1
|
Xiong L, Dai B, Yin B, Hii Ru Yie K, Sun H, Liu Y, Liu Z, Mahany AS, Cheng H, Xu L, Gao P, Lu L, Liu J. Enhancing osseointegration and angiogenesis of Titanium implants through KMnO4-Modified Montmorillonite nano-clay coating. CHEMICAL ENGINEERING JOURNAL 2024; 498:155034. [DOI: 10.1016/j.cej.2024.155034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Zhang X, Zhou W, Xi W. Advancements in incorporating metal ions onto the surface of biomedical titanium and its alloys via micro-arc oxidation: a research review. Front Chem 2024; 12:1353950. [PMID: 38456182 PMCID: PMC10917964 DOI: 10.3389/fchem.2024.1353950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
The incorporation of biologically active metallic elements into nano/micron-scale coatings through micro-arc oxidation (MAO) shows significant potential in enhancing the biological characteristics and functionality of titanium-based materials. By introducing diverse metal ions onto titanium implant surfaces, not only can their antibacterial, anti-inflammatory and corrosion resistance properties be heightened, but it also promotes vascular growth and facilitates the formation of new bone tissue. This review provides a thorough examination of recent advancements in this field, covering the characteristics of commonly used metal ions and their associated preparation parameters. It also highlights the diverse applications of specific metal ions in enhancing osteogenesis, angiogenesis, antibacterial efficacy, anti-inflammatory and corrosion resistance properties of titanium implants. Furthermore, the review discusses challenges faced and future prospects in this promising area of research. In conclusion, the synergistic approach of micro-arc oxidation and metal ion doping demonstrates substantial promise in advancing the effectiveness of biomedical titanium and its alloys, promising improved outcomes in medical implant applications.
Collapse
Affiliation(s)
- Xue’e Zhang
- Jiangxi Province Key Laboratory of Oral Biomedicine, School of Stomatology, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Wuchao Zhou
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Weihong Xi
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Cai B, Huang L, Zhou X, Zhou X, Lei K, Han M, Zhang Z, Li X, Li G. Black phosphorus-incorporated novel Ti-12Mo-10Zr implant for multimodal treatment of osteosarcoma. Biometals 2024; 37:131-142. [PMID: 37682402 DOI: 10.1007/s10534-023-00533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
The repair and reconstruction of large bone defects after bone tumor resection is still a great clinical challenge. At present, orthopedic implant reconstruction is the mainstream treatment for repairing bone defects. However, according to clinical feedback, local tumor recurrence and nonunion of bone graft are common reasons leading to the failure of bone defect repair and reconstruction after bone tumor resection, which seriously threaten the physical and mental health of patients. On this basis, here the self-developed low modulus Ti-12Mo-10Zr alloy (TMZ) was chosen as substrate material. To improve its biological activity and osteointegration, calcium, oxygen, and phosphorus co-doped microporous coating was prepared on TMZ alloy by microarc oxidation (MAO). Then, black phosphorus (BP) nanosheets were incorporated onto MAO treated TMZ alloy to obtain multifunctional composites. The obtained BP-MAO-TMZ implant exhibited excellent photothermal effects and effective ablation of osteosarcoma cancer cells under the irradiation of 808 nm near infrared laser, while no photothermal or therapeutic effects were observed for TMZ alloy. Meanwhile, the structure/component bionic coating obtained after MAO treatment as well as the P-driven in situ biomineralization performance after incorporation of BP nanosheets endowed BP-MAO-TMZ implant with synergistic promoting effect on MC3T3-E1 osteoblasts' activity, proliferation and differentiation ability. This study is expected to provide effective clinical solutions for problems of difficult bone regeneration and tumor recurrence after tumor resection in patients with bone tumors and to solve a series of medical problems such as poor prognosis and poor postoperative quality of patients life with malignant bone tumors.
