1
|
Ma J, Chen Y, Si Y, Qian J, Wang C, Jin J, He Q. The multifaceted nature of diabetic erectile dysfunction: uncovering the intricate mechanisms and treatment strategies. Front Endocrinol (Lausanne) 2024; 15:1460033. [PMID: 39583965 PMCID: PMC11581859 DOI: 10.3389/fendo.2024.1460033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024] Open
Abstract
Background One of the most common complications of diabetes mellitus is diabetic erectile dysfunction (DMED), a condition that has grown more common in recent years and has a significant impact on patients' daily lives. The complicated pathophysiological changes of DMED, involving vascular, neurological, muscular, and endocrine variables, have not been well addressed by any one treatment technique, and no widely approved treatment strategy has been developed. Aim The objective of this study was to thoroughly examine the complex nature of the pathogenic mechanism of DMED and discover new therapeutic approaches that could improve DMED symptoms. Methods Studies and review articles from the past 10 years were considered. Results The pathogenesis of DMED encompasses vascular dysfunction, endothelial cell damage, cavernous smooth muscle defects, neurological dysfunction, endocrine/metabolic factors, leukomalacia fibrosis, and psychosocial factors, elucidating complex interplay among the mechanisms underlying DMED. It underscores the need of integrating traditional herbal medicine, energy-based medicine treatments, and advanced techniques like stem cell and gene therapy to enhance therapeutic outcomes. Furthermore, it expresses optimism on the therapeutic potential of new nanobiomaterials in DMED. Conclusion Through integrating a complete description of DMED etiology and current therapy methods, this work offers a helpful resource for researchers, doctors, and patients dealing with this difficult condition.
Collapse
Affiliation(s)
- Jianxiong Ma
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yihao Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuhe Si
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiahua Qian
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chenxi Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Juan Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiang He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Hari Priya VM, Ganapathy A A, Veeran MG, Raphael M S, Kumaran A. Nanotechnology-based drug delivery platforms for erectile dysfunction: addressing efficacy, safety, and bioavailability concerns. Pharm Dev Technol 2024; 29:996-1015. [PMID: 39392251 DOI: 10.1080/10837450.2024.2414379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Erectile dysfunction (ED), is a common and multidimensional sexual disorder, which comprises changes among any of the processes of the erectile response such as organic, relational, and psychological. However, both endocrine and nonendocrine causes of ED produce substantial health implications including depression and anxiety due to poor sexual performance, eventually affecting man's life eminence. Marginally invasive interventions following ED consist of lifestyle modifications, oral drugs, injections, vacuum erection devices, etc. Nevertheless, these conventional treatment regimens follow certain drawbacks such as efficacy and safety issues, and navigate to the development of novel therapeutic approaches such as nanomedicine for ED management. Nanotechnology-centred drug delivery platforms are being explored to minimize these limitations with better in vitro and in vivo effectiveness. Moreover, nanomedicine and nanocarrier-linked approaches are rapidly developing science in the nanoscale range, which contributes to site-specific delivery in a controlled manner and has generated considerable interest prominent to their potential to enhance bioavailability, decrease side effects, and avoidance of first-pass metabolism. This review provides an overview of recent discoveries regarding various nanocarriers and nano-delivery methods, along with current trends in the clinical aspects of ED. Additionally, strategies for clinical translation have been incorporated.
