, HTW Berlin—University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
4
|
Liao X, Ren HT, Shen B, Lin JH, Lou CW, Li TT. Enhancing mechanical and photocatalytic properties by surface microstructure regulation of TiO 2 nanofiber membranes. CHEMOSPHERE 2023; 313:137195. [PMID: 36370767 DOI: 10.1016/j.chemosphere.2022.137195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
In this work, TiO2 nanofiber membrane (NFM) with a complete surface microstructure was prepared through regulating the surface microstructure of TiO2 NFM by doping Zr. The crystal structures and morphological analyses indicated that the nanofiber membranes were consisted by disordered accumulation of Zr-doped TiO2 nanofibers with a crack-free surface, small grain size and high aspect ratio. When the doping amount of Zr was 0.8 mL, the tensile strength of the doped membranes reached 1.27 MPa, which was 60.7% higher than that of pure TiO2 NFM. The photocatalytic performance of Zr-doped TiO2 NFM was evaluated by the degradation performance of Methylene orange (MO) under simulated sunlight irradiation. Compared with the undoped TiO2 NFM, the 0.8-Zr/TiO2 NFM presented a higher catalytic degradation efficiency (improved by 69.6%), and the photocatalytic performance maintained stable after five circulating. It was found that the doping of Zr ions effectively limited the surface crack size and grain size of TiO2 nanofibers, thereby improving the tensile strength, and enhanced the surface area effect and carrier transfer efficiency of TiO2 NFM. On the other hand, a narrow band-gap was obtained by doping a small amount of Zr ions, which expanded the visible light response range to improve the photocatalytic performance of TiO2 nanofibers.
Collapse
Affiliation(s)
- Xilin Liao
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Baolei Shen
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan.
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
5
|
Smok W, Tański T. A Short Review on Various Engineering Applications of Electrospun One-Dimensional Metal Oxides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5139. [PMID: 34576365 PMCID: PMC8471542 DOI: 10.3390/ma14185139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
The growing scientific interest in one-dimensional (1D) nanostructures based on metal-oxide semiconductors (MOS) resulted in the analysis of their structure, properties and fabrication methods being the subject of many research projects and publications all over the world, including in Poland. The application of the method of electrospinning with subsequent calcination for the production of these materials is currently very popular, which results from its simplicity and the possibility to control the properties of the obtained materials. The growing trend of industrial application of electrospun 1D MOS and the progress in modern technologies of nanomaterials properties investigations indicate the necessity to maintain the high level of research and development activities related to the structure and properties analysis of low-dimensional nanomaterials. Therefore, this review perfectly fits both the global trends and is a summary of many years of research work in the field of electrospinning carried out in many research units, especially in the Department of Engineering Materials and Biomaterials of the Faculty of Mechanical Engineering and Technology of Silesian University of Technology, as well as an announcement of further activities in this field.
Collapse
Affiliation(s)
- Weronika Smok
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | | |
Collapse
|
6
|
Synthesis of hierarchical and flower-like TiO 2 nanowire microspheres as biocompatible cell carriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112118. [PMID: 34082935 DOI: 10.1016/j.msec.2021.112118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022]
Abstract
Fibrous materials are of great interest in the development of tissue regenerative matrix. However, synthesis of inorganic fibrous microspheres as cell carriers is a great challenge. In this study, we for the first time report on the synthesis of novel hierarchical and flower-like TiO2 nanowire (NW) microspheres as biocompatible cell carriers. TiO2 NW microspheres were synthesized through in situ alkali hydrothermal treatment of the TiO2 nanoparticle (NP) microspheres and their microstructure, formation mechanism and in vitro biocompatibility were evaluated. SEM observations show that the resulting TiO2 NW microspheres were constructed by a large number of NWs with the diameter of 10-20 nm and exhibited a flower-like and hierarchical morphology with the diameter of 400-600 μm. XRD patterns indicate that TiO2 NW microspheres were constructed by both rutile and anatase phase of TiO2. FT-IR spectra reveal that Ti-O-Ti bonds were involved in TiO2 NW microspheres. In vitro biocompatibility was evaluated by seeding the fibroblast L929 cells on the microspheres. A conventional MTT assay quantitatively indicates that the TiO2 NW microspheres favored adhesion and proliferation of cells and were biocompatible, while SEM observations qualitatively confirmed that the cells were well grown on the surface of TiO2 NW microspheres. Thus, the as-synthesized TiO2 NW microspheres would be applicable to novel and biocompatible cell carriers.
Collapse
|