1
|
Kumar A, Vigato C, Boschi D, Lolli ML, Kumar D. Phenothiazines as anti-cancer agents: SAR overview and synthetic strategies. Eur J Med Chem 2023; 254:115337. [PMID: 37060756 DOI: 10.1016/j.ejmech.2023.115337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
Cancer is a leading cause of death worldwide and there are still limited options for cure. Chemotherapy is the most significant treatment for cancer which increased survival rates, despite this, it is associated with numerous side effects, as well as cancer relapsing due to drug resistance insurgence; consequently, it is still a challenging task to develop new potent and less toxic anti-cancer agents for patients' care. Phenothiazine moiety, which leads a class of well-known antipsychotic drugs, possesses a wide range of biological activities and has been also introduced in cancer chemotherapy. This review aims in disclosing the use of phenothiazines during the last five years for the development of different anti-cancer drug candidates. The design and the synthetic strategies adopted, the SAR investigations and the role of reviewed phenothiazine derivatives as anti-cancer agents and multi-drug resistance (MDR) reversals are here fully described and discussed.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | - Chiara Vigato
- Department of Science and Drug Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy
| | - Donatella Boschi
- Department of Science and Drug Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy
| | - Marco Lucio Lolli
- Department of Science and Drug Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India.
| |
Collapse
|
2
|
Cibotaru S, Sandu AI, Nicolescu A, Marin L. Antitumor Activity of PEGylated and TEGylated Phenothiazine Derivatives: Structure–Activity Relationship. Int J Mol Sci 2023; 24:ijms24065449. [PMID: 36982524 PMCID: PMC10049495 DOI: 10.3390/ijms24065449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The paper aims to investigate the antitumor activity of a series of phenothiazine derivatives in order to establish a structure–antitumor activity relationship. To this end, PEGylated and TEGylated phenothiazine have been functionalized with formyl units and further with sulfonamide units via dynamic imine bonds. Their antitumor activity was monitored in vitro against seven human tumors cell lines and a mouse one compared to a human normal cell line by MTS assay. In order to find the potential influence of different building blocks on antitumor activity, the antioxidant activity, the ability to inhibit farnesyltransferase and the capacity to bind amino acids relevant for tumor cell growth were investigated as well. It was established that different building blocks conferred different functionalities, inducing specific antitumor activity against the tumor cells.
Collapse
|
3
|
Cibotaru S, Nicolescu A, Marin L. Dynamic PEGylated phenothiazine imines; synthesis, photophysical behavior and reversible luminescence switching in response to external stimuli. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Cibotaru S, Ailincai D, Andreica BI, Cheng X, Marin L. TEGylated Phenothiazine-Imine-Chitosan Materials as a Promising Framework for Mercury Recovery. Gels 2022; 8:692. [PMID: 36354600 PMCID: PMC9689029 DOI: 10.3390/gels8110692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/26/2023] Open
Abstract
This paper reports new solid materials based on TEGylated phenothiazine and chitosan, with a high capacity to recover mercury ions from aqueous solutions. They were prepared by hydrogelation of chitosan with a formyl derivative of TEGylated phenothiazine, followed by lyophilization. Their structural and supramolecular characterization was carried out by 1H-NMR and FTIR spectroscopy, as well as X-ray diffraction and polarized light microscopy. Their morphology was investigated by scanning electron microscopy and their photophysical behaviour was examined by UV/Vis and emission spectroscopy. Swelling evaluation in different aqueous media indicated the key role played by the supramolecular organization for their hydrolytic stability. Mercury recovery experiments and the analysis of the resulting materials by X-ray diffraction and FTIR spectroscopy showed a high ability of the studied materials to bind mercury ions by coordination with the sulfur atom of phenothiazine, imine linkage, and amine units of chitosan.
Collapse
Affiliation(s)
- Sandu Cibotaru
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Daniela Ailincai
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Bianca-Iustina Andreica
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| | - Luminita Marin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| |
Collapse
|
5
|
Erythromycin Formulations—A Journey to Advanced Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102180. [PMID: 36297615 PMCID: PMC9608461 DOI: 10.3390/pharmaceutics14102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Erythromycin (ERY) is a macrolide compound with a broad antimicrobial spectrum which is currently being used to treat a large number of bacterial infections affecting the skin, respiratory tract, intestines, bones and other systems, proving great value from a clinical point of view. It became popular immediately after its discovery in 1952, due to its therapeutic effect against pathogens resistant to other drugs. Despite this major advantage, ERY exhibits several drawbacks, raising serious clinical challenges. Among them, the very low solubility in water and instability under acidic conditions cause a limited efficacy and bioavailability. Apart from this, higher doses promote drug resistance and undesirable effects. In order to overcome these disadvantages, during the past decades, a large variety of ERY formulations, including nanoparticles, have emerged. Despite the interest in ERY-(nano)formulations, a review on them is lacking. Therefore, this work was aimed at reviewing all efforts made to encapsulate ERY in formulations of various chemical compositions, sizes and morphologies. In addition, their preparation/synthesis, physico-chemical properties and performances were carefully analysed. Limitations of these studies, particularly the quantification of ERY, are discussed as well.