Collapse
Affiliation(s)
- Vijayakumari Mahadevan Hari Priya
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anand Ganapathy A
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Midhu George Veeran
- Corporate Research and Development Centre (CRDC), HLL Lifecare Ltd, Akkulam, Thiruvananthapuram, India
| | - Shyni Raphael M
- Department of Chemistry, Government College for Women, Thiruvananthapuram, India
| | - Alaganandam Kumaran
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Zhang X, Yang M, Chen X, Lu M. Research progress on the therapeutic application of extracellular vesicles in erectile dysfunction. Sex Med Rev 2024; 12:652-658. [PMID: 38629860 DOI: 10.1093/sxmrev/qeae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 10/02/2024]
Abstract
Erectile dysfunction (ED) is one of the most common male sexual dysfunctions and is related to many pathogenic factors. However, first-line treatment, represented by phosphodiesterase 5 inhibitors, is unable to maintain long-term efficacy. Extracellular vesicles (EVs) have recently attracted the attention of researchers in the fields of cardiovascular disease, neurologic disease, and regenerative medicine and may become a treatment for ED. This article reviews recent applications of EVs in the treatment of ED from the aspects of the source, the therapeutic mechanism, and the strategies to enhance therapeutic efficacy. These research advances lay the foundation for further research and provide references for in-depth understanding of the therapeutic mechanism and possible clinical application of EVs in ED.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Mengbo Yang
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Xinda Chen
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Mujun Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| |
Collapse
|
4
|
Sun T, Liu Y, Yuan P, Jia Z, Yang J. Bibliometric and Visualization Analysis of Stem Cell Therapy for Erectile Dysfunction. Drug Des Devel Ther 2024; 18:731-746. [PMID: 38476204 PMCID: PMC10929656 DOI: 10.2147/dddt.s448483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose As a common male disease, erectile dysfunction (ED) seriously affects the physical and mental health of patients. In recent years, studies have continued to point out the great potential of stem cell therapy (SCT) in the treatment of ED. The purpose of this study is to comprehensively analyze the research of SCT for ED and understand the development trends and research frontiers in this field. Methods Publications regarding SCT and ED were retrieved and collected from the Web of Science Core Collection. CiteSpace and VOSviewer software were then utilized for bibliometric and visualization analysis. Results A total of 524 publications were eventually included in this study. The annual number of publications in this field was increasing year by year. China and the USA were the two most productive countries. Lin GT, Lue TF and Lin CS, and the University of California San Francisco where they worked were the most productive research group and institution, respectively. The journal with the largest number of publications was The Journal of Sexual Medicine, and the following were mostly professional journals of urology and andrology. Diabetes mellitus-induced ED and cavernous nerve injury-related ED were the two most commonly constructed models of ED in studies. Concerning the types of stem cells, mesenchymal stem cells derived from adipose and bone marrow were most frequently used. Moreover, future research would mainly focus on exosomes, tissue engineering technology, extracorporeal shockwave therapy, and clinical translation. Conclusion The research of SCT for ED will receive increasing global attention in the future. Our study provided bibliometric and visualization analysis of published literature, helping researchers understand the global landscape and frontiers in this field. More preclinical and clinical studies should be conducted to more deeply explore the underlying mechanisms of treatment and promote clinical translation.
Collapse
Affiliation(s)
- Taotao Sun
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Yipiao Liu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Penghui Yuan
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Zhankui Jia
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Jinjian Yang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| |
Collapse
|
5
|
Wang X, Liu C, Li X, Shen T, Lian J, Shi J, Jiang Z, Qiu G, Wang Y, Meng E, Wei G. A novel electrospun polylactic acid silkworm fibroin mesh for abdominal wall hernia repair. Mater Today Bio 2024; 24:100915. [PMID: 38188648 PMCID: PMC10767193 DOI: 10.1016/j.mtbio.2023.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Abdominal wall hernias are common abdominal diseases, and effective hernia repair is challenging. In clinical practice, synthetic meshes are widely applied for repairing abdominal wall hernias. However, postoperative complications, such as inflammation and adhesion, are prevalent. Although biological meshes can solve this problem to a certain extent, they face the problems of heterogeneity, rapid degradation rate, ordinary mechanical properties, and high-cost. Here, a novel electrospinning mesh composed of polylactic acid and silk fibroin (PLA-SF) for repairing abdominal wall hernias was manufactured with good physical properties, biocompatibility and low production cost. Materials and methods FTIR and EDS were used to demonstrate that the PLA-SF mesh was successfully synthesized. The physicochemical properties of PLA-SF were detected by swelling experiments and in vitro degradation experiments. The water contact angle reflected the hydrophilicity, and the stress‒strain curve reflected the mechanical properties. A rat abdominal wall hernia model was established to observe degradation, adhesion, and inflammation in vivo. In vitro cell mesh culture experiments were used to detect cytocompatibility and search for affected biochemical pathways. Results The PLA-SF mesh was successfully synthesized and did not swell or degrade over time in vitro. It had a high hydrophilicity and strength. The PLA-SF mesh significantly reduced abdominal inflammation and inhibited adhesion formation in rat models. The in vitro degradation rate of the PLA-SF mesh was slower than that of tissue remodeling. Coculture experiments suggested that the PLA-SF mesh reduced the expression of inflammatory factors secreted by fibroblasts and promoted fibroblast proliferation through the TGF-β1/Smad pathway. Conclusion The PLA-SF mesh had excellent physicochemical properties and biocompatibility, promoted hernia repair of the rat abdominal wall, and reduced postoperative inflammation and adhesion. It is a promising mesh and has potential for clinical application.
