1
|
Boran M, Eliuz EE, Ayas D. The Anti-candidal and Absorbtion Performance of PVA/PVP-Based Jania rubens Hydrogel on Candida tropicalis and Some Physicochemical Properties of the Hydrogel. Appl Biochem Biotechnol 2024; 196:8848-8865. [PMID: 38963589 PMCID: PMC11695445 DOI: 10.1007/s12010-024-04997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
This study was aimed to create a bioactive hydrogel form with PVA/PVP (polyvinyl alcohol/poly(N-vinylpyrrolidone) polymer using acetone and ethanol extractions of Jania rubens red algae and investigate some pharmaceutical properties. The anti-candidal activity and some inhibition performance of J. rubens/PVA/PVP hydrogel were investigated on Candida tropicalis which is one of the important causes of bloodstream infections. The physicochemical properties of J. rubens/PVA/PVP hydrogel were revealed using FTIR and swelling-absorption tests. The volatile compounds of J. rubens extracts were examined by GCMS. By mixing the extracts in equal proportions, PVA/PVP-based hydrogel was prepared. According to the results, Cumulative Drug Release was stable at 25 °C for the first 5 h. The IZ (inhibition zone) and MIC (minimum inhibitory concentration) of J. rubens/PVA/PVP hydrogel were 9.01 mm and 80.20 mg/mL, respectively. It was found that logarithmic reduction and percent reduction were seen as 1.5 CFU/mL and 97.5%, respectively, on C. tropicalis exposed to J. rubens/PVA/PVP hydrogel in the first 5 min of the incubation. After exposure of C. tropicalis to J. rubens/PVA/PVP, the number of viable cells transferred from the gel to water was between 76.1 and 73.1% in high glucose medium, while it was between 92.2 and 80.8% for the PVA/PVP hydrogel under the same conditions. As a result, PVA/PVP hydrogel was made bioactive with J. rubens extracts for the first time in this study, and its potential for use as a functional anticandidal hydrogel on C. tropicalis has been demonstrated.
Collapse
Affiliation(s)
- Meltem Boran
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey
| | - Elif Erdogan Eliuz
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey.
| | - Deniz Ayas
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey
| |
Collapse
|
2
|
Liu S, Feng Y, Tan Y, Chen J, Yang T, Wang X, Li L, Wang F, Liang H, Zhong JL, Qi C, Lei X. Photosensitizer-loaded hydrogels: A new antibacterial dressing. Wound Repair Regen 2024; 32:301-313. [PMID: 38308577 DOI: 10.1111/wrr.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/29/2023] [Accepted: 12/27/2023] [Indexed: 02/05/2024]
Abstract
Bacterial wound infection has emerged as a pivotal threat to human health worldwide, and the situation has worsened owing to the gradual increase in antibiotic-resistant bacteria caused by the improper use of antibiotics. To reduce the use of antibiotics and avoid the increase in antibiotic-resistant bacteria, researchers are increasingly paying attention to photodynamic therapy, which uses light to produce reactive oxygen species to kill bacteria. Treating bacteria-infected wounds by photodynamic therapy requires fixing the photosensitizer (PS) at the wound site and maintaining a certain level of wound humidity. Hydrogels are materials with a high water content and are well suited for fixing PSs at wound sites for antibacterial photodynamic therapy. Therefore, hydrogels are often loaded with PSs for treating bacteria-infected wounds via antibacterial photodynamic therapy. In this review, we systematically summarised the antibacterial mechanisms and applications of PS-loaded hydrogels for treating bacteria-infected wounds via photodynamic therapy. In addition, the recent studies and the research status progresses of novel antibacterial hydrogels are discussed. Finally, the challenges and future prospects of PS-loaded hydrogels are reviewed.
