1
|
Figueroa-Torres MZ, Meneses-Rodríguez D, Obregón S, Cano A, Vázquez A, Hernández-Adame L, Ruiz-Gómez MA. Enhanced photocatalytic performance of colored Ti 2O 3-Ti 3O 5-TiO 2 heterostructure for the degradation of antibiotic ofloxacin and bactericidal effect. CHEMOSPHERE 2024; 365:143247. [PMID: 39236922 DOI: 10.1016/j.chemosphere.2024.143247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Removing emergent contaminants, such as pharmaceuticals, and inhibiting bacteria by photocatalysis represents an interesting alternative for water remediation. We report the effective preparation of colored powders containing Ti2O3, Ti3O5, and TiO2, by a simple thermal oxidation reaction of a Ti2O3 precursor from 400 °C to 800 °C. The material obtained at 500 °C (P500 sample) exhibited the highest photocatalytic performance under simulated solar light, reaching 54% degradation of antibiotic ofloxacin and a bacteria inactivation of 51% and 62% for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively. The superoxide anion radical was the main specie contributing to the photodegradation of ofloxacin, while the hydroxyl radical showed negligible effect. A synergy between the physicochemical properties of the phases in the P500 sample contributes to the electrons transfer, visible light absorption capability and generation of reactive oxygen species, resulting in its remarkable photoactivity. The comparison in terms of surface-specific activity revealed that the P500 sample is more efficient than commercially available TiO2 P25. This fact opens the option of using commercially available Ti2O3 and TiO2 P25 to obtain composites for promoting photoinduced reactions using natural solar light.
Collapse
Affiliation(s)
- M Z Figueroa-Torres
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, San Nicolás de los Garza, Nuevo León, 66455, Mexico.
| | - David Meneses-Rodríguez
- CONAHCYT-Departamento de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km 6, Mérida, Yucatán, 97310, Mexico.
| | - Sergio Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, Nuevo León, 66455, Mexico.
| | - Arely Cano
- Solid State Electronics Section, Electrical Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, 07360, Mexico City, Mexico.
| | - Alejandro Vázquez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, San Nicolás de los Garza, Nuevo León, 66455, Mexico.
| | - Luis Hernández-Adame
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico.
| | - Miguel A Ruiz-Gómez
- CONAHCYT-Departamento de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km 6, Mérida, Yucatán, 97310, Mexico; División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino Presa San José 2055, Lomas 4a Sección, San Luis Potosí, S.L.P., 78216, Mexico.
| |
Collapse
|
2
|
Sun J, Ge X, Gao Y, Zhang M, Zhao Q, Hou G, Wang X, Yin Y, Ouyang J, Na N. Competitive photooxidation of small colorless organics controlled by oxygen vacancies under visible light. Chem Sci 2024:d4sc04531a. [PMID: 39323529 PMCID: PMC11420858 DOI: 10.1039/d4sc04531a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Visible-light photooxidation sensitized by surface attachment of small colorless organics on semiconductor photocatalysts has emerged as an economical method for photocatalytic synthesis or degradation. In particular, heteroatom (X = N and Cl)-containing substrates could undergo either C-N coupling or dechlorination degradation via sensitizing TiO2, but the mechanism in conducting the competitive visible-light sensitized photooxidations is still vague. Herein, the visible-light photooxidation of colorless 4-chlorobenzene-1,2-diamine (o-CAN) on TiO2 was revealed, contributing to selective C-N coupling rather than dechlorination. Oxygen vacancies (OVs) were in situ generated on the TiO2 surface, which could be dominant in weakening the Cl-Ti adsorption of o-CAN and regulating the activation of O2 for selective C-N coupling. The C-N coupling product, functionalized as the sensitizer, further promoted the visible-light photooxidation upon N-Ti and Cl-Ti coordination. This process was then confirmed by on-line mass spectrometric analysis, and the intermediates as well as their kinetics were determined. Thereby, theoretical calculations were employed to verify the roles of OVs in competitive photooxidation and lowering the energy barriers as well. Based on the comprehensive characterizations of both the catalysts and intermediates, this work has provided insights into competitive photooxidations under visible light.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Xiyang Ge
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yixuan Gao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Min Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qi Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Xiaoni Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Department of Chemistry, College of Arts and Sciences, Beijing Normal University Zhuhai 519087 China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
3
|
Djordjević KL, Markushev DK, Popović MN, Nesić MV, Galović SP, Lukić DV, Markushev DD. Photoacoustic Characterization of TiO 2 Thin-Films Deposited on Silicon Substrate Using Neural Networks. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2865. [PMID: 37049158 PMCID: PMC10096069 DOI: 10.3390/ma16072865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
In this paper, the possibility of determining the thermal, elastic and geometric characteristics of a thin TiO2 film deposited on a silicon substrate, with a thickness of 30 μm, in the frequency range of 20 to 20 kHz with neural networks were analysed. For this purpose, the geometric (thickness), thermal (thermal diffusivity, coefficient of linear expansion) and electronic parameters of substrates were known and constant in the two-layer model, while the following nano-layer thin-film parameters were changed: thickness, expansion and thermal diffusivity. Predictions of these three parameters of the thin-film were analysed separately with three neural networks. All of them together were joined by a fourth neural network. It was shown that the neural network, which analysed all three parameters at the same time, achieved the highest accuracy, so the use of networks that provide predictions for only one parameter is less reliable. The obtained results showed that the application of neural networks in determining the thermoelastic properties of a thin film on a supporting substrate enables the estimation of its characteristics with great accuracy.
Collapse
Affiliation(s)
- Katarina Lj Djordjević
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dragana K. Markushev
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, University of Belgrade, Zemun, 11080 Belgrade, Serbia
| | - Marica N. Popović
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, University of Belgrade, Zemun, 11080 Belgrade, Serbia
| | - Mioljub V. Nesić
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Slobodanka P. Galović
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dragan V. Lukić
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, University of Belgrade, Zemun, 11080 Belgrade, Serbia
| | - Dragan D. Markushev
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, Pregrevica 118, University of Belgrade, Zemun, 11080 Belgrade, Serbia
| |
Collapse
|
4
|
Jia B, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li Y. Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105252. [PMID: 35088586 PMCID: PMC8981469 DOI: 10.1002/advs.202105252] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Indexed: 05/02/2023]
Abstract
The emergence of bacterial resistance due to the evolution of microbes under antibiotic selection pressure, and their ability to form biofilm, has necessitated the development of alternative antimicrobial therapeutics. Physical stimulation, as a powerful antimicrobial method to disrupt microbial structure, has been widely used in food and industrial sterilization. With advances in nanotechnology, nanophysical antimicrobial strategies (NPAS) have provided unprecedented opportunities to treat antibiotic-resistant infections, via a combination of nanomaterials and physical stimulations. In this review, NPAS are categorized according to the modes of their physical stimulation, which include mechanical, optical, magnetic, acoustic, and electrical signals. The biomedical applications of NPAS in combating bacterial infections are systematically introduced, with a focus on their design and antimicrobial mechanisms. Current challenges and further perspectives of NPAS in the clinical treatment of bacterial infections are also summarized and discussed to highlight their potential use in clinical settings. The authors hope that this review will attract more researchers to further advance the promising field of NPAS, and provide new insights for designing powerful strategies to combat bacterial resistance.
Collapse
Affiliation(s)
- Bingqing Jia
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yong‐Qiang Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
- Suzhou Research InstituteShandong UniversitySuzhou215123China
| |
Collapse
|