Collapse
Affiliation(s)
- Xingjie Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Tianli Shen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jie Lian
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jing Shi
- Department of Respiratory and Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Zhengdong Jiang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuanbo Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Er Meng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Guangbing Wei
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
6
|
Podlasek CA. Nanotechnology in sexual medicine. J Sex Med 2024; 21:81-83. [PMID: 38314625 PMCID: PMC10839571 DOI: 10.1093/jsxmed/qdad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 02/06/2024]
Abstract
Statement of Significance: There is significant potential for improvement in erectile function and prevention of erectile dysfunction if these diverse and novel nanotherapies can be translated to the clinic.
Collapse
Affiliation(s)
- Carol A Podlasek
- Departments of Urology, Physiology, Bioengineering, and Biochemistry, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
7
|
Langarizadeh MA, Salary A, Tavakoli MR, Nejad BG, Fadaei S, Jahani Z, Forootanfar H. An overview of the history, current strategies, and potential future treatment approaches in erectile dysfunction: a comprehensive review. Sex Med Rev 2023:7131122. [PMID: 37076171 DOI: 10.1093/sxmrev/qead014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) is one of the most common urologic problems in men worldwide, with an approximately high incidence rate, significantly affecting patients' quality of life and their sexual partners. OBJECTIVES Due to the association of this disorder with essential diseases such as cardiovascular disease and diabetes, its prevention and treatment are vital for overall human physiologic and psychological health. Along with reviewing the history of treatment and current methods, we seek new approaches to curb this issue in the future. METHODS In this review, investigations were based on the focus of each section's content or conducted on an ad hoc basis. Searches were performed in Scopus and PubMed. RESULTS In recent years, many treatments for ED have been reported besides oral administration of phosphodiesterase 5 inhibitors such as sildenafil and tadalafil (approved by the Food and Drug Administration). Common oral medications, intracavernous injections, herbal therapies (eg, herbal phosphodiesterase 5 inhibitors), and topical/transdermal medications are routine ED treatment approaches. Moreover, some novel medications are innovative candidates for completing ED's treatment protocols: stem cell injection, low-intensity extracorporeal shock wave therapy, platelet-rich plasma injection, gene therapy, amniotic fluid matrices, rho-kinase inhibitors, melanocortin receptor antagonists, maxi-K channel activators (ie, large-conductance calcium-activated potassium channels), guanylate cyclase activators, and nitric oxide donors. CONCLUSION Due to the importance of this complicated problem in men's society, a faster course of treatment trends toward new methods is needed to increase efficiency. Combining the mentioned treatments and attentively examining their efficacy through programmed clinical trials can be a big step toward solving this global problem.
Collapse
Affiliation(s)
- Mohammad Amin Langarizadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Amirhossein Salary
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | | | - Behnam Ghorbani Nejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman Medical University, Kerman 7616913555, Iran
| | - Shirin Fadaei
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Zahra Jahani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| |
Collapse
|
8
|
Ren Y, Yuan J, Xue Y, Zhang Y, Li S, Liu C, Liu Y. Advanced hydrogels: New expectation for the repair of organic erectile dysfunction. Mater Today Bio 2023; 19:100588. [PMID: 36896414 PMCID: PMC9988670 DOI: 10.1016/j.mtbio.2023.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Organic erectile dysfunction (ED) is a type of sexual disorder in men that is usually associated with illness, surgical injury, normal aging and has a high incidence across the globe. And the essence of penile erection is a neurovascular event regulated by a combination of factors. Nerve and vascular injury are the main causes of erectile dysfunction. Currently, the main treatment options for ED include phosphodiesterase type 5 inhibitors (PDE5Is), intracorporeal injections and vacuum erection devices (VEDs), which are ineffective. Therefore, it is essential to find an emerging, non-invasive and effective treatment for ED. The histopathological damage causing ED can be improved or even reversed with hydrogels, in contrast to current therapies. Hydrogels have many advantages, they can be synthesized from various raw materials with different properties, possess a definite composition, and have good biocompatibility and biodegradability. These advantages make hydrogels an effective drug carrier. In this review, we began with an overview of the underlying mechanisms of organic erectile dysfunction, discussed the dilemmas of existing treatments for ED, and described the unique advantages of hydrogel over other approaches. Then emphasizing the progress of research on hydrogels in the treatment of ED.