Collapse
Affiliation(s)
- Shunying Liu
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Yanhai Feng
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, China
| | - Yang Tan
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Jinyi Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Tao Yang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Xiaoyu Wang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Lingfei Li
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| | - Fangjie Wang
- The First Research Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Huaping Liang
- The First Research Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Julia-Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Chao Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xia Lei
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Engineering Research Center of Organ Intelligent Bio-Manufacturing, Chongqing, China
| |
Collapse
|
3
|
Gubitosa J, Rizzi V, Fini P, Fanelli F, Sibillano T, Corriero N, Cosma P. Chitosan/snail slime films as multifunctional platforms for potential biomedical and cosmetic applications: physical and chemical characterization. J Mater Chem B 2023; 11:2638-2649. [PMID: 36629337 DOI: 10.1039/d2tb02119f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to the pollution problem, the use of more sustainable materials with a reduced environmental impact, spanning across biocompatible and biodegradable polymers, is growing worldwide in many different fields, particularly when referring to applications in Life Sciences. Accordingly, with the aim of developing multifunctional materials for potential cosmetic/biomedical purposes, this work reports the physical and chemical characterization of chitosan-based films blended with snail slime, exhibiting antioxidant and sunscreen features. A suitable formulation for preparing free-standing chitosan platforms, mixing low molecular weight chitosan, lactic acid, glycerol, and snail slime into an appropriate ratio, is thus described. The results obtained by morphological analysis and ATR-FTIR spectroscopy, XRD, swelling analysis (also when varying pH, ionic strength, and temperature), and WVTR measurements evidence a uniform distribution of snail slime inside the chitosan network, forming more compacted structures. At first, the UV-Vis analysis is used to investigate the theoretical Sun Protection Factor, finding that these innovative platforms can be used for preventing sunburn. Then, the antioxidant features are investigated using the ABTS assay, displaying a snail slime-mediated and dose-dependent boosted activity.
Collapse
Affiliation(s)
- Jennifer Gubitosa
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy.
| | - Vito Rizzi
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy.
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Fiorenza Fanelli
- Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia (CNR-NANOTEC) c/o Dipartimento di Chimica, Università degli Studi "Aldo Moro", Via Orabona, 4, 70126 Bari, Italy
| | - Teresa Sibillano
- Consiglio Nazionale delle Ricerche CNR-IC, UOS Bari, Via Amendola, 122/O 70126 Bari, Italy
| | - Nicola Corriero
- Consiglio Nazionale delle Ricerche CNR-IC, UOS Bari, Via Amendola, 122/O 70126 Bari, Italy
| | - Pinalysa Cosma
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
4
|
Jungsinyatam P, Suwanakood P, Saengsuwan S. Multicomponent biodegradable hydrogels based on natural biopolymers as environmentally coating membrane for slow-release fertilizers: Effect of crosslinker type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157050. [PMID: 35780891 DOI: 10.1016/j.scitotenv.2022.157050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
This work aims to explore the suitable crosslinker type for synthesizing multicomponent biodegradable hydrogels of cassava starch (CSt) grafted with acrylic acid (AA) semi-interpenetrated by natural rubber (NR)/polyvinyl alcohol (PVA) blend (CSt-g-PAA/NR/PVA, CSB semi-IPN hydrogel) as coating membranes for slow-release urea fertilizers. Three crosslinker types (ethylene glycol dimethacrylate (EGDMA), glutaraldehyde (GA) and N,N'- methylene-bis-acrylamide (MBA)) were employed to investigate their influences on the properties of CSB semi-IPN hydrogels. The results revealed that the different crosslinkers clearly exhibited different water-retention capacity, biodegradation, slow release and plant growth performance of the CSB semi-IPN hydrogels. The CSB-G2 hydrogel (crosslinked with GA at 2 wt%) remained higher water-retention at 30 days (20.2 %), greater rate of degradation (1.37 %/day) and better biosafety (OD600 = 2.26) compared to CSB-M2 and CSB-E2 hydrogels. After urea pellets were coated by CSB hydrogels and wax layers (UCSBw formulation), the urea release rates from the UCSBw-M2, UCSBw-E2 and UCSBw-G2 formulations in 30 days were 67.7 %, 68.7 % and 78.3 %, respectively, corresponding well with swelling ratio and pore size. Besides, the UCSBw-G2 formulation yielded the greater plant growth performance (height, leaf length and product weight) than other two formulations and commercial fertilizer. In conclusion, GA is the suitable crosslinker for synthesizing the CSB-g-PAA/NR/PVA hydrogels with high water-retention, excellent biodegradation, less negative impact on environments, acceptable slow-release rate, good biosafety and reasonable price for slow-release fertilizers.