Collapse
Affiliation(s)
- Bianyun Cai
- College of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Leizhen Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xueke Zhou
- College of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Xuan Zhou
- College of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Kun Lei
- College of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Meng Han
- College of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Zilin Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Xiaofang Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China
| | - Guangda Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, China.
| |
Collapse
|
4
|
Park J, Tesler AB, Gongadze E, Iglič A, Schmuki P, Mazare A. Nanoscale Topography of Anodic TiO 2 Nanostructures Is Crucial for Cell-Surface Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4430-4438. [PMID: 38232230 DOI: 10.1021/acsami.3c16033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Anodic titanium dioxide (TiO2) nanostructures, i.e., obtained by electrochemical anodization, have excellent control over the nanoscale morphology and have been extensively investigated in biomedical applications owing to their sub-100 nm nanoscale topography range and beneficial effects on biocompatibility and cell interactions. Herein, we obtain TiO2 nanopores (NPs) and nanotubes (NTs) with similar morphologies, namely, 15 nm diameter and 500 nm length, and investigate their characteristics and impact on stem cell adhesion. We show that the transition of TiO2 NPs to NTs occurs via a pore/wall splitting mechanism and the removal of the fluoride-rich layer. Furthermore, in contrast to the case of NPs, we observe increased cell adhesion and proliferation on nanotubes. The enhanced mesenchymal stem cell adhesion/proliferation seems to be related to a 3-fold increase in activated integrin clustering, as confirmed by immunogold labeling with β1 integrin antibody on the nanostructured layers. Moreover, computations of the electric field and surface charge density show increased values at the inner and outer sharp edges of the top surfaces of the NTs, which in turn can influence cell adhesion by increasing the bridging interactions mediated by proteins and molecules in the environment. Collectively, our results indicate that the nanoscale surface architecture of the lateral spacing topography can greatly influence stem cell adhesion on substrates for biomedical applications.
Collapse
Affiliation(s)
- Jung Park
- Division of Molecular Pediatrics, Department of Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Alexander B Tesler
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
| | - Ekaterina Gongadze
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana SI-1000, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana SI-1000, Slovenia
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, Ljubljana 1000, Slovenia
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc 779 00, Czech Republic
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Shen Y, Fang K, Xiang Y, Xu K, Yu L, Chen J, Ma P, Cai K, Shen X, Liu J. Improvement in osteogenesis, vascularization, and corrosion resistance of titanium with silicon-nitride doped micro-arc oxidation coatings. Front Bioeng Biotechnol 2022; 10:1023032. [PMID: 36324887 PMCID: PMC9621325 DOI: 10.3389/fbioe.2022.1023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Titanium (Ti) implants have been widely used for the treatment of tooth loss due to their excellent biocompatibility and mechanical properties. However, modifying the biological properties of these implants to increase osteointegration remains a research challenge. Additionally, the continuous release of various metal ions in the oral microenvironment due to fluid corrosion can also lead to implant failure. Therefore, simultaneously improving the bioactivity and corrosion resistance of Ti-based materials is an urgent need. In recent decades, micro-arc oxidation (MAO) has been proposed as a surface modification technology to form a surface protective oxide layer and improve the comprehensive properties of Ti. The present study doped nano silicon nitride (Si3N4) particles into the Ti surface by MAO treatment to improve its corrosion resistance and provide excellent osteoinduction by enhancing alkaline phosphatase activity and osteogenic-related gene expression. In addition, due to the presence of silicon, the Si3N4-doped materials showed excellent angiogenesis properties, including the promotion of cell migration and tubule formation, which play essential roles in early recovery after implantation.
Collapse
Affiliation(s)
- Yiding Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Kai Fang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yun Xiang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Keyuan Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Liang Yu
- School and Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaquan Chen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Pingping Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Kaiyong Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Kaiyong Cai, ; Xinkun Shen, ; Jinsong Liu,
| | - Xinkun Shen
- Science and Education Division, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, China
- *Correspondence: Kaiyong Cai, ; Xinkun Shen, ; Jinsong Liu,
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Kaiyong Cai, ; Xinkun Shen, ; Jinsong Liu,
| |
Collapse
|
6
|
Szczęsny G, Kopec M, Politis DJ, Kowalewski ZL, Łazarski A, Szolc T. A Review on Biomaterials for Orthopaedic Surgery and Traumatology: From Past to Present. MATERIALS 2022; 15:ma15103622. [PMID: 35629649 PMCID: PMC9145924 DOI: 10.3390/ma15103622] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023]
Abstract
The principal features essential for the success of an orthopaedic implant are its shape, dimensional accuracy, and adequate mechanical properties. Unlike other manufactured products, chemical stability and toxicity are of increased importance due to the need for biocompatibility over an implants life which could span several years. Thus, the combination of mechanical and biological properties determines the clinical usefulness of biomaterials in orthopaedic and musculoskeletal trauma surgery. Materials commonly used for these applications include stainless steel, cobalt-chromium and titanium alloys, ceramics, polyethylene, and poly(methyl methacrylate) (PMMA) bone cement. This study reviews the properties of commonly used materials and the advantages and disadvantages of each, with special emphasis on the sensitivity, toxicity, irritancy, and possible mutagenic and teratogenic capabilities. In addition, the production and final finishing processes of implants are discussed. Finally, potential directions for future implant development are discussed, with an emphasis on developing advanced personalised implants, according to a patient’s stature and physical requirements.