Collapse
Affiliation(s)
- Yan Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Jing Yuan
- First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yueguang Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.,GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| |
Collapse
|
9
|
Pérez-Aizpurua X, Garranzo-Ibarrola M, Simón-Rodríguez C, García-Cardoso JV, Chávez-Roa C, López-Martín L, Tufet i Jaumot JJ, Alonso-Román J, Maqueda-Arellano J, Gómez-Jordana B, Ruiz de Castroviejo-Blanco J, Osorio-Ospina F, González-Enguita C, García-Arranz M. Stem Cell Therapy for Erectile Dysfunction: A Step towards a Future Treatment. Life (Basel) 2023; 13:life13020502. [PMID: 36836859 PMCID: PMC9963846 DOI: 10.3390/life13020502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Background: The improvement of absent or partial response in the medical treatment of erectile dysfunction (ED) has led to the development of minimally invasive new treatment modalities in the field of regenerative medicine. Methods: A literature review on stem cell therapy for the treatment of ED was performed. We searched for the terms "erectile dysfunction" and "stem cell therapy" in PubMed and Clinicaltrials.gov. Literature searching was conducted in English and included articles from 2010 to 2022. Results: New treatment modalities for ED involving stem cell therapy are not only conceived with a curative intent but also aim to avoid unnecessary adverse effects. Several sources of stem cells have been described, each with unique characteristics and potential applications, and different delivery methods have been explored. A limited number of interventional studies over the past recent years have provided evidence of a safety profile in their use and promising results for the treatment of ED, although there are not enough studies to generate an appropriate protocol, dose or cell lineage, or to determine a mechanism of action. Conclusions: Stem cell therapy is a novel treatment for ED with potential future applications. However, most urological societies agree that further research is required to conclusively prove its potential benefit.
Collapse
Affiliation(s)
- Xabier Pérez-Aizpurua
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Correspondence:
| | | | | | | | - César Chávez-Roa
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Leticia López-Martín
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Josué Alonso-Román
- Urology Department, Hospital Universitario Virgen de la Macarena, 41009 Sevilla, Spain
| | | | - Blanca Gómez-Jordana
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Felipe Osorio-Ospina
- Urology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Mariano García-Arranz
- Instituto de Investigación Sanitaria (IIS-FJD), Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| |
Collapse
|
10
|
Ti Y, Yang M, Chen X, Zhang M, Xia J, Lv X, Xiao D, Wang J, Lu M. Comparison of the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells and adipose-derived stem cells on erectile dysfunction in a rat model of bilateral cavernous nerve injury. Front Bioeng Biotechnol 2022; 10:1019063. [PMID: 36277409 PMCID: PMC9585154 DOI: 10.3389/fbioe.2022.1019063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Cavernous nerve injury (CNI) is the leading cause of erectile dysfunction (ED) after radical prostatectomy and pelvic fracture. Transplantation of human adipose-derived stem cells (ASCs) has been widely used to restore erectile function in CNI-ED rats and patients. Umbilical cord blood-derived MSCs (CBMSCs) are similarly low immunogenic but much primitive compared to ASCs and more promising in large-scale commercial applications due to the extensive establishment of cord blood banks. However, whether CBMSCs and ASCs have differential therapeutic efficacy on CNI-ED and the underlying mechanisms are still not clear. Materials and methods: A bilateral cavernous nerve injury (BCNI) rat model was established by crushing the bilateral cavernous nerves. After crushing, ASCs and CBMSCs were intracavernously injected immediately. Erectile function, Masson staining, and immunofluorescence analyses of penile tissues were assessed at 4 and 12 weeks. PKH-26-labeled ASCs or CBMSCs were intracavernously injected to determine the presence and differentiation of ASCs or CBMSCs in the penis 3 days after injection. In vitro experiments including intracellular ROS detection, mitochondrial membrane potential assay, EdU cell proliferation staining, cell apoptosis assay, and protein chip assay were conducted to explore the underlying mechanism of CBMSC treatment compared with ASC treatment. Results: CBMSC injection significantly restored erectile function, rescued the loss of cavernous corporal smooth muscles, and increased the ratio of smooth muscle to collagen. PKH-26-labeled CBMSCs or ASCs did not colocalize with endothelial cells or smooth muscle cells in the corpus cavernosum. Moreover, the conditioned medium (CM) of CBMSCs could significantly inhibit the oxidative stress and elevate the mitochondria membrane potential and proliferation of Schwann cells. Better therapeutic effects were observed in the CBMSC group than the ASC group both in vivo and in vitro. In addition, the content of neurotrophic factors and matrix metalloproteinases in CBMSC-CM, especially NT4, VEGF, MMP1, and MMP3 was significantly higher than that of ASC-CM. Conclusion: Intracavernous injection of CBMSCs exhibited a better erectile function restoration than that of ASCs in CNI-ED rats owing to richer secretory factors, which can promote nerve regeneration and reduce extracellular matrix deposition. CBMSC transplantation would be a promising therapeutic strategy for CNI-ED regeneration in the future.