Collapse
Affiliation(s)
- Patchareepon Jungsinyatam
- Laboratory of Advanced Polymer and Rubber Materials (APRM), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| | - Pitchayaporn Suwanakood
- Department of Bioscience, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand
| | - Sayant Saengsuwan
- Laboratory of Advanced Polymer and Rubber Materials (APRM), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani 34190, Thailand.
| |
Collapse
|
5
|
Influence of Geographical Location of Spirulina (Arthrospira platensis) on the Recovery of Bioactive Compounds Assisted by Pulsed Electric Fields. SEPARATIONS 2022. [DOI: 10.3390/separations9090257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spirulina (Arthrospira platensis) has been consumed by humans since ancient times. It is rich in high added-value compounds such as chlorophylls, carotenoids and polyphenols. Pulsed electric fields (PEF) is an innovative non-thermal technique that improves the extraction of bioactive compounds from diverse sources. PEF pre-treatment (3 kV/cm, 100 kJ/kg) combined with supplementary extraction with binary solvents at different times was evaluated to obtain the optimal conditions for extraction. In addition, the results obtained were compared with conventional treatment (without PEF pre-treatment and constant shaking) and different strains of Spirulina from diverse geographical locations. The optimal extraction conditions for recovering the bioactive compounds were obtained after applying PEF treatment combined with the binary mixture EtOH/H2O for 180 min. The recovery of total phenolic content (TPC) (19.76 ± 0.50 mg/g DM (dry matter) and carotenoids (0.50 ± 0.01 mg/g DM) was more efficient in the Spirulina from Spain. On the other hand, there was a higher recovery of chlorophylls in the Spirulina from China. The highest extraction of total antioxidant compounds was in Spirulina from Costa Rica. These results show that PEF, solvents and the condition of growing affect the extraction of antioxidant bioactive compounds from Spirulina. The combination of PEF and EtOH/H2O is a promising technology due to its environmental sustainability.
Collapse
|
6
|
The Physicochemical Properties and Antioxidant Activity of Spirulina ( Artrhospira platensis) Chlorophylls Microencapsulated in Different Ratios of Gum Arabic and Whey Protein Isolate. Foods 2022; 11:foods11121809. [PMID: 35742007 PMCID: PMC9223014 DOI: 10.3390/foods11121809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Spirulina (Artrhospira platensis) is rich in chlorophylls (CH) and is used as a potential natural additive in the food industry. In this study, the CH content was extracted from spirulina powder after ultrasound treatment. Microcapsules were then prepared at different ratios of gum Arabic (GA) and whey protein isolate (WPI) through freeze-drying to improve the chemical stability of CH. As a result, a* and C* values of the microcapsules prepared from GA:WPI ratios (3:7) were −8.94 ± 0.05 and 15.44 ± 0.08, respectively. The GA fraction increased from 1 to 9, and encapsulation efficiency (EE) of microcapsules also increased by 9.62%. Moreover, the absorption peaks of CH at 2927 and 1626 cm−1 in microcapsules emerged as a redshift detected by FT-IR. From SEM images, the morphology of microcapsules changed from broken glassy to irregular porous flake-like structures when the GA ratio increased. In addition, the coated microcapsules (GA:WPI = 3:7) showed the highest DPPH free radical scavenging activity (SADPPH) (56.38 ± 0.19) due to low moisture content and better chemical stability through thermogravimetric analysis (TGA). Conclusively, GA and WPI coacervates as the wall material may improve the stability of CH extracted from spirulina.
Collapse
|