Collapse
Affiliation(s)
- Grzegorz Szczęsny
- Department of Orthopaedic Surgery and Traumatology, Medical University, 4 Lindleya Str., 02-005 Warsaw, Poland; (G.S.); (A.Ł.)
| | - Mateusz Kopec
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
- Correspondence:
| | - Denis J. Politis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 20537, Cyprus;
| | - Zbigniew L. Kowalewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
| | - Adam Łazarski
- Department of Orthopaedic Surgery and Traumatology, Medical University, 4 Lindleya Str., 02-005 Warsaw, Poland; (G.S.); (A.Ł.)
| | - Tomasz Szolc
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
| |
Collapse
|
7
|
Cai D, Tao E, Yang S, Ma Z, Li Y, Liu L, Wang D, Qian J. Effect of mixed-phase TiO2 doped with Ca2+ on charge transfer at the TiO2/graphene interface. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Lv Y, Sun S, Zhang X, Lu X, Dong Z. Construction of multi-layered Zn-modified TiO 2 coating by ultrasound-auxiliary micro-arc oxidation: Microstructure and biological property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112487. [PMID: 34857273 DOI: 10.1016/j.msec.2021.112487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
Surfaces with desirable cytocompatibility and bactericidal ability are favoured for orthopaedic implants to stimulate osteogenic activity and to prevent implant-associated infection. In this work, we creatively introduce ultrasonic vibration (UV) to micro-arc oxidation (MAO) process and explore its influence on the microstructure, corrosion property and biological responses of Zn-modified TiO2 coating. With the introduction of UV, a uniform surface layer with homogeneously-distributed clusters could be produced as the outer layer, which possesses a fusion band with the underlying TiO2. The microstructural modification associated with UV results in the enhanced corrosion resistance, increased adhesive strength and improved biological performances of the resultant coating relative to that with the absence of UV. Hence, the ultrasonic auxiliary micro-arc oxidation (UMAO) is regarded as a promising surface modification method to produce Ti-based orthopaedic implants of high quality.
Collapse
Affiliation(s)
- You Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siqin Sun
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, 216 Guanshan Road, Hongshan District, 430060, PR China
| | - Xinxin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xueqin Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zehua Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Anodic TiO 2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. NANOMATERIALS 2021; 11:nano11092359. [PMID: 34578675 PMCID: PMC8466263 DOI: 10.3390/nano11092359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
TiO2 nanostructures and more specifically nanotubes have gained significant attention in biomedical applications, due to their controlled nanoscale topography in the sub-100 nm range, high surface area, chemical resistance, and biocompatibility. Here we review the crucial aspects related to morphology and properties of TiO2 nanotubes obtained by electrochemical anodization of titanium for the biomedical field. Following the discussion of TiO2 nanotopographical characterization, the advantages of anodic TiO2 nanotubes will be introduced, such as their high surface area controlled by the morphological parameters (diameter and length), which provides better adsorption/linkage of bioactive molecules. We further discuss the key interactions with bone-related cells including osteoblast and stem cells in in vitro cell culture conditions, thus evaluating the cell response on various nanotubular structures. In addition, the synergistic effects of electrical stimulation on cells for enhancing bone formation combining with the nanoscale environmental cues from nanotopography will be further discussed. The present review also overviews the current state of drug delivery applications using TiO2 nanotubes for increased osseointegration and discusses the advantages, drawbacks, and prospects of drug delivery applications via these anodic TiO2 nanotubes.