Collapse
|
6
|
Bongso A, Roswanda R, Syah YM. Recent advances of carbonyl olefination via McMurry coupling reaction. RSC Adv 2022; 12:15885-15909. [PMID: 35733659 PMCID: PMC9135011 DOI: 10.1039/d2ra00724j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/07/2022] [Indexed: 11/21/2022] Open
Abstract
McMurry coupling reaction utilizes the low-valent titanium reagents and carbonyl compounds to produce olefins. The wide synthetic application of McMurry reagents in intermolecular and intramolecular coupling reactions, tandem coupling reactions, and keto ester coupling reactions of carbonyl compounds for the last five years have been reviewed. The resulting coupling reaction produces natural and non-natural products, including strained olefins and unusual molecules as a candidate for nanomaterials, pharmaceuticals, electronic materials, and so forth. The advantages, scope, and limitations along with the improvement of the McMurry coupling reaction, including the addition of high functional group compatibility, McMurry reagents substitution, and several other treatments, have also been discussed. McMurry coupling reaction utilizes the low-valent titanium reagents and carbonyl compounds to produce olefins.![]()
Collapse
Affiliation(s)
- Anthony Bongso
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Robby Roswanda
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Yana Maolana Syah
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| |
Collapse
|
7
|
Prospects and Challenges of the Drug Delivery Systems in Endometriosis Pain Management: Experimental and Theoretical Aspects. J Immunol Res 2021; 2021:2727174. [PMID: 34957311 PMCID: PMC8695015 DOI: 10.1155/2021/2727174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/20/2021] [Indexed: 11/20/2022] Open
Abstract
Endometriosis is considered a serious public health issue because of the large number of females affected by this illness. Chronic pain management in patients with endometriosis demands new strategies to increase the life quality of these patients. The development of drug delivery systems represents a new approach in pain treatment among endometriosis patients. Diclofenac sodium, one of the most utilized nonsteroidal anti-inflammatory drugs (NSAID), has its own limitations when being used in formulas such as oral, parental, or local applications. In this paper, a series of four drug release formulations based on chitosan, 2-hydroxy-5-nitrobenzaldehyde, and diclofenac sodium salt were prepared in view of the investigation of the drug release ability. The formulations were analyzed from a morphological and supramolecular point of view by scanning electron microscopy and polarized light microscopy. The in vitro drug release ability was investigated by mimicking a physiologic environment. A mathematical model, using the fractal paradigm of motion, is utilized to explain the behaviors of the drug delivery system presented in this paper. These results suggest a great potential of the proposed drug delivery system, based on chitosan and 2-hydroxy-5-nitrobenzaldehyde to improve the diclofenac sodium salt bioavailability, and it may represent a future treatment formula for endometriosis pain.
Collapse
|
8
|
Lungu R, Anisiei A, Rosca I, Sandu AI, Ailincai D, Marin L. Double functionalization of chitosan based nanofibers towards biomaterials for wound healing. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Huang ZF, Chen YL, Zhou CY, Li YH, Li M, Liu XB, Mao LC, Yuan JY, Tao L, Wei Y. Polymerizable AEE-active Dye with Optical Activity for Fluorescent Nanoparticles Based on Phenothiazine: Synthesis, Self-assembly and Biological Imaging. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Pegylation of phenothiazine – A synthetic route towards potent anticancer drugs. J Adv Res 2021; 37:279-290. [PMID: 35499049 PMCID: PMC9040145 DOI: 10.1016/j.jare.2021.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Antitumor activity of two PEGylated phenotiazines was investigated The compounds showed cytotoxic activity against six tumor lines They inhibited the tumor growth in experimental mice The PEGylation improved the phenothiazine biocompatibility A synergistic effect of PEG and phenothiazine toward properties improvement was proved
Introduction Cancer is a big challenge of the 21 century, whose defeat requires efficient antitumor drugs. Objectives The paper aims to investigate the synergistic effect of two structural building blocks, phenothiazine and poly(ethylene glycol), towards efficient antitumor drugs. Methods Two PEGylated phenothiazine derivatives were synthetized by attaching poly(ethylene glycol) of 550 Da to the nitrogen atom of phenothiazine by ether or ester linkage. Their antitumor activity has been investigated on five human tumour lines and a mouse tumor line as well, by determination of IC50. The in vivo toxicity was determined by measuring the LD50 in BALB/c mice by the sequential method and the in vivo antitumor potential was measured by the tumours growth test. The antitumor mechanism was investigated by complexation studies of zinc and magnesium ions characteristic to the farnesyltransferase enzyme, by studies of self-aggregation in the cells proximity and by investigation of the antitumor properties of the acid species resulted by enzymatic cleavage of the PEGylated derivatives. Results The two compounds showed antitumor activity, with IC50 against mouse colon carcinoma cell line comparable with that of the traditional antitumor drugs 5-Fluorouracil and doxorubicin. The phenothiazine PEGylation resulted in a significant toxicity diminishing, the LD50 in BALB/c mice increasing from 952.38 up to 1450 mg/kg, in phenothiazine equivalents. Both compounds inflicted a 92% inhibition of the tumour growth for doses much smaller than LD50. The investigation of the possible tumour inhibition mechanism suggested the nanoaggregate formation and the cleavage of ester bonds as key factors for the inhibition of cancer cell proliferation and biocompatibility improvement. Conclusion Phenothiazine and PEG building blocks have a synergetic effect working for both tumour growth inhibition and biocompatibility improvement. All these findings recommend the PEGylated phenothiazine derivatives as a valuable workbench for a next generation of antitumor drugs.
Collapse
|
11
|
B. Rodrigues AC, Pina J, Seixas de Melo JS. Structure-relation properties of N-substituted phenothiazines in solution and solid state: Photophysical, photostability and aggregation-induced emission studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|