Collapse
Affiliation(s)
- Yunrong Ti
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Mengbo Yang
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinda Chen
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ming Zhang
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jingjing Xia
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, China
| | - Xiangguo Lv
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dongdong Xiao
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Dongdong Xiao, ; Jiucun Wang, ; Mujun Lu,
| | - Jiucun Wang
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, China
- Human Phenome Institute, Fudan University, Shanghai, China
- *Correspondence: Dongdong Xiao, ; Jiucun Wang, ; Mujun Lu,
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Dongdong Xiao, ; Jiucun Wang, ; Mujun Lu,
| |
Collapse
|
11
|
Rampin A, Carrabba M, Mutoli M, Eman CL, Testa G, Madeddu P, Spinetti G. Recent Advances in KEAP1/NRF2-Targeting Strategies by Phytochemical Antioxidants, Nanoparticles, and Biocompatible Scaffolds for the Treatment of Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:707-728. [PMID: 35044251 DOI: 10.1089/ars.2021.0134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Modulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response is a key aspect in the onset of diabetes-related cardiovascular complications. With this review, we provide an overview of the recent advances made in the development of Nrf2-targeting strategies for the treatment of diabetes, with particular attention toward the activation of Nrf2 by natural antioxidant compounds, nanoparticles, and oxidative stress-modulating biocompatible scaffolds. Recent Advances: In the past 30 years, studies addressing the use of antioxidant therapies to treat diabetes have grown exponentially, showing promising but yet inconclusive results. Animal studies and clinical trials on the Nrf2 pathway have shown promising results, suggesting that its activation can delay or reverse some of the cardiovascular impairments in diabetes. Critical Issues: Hyperglycemia- and oscillating glucose levels-induced reactive oxygen species (ROS) accumulation is progressively emerging as a central factor in the onset and progression of diabetes-related cardiovascular complications, including endothelial dysfunction, retinopathy, heart failure, stroke, critical limb ischemia, ulcers, and delayed wound healing. In this context, accumulating evidence suggests a central role for Nrf2-mediated antioxidant response, one of the most studied cellular defensive mechanisms against ROS accumulation. Future Directions: Innovative approaches such as tissue engineering and nanotechnology are converging toward targeting oxidative stress in diabetes. Antioxid. Redox Signal. 36, 707-728.
Collapse
Affiliation(s)
- Andrea Rampin
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Michele Carrabba
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Martina Mutoli
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Charlotte L Eman
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Gianluca Testa
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy.,Interdepartmental Center for Nanotechnology Research-NanoBem, University of Molise, Campobasso, Italy
| | - Paolo Madeddu
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Gaia Spinetti
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
12
|
Xiao M. Advances and rational design of chitosan-based autonomic self-healing hydrogels for biomedical applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02688-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|
14
|
Wang L, Yu M, Peng X, Wang Y, Chen F. Assessing the potential regeneration ability of corpus spongiosum in rabbit models. Andrologia 2020; 53:e13901. [PMID: 33141934 DOI: 10.1111/and.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
Most congenital or acquired urethral diseases are usually accompanied by corpus spongiosum (CS) defects. However, Substitution urethroplasty can only reconstruct urethral lumen, not the CS. Many long-term complications occur due to the lack of protection from CS. Is CS a kind of tissue that cannot be repaired by regeneration and self-healing? In this study, the CS defect with urethral mucosa intact model was established in rabbits by removing the ventral CS tissue. Based on this model, three groups of different CS defect sizes, with lengths of 0.5 cm (Group A), 1.0 cm (Group B) and 1.5 cm (Group C), were then constructed, respectively, to assess the potential regeneration ability of CS. Three months later, the entire urethra, including the CS defect, was assessed by histological staining. Results showed that the vascular sinusoids were completely removed from urethral mucosa. The rabbit model of CS defect was established successfully. Three months post-operatively, the CS defects in all the 3 groups were replaced by disordered collagen instead of regenerating typical sinusoid-like vascular structure, which is significantly different from the normal CS rich in vascular sinusoids. The CS defects could not be repaired through self-healing. The potential regeneration ability of CS is extremely poor.
Collapse
Affiliation(s)
- Lin Wang
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Yu
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xufeng Peng
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fang Chen
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| |
Collapse
|