Collapse
|
10
|
Kumaravel V, Nair KM, Mathew S, Bartlett J, Kennedy JE, Manning HG, Whelan BJ, Leyland NS, Pillai SC. Antimicrobial TiO 2 nanocomposite coatings for surfaces, dental and orthopaedic implants. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 416:129071. [PMID: 33642937 PMCID: PMC7899925 DOI: 10.1016/j.cej.2021.129071] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
Engineering of self-disinfecting surfaces to constrain the spread of SARS-CoV-2 is a challenging task for the scientific community because the human coronavirus spreads through respiratory droplets. Titania (TiO2) nanocomposite antimicrobial coatings is one of the ideal remedies to disinfect pathogens (virus, bacteria, fungi) from common surfaces under light illumination. The photocatalytic disinfection efficiency of recent TiO2 nanocomposite antimicrobial coatings for surfaces, dental and orthopaedic implants are emphasized in this review. Mostly, inorganic metals (e.g. copper (Cu), silver (Ag), manganese (Mn), etc), non-metals (e.g. fluorine (F), calcium (Ca), phosphorus (P)) and two-dimensional materials (e.g. MXenes, MOF, graphdiyne) were incorporated with TiO2 to regulate the charge transfer mechanism, surface porosity, crystallinity, and the microbial disinfection efficiency. The antimicrobial activity of TiO2 coatings was evaluated against the most crucial pathogenic microbes such as Escherichia coli, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Legionella pneumophila, Staphylococcus aureus, Streptococcus mutans, T2 bacteriophage, H1N1, HCoV-NL63, vesicular stomatitis virus, bovine coronavirus. Silane functionalizing agents and polymers were used to coat the titanium (Ti) metal implants to introduce superhydrophobic features to avoid microbial adhesion. TiO2 nanocomposite coatings in dental and orthopaedic metal implants disclosed exceptional bio-corrosion resistance, durability, biocompatibility, bone-formation capability, and long-term antimicrobial efficiency. Moreover, the commercial trend, techno-economics, challenges, and prospects of antimicrobial nanocomposite coatings are also discussed briefly.
Collapse
Affiliation(s)
- Vignesh Kumaravel
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - Keerthi M Nair
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - Snehamol Mathew
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - John Bartlett
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | | | | | | | | | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| |
Collapse
|
11
|
Wang M, Li M, Wang Y, Shao Y, Zhu Y, Yang S. Efficient antibacterial activity of hydroxyapatite through ROS generation motivated by trace Mn(iii) coupled H vacancies. J Mater Chem B 2021; 9:3401-3411. [PMID: 33881445 DOI: 10.1039/d1tb00098e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) has attracted wide attention for medical application due to its biocompatibility and bioactivity. However, the infection problems of HA remain among the leading reasons for implantation failure. Thus, it is urgent to endow HA biomaterials with antibacterial activity. Herein, the high antibacterial activity was achieved by introducing trace Mn3+ and H vacancy couples in HA through a facile heat-treatment strategy in air. The theoretical results indicated that Mn3+ was preferentially substituted for the Ca(2) site in the HA structure with a charge-compensating H vacancy appearing at the adjacent OH- site. The antibacterial tests showed that Mn-HA possessed antibacterial activity towards both E. coli and S. aureus with trace Mn content at the ppm level, and implied that Mn3+ and centers may play an important role in the antibacterial process. The Mn3+ and couples in Mn-HA, serving as oxidative and reductive centers respectively, could then collectively participate in the CoQ/CoQH2 redox cycling and synergistically facilitate the accumulation of CoQ˙- and ROS radicals. This enhanced ROS production was the main factor to endow Mn-HA with efficient antibacterial activity. Moreover, the in vitro bioactivity assay showed that Mn-HA materials exhibited enhanced osteogenic activity and good biocompatibility. Therefore, this work not only provides a feasible method to control the oxidation state of Mn elements in HA, but also proposes a novel trace Mn3+-doped HA for potential applications in tissue engineering.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | | | | | | | | | | |
Collapse
|
12
|
Zhang J, Wei J, Li B, Zhao X, Zhang J. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite. J Colloid Interface Sci 2021; 594:836-847. [PMID: 33794405 DOI: 10.1016/j.jcis.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/29/2023]
Abstract
Magnesium (Mg) alloy has wide potential applications due to its unique properties, but is apt to corrosion. Recently, superhydrophobic coatings are receiving great interest for corrosion protection of metals but suffer from short lifespan. Here, we report a strategy for long-term corrosion protection of Mg alloy by designing two-layer self-healing superamphiphobic coatings based on shape memory polymers (SMP) and attapulgite. The superamphiphobic coatings are composed of a bottom SMP coating containing a corrosion inhibitor (1, 2, 3-benzotriazole, BTA) and ceresine wax microparticles and a top superamphiphobic attapulgite coating. The two-layer self-healing coatings have excellent superamphiphobicity and initial anti-corrosion performance. The Mg alloy with the coatings can withstand immersion in 3.5 wt% NaCl solution for 80 days and neutral salt spray with 5 wt% NaCl for 54 days. Furthermore, the coatings show excellent self-healing capability towards various physical damages, such as 10 scratching/self-healing cycles at the same position, hexagonal star scratching and grid scratching. Moreover, the physically damaged coatings exhibit self-healing behavior of the microstructure and superhydrophobicity, driven by the shape memory effect of the bottom SMP layer. Thus, the self-healed coatings can still withstand 60 days of 3.5 wt% NaCl solution immersion and 30 days of 5 wt% NaCl salt spray. This study paves the way for applying super anti-wetting coatings for long-term corrosion protection of metals.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Jinfei Wei
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Bucheng Li
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xia Zhao
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Junping Zhang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
13
|
Huang L, Cai B, Huang Y, Wang J, Zhu C, Shi K, Song Y, Feng G, Liu L, Zhang L. Comparative Study on 3D Printed Ti6Al4V Scaffolds with Surface Modifications Using Hydrothermal Treatment and Microarc Oxidation to Enhance Osteogenic Activity. ACS OMEGA 2021; 6:1465-1476. [PMID: 33490806 PMCID: PMC7818615 DOI: 10.1021/acsomega.0c05191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
![]()
Titanium (Ti) and
its alloys have been widely used in clinics as
preferred materials for bone tissue repair and replacement. However,
the lack of biological activity of Ti limits its clinical applications.
Surface modification of Ti with bioactive elements has always been
a research hotspot. In this study, to promote the osseointegration
of Ti6Al4V (Ti64) implants, calcium (Ca), oxygen (O), and phosphorus
(P) codoped multifunctional micro–nanohybrid coatings were
prepared on a three-dimensional (3D) printed porous Ti64 surface by
microarc oxidation (MAO) and a hydrothermal method (HT). The surface
morphologies, chemical compositions, and surface/cell interactions
of the obtained coatings were studied. In vitro experiments
indicated that all hybrid coating-modified Ti64 implants could enhance
protein adsorption and MC3T3 osteoblasts’ activity, adhesion,
and differentiation ability. In vivo experiments
showed that the hybrid coating promoted early osseointegration. By
comparison, microarc oxidation-treated Ti64 (M-Ti) has the best biological
activity and the strongest ability of osseointegration. It provides
important theoretical significance and potential application prospects
for improving the biological activity of Ti implants.
Collapse
Affiliation(s)
- Leizhen Huang
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bianyun Cai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan 471026, China
| | - Yong Huang
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingcheng Wang
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kun Shi
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institue, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
14
|
Zhang X, Lu X, Lv Y, Yang L, Zhang E, Dong Z. Enhancement of Corrosion Resistance and Biological Performances of Cu-Incorporated Hydroxyapatite/TiO 2 Coating by Adjusting Cu Chemical Configuration and Hydroxyapatite Contents. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xinxin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| | - Xueqin Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| | - You Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| | - Lei Yang
- School of Materials and Metallurgy, Northeastern University, Shenyang 110819, P. R. China
| | - Erlin Zhang
- School of Materials and Metallurgy, Northeastern University, Shenyang 110819, P. R. China
| | - Zehua Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| |
Collapse
|