1
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
2
|
Malheiros SS, Nagay BE, Bertolini MM, de Avila ED, Shibli JA, Souza JGS, Barão VAR. Biomaterial engineering surface to control polymicrobial dental implant-related infections: focusing on disease modulating factors and coatings development. Expert Rev Med Devices 2023:1-17. [PMID: 37228179 DOI: 10.1080/17434440.2023.2218547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations. AREAS COVERED Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility. EXPERT OPINION Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.
Collapse
Affiliation(s)
- Samuel S Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna M Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, Sao Paulo 16015-050, Brazil
| | - Jamil A Shibli
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais39401-303, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
3
|
Fosca M, Streza A, Antoniac IV, Vadalà G, Rau JV. Ion-Doped Calcium Phosphate-Based Coatings with Antibacterial Properties. J Funct Biomater 2023; 14:jfb14050250. [PMID: 37233360 DOI: 10.3390/jfb14050250] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Ion-substituted calcium phosphate (CP) coatings have been extensively studied as promising materials for biomedical implants due to their ability to enhance biocompatibility, osteoconductivity, and bone formation. This systematic review aims to provide a comprehensive analysis of the current state of the art in ion-doped CP-based coatings for orthopaedic and dental implant applications. Specifically, this review evaluates the effects of ion addition on the physicochemical, mechanical, and biological properties of CP coatings. The review also identifies the contribution and additional effects (in a separate or a synergistic way) of different components used together with ion-doped CP for advanced composite coatings. In the final part, the effects of antibacterial coatings on specific bacteria strains are reported. The present review could be of interest to researchers, clinicians, and industry professionals involved in the development and application of CP coatings for orthopaedic and dental implants.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alexandru Streza
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Iulian V Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Gianluca Vadalà
- Laboratory of Regenerative Orthopaedics, Research Unit of Orthopaedic, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Orthopaedics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
4
|
De Lama-Odría MDC, del Valle LJ, Puiggalí J. Lanthanides-Substituted Hydroxyapatite for Biomedical Applications. Int J Mol Sci 2023; 24:3446. [PMID: 36834858 PMCID: PMC9965831 DOI: 10.3390/ijms24043446] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Lately, there has been an increasing demand for materials that could improve tissue regenerative therapies and provide antimicrobial effects. Similarly, there is a growing need to develop or modify biomaterials for the diagnosis and treatment of different pathologies. In this scenario, hydroxyapatite (HAp) appears as a bioceramic with extended functionalities. Nevertheless, there are certain disadvantages related to the mechanical properties and lack of antimicrobial capacity. To circumvent them, the doping of HAp with a variety of cationic ions is emerging as a good alterative due to the different biological roles of each ion. Among many elements, lanthanides are understudied despite their great potential in the biomedical field. For this reason, the present review focuses on the biological benefits of lanthanides and how their incorporation into HAp can alter its morphology and physical properties. A comprehensive section of the applications of lanthanides-substituted HAp nanoparticles (HAp NPs) is presented to unveil the potential biomedical uses of these systems. Finally, the need to study the tolerable and non-toxic percentages of substitution with these elements is highlighted.
Collapse
Affiliation(s)
- María del Carmen De Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11–15, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Jiang X, Liu X, Cai J, Wei S, Wang Y, Duan Z, Zhou Z, Sun R, Qu X, Tang Y. Fabrication and properties of multi-functional polydopamine coated Cu/F-codoped hydroxyapatite hollow microspheres as drug carriers. Colloids Surf B Biointerfaces 2023; 222:113097. [PMID: 36549247 DOI: 10.1016/j.colsurfb.2022.113097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Due to its excellent bone conductivity and drug adsorption as well as pH-responsive drug release property, hydroxyapatite (HAp) is widely used as a drug carrier in bone repair field. Here, we report for the first time a novel multi-functional polydopamine (PDA) coated Cu/F-codoped HAp (Cu/F-HAp-PDA) hollow microspheres. Both Cu2+ and F- were successfully doped into the lattice of HAp and uniformly distributed in the shell of hollow microspheres through a one-step hydrothermal synthesis. Then PDA was coated homogeneously on the outer layer of Cu/F-HAp hollow microspheres. Both Cu/F-HAp and Cu/F-HAp-PDA samples displayed high drug loading efficiency and pH responsive drug release behavior. Moreover, the obtained Cu/F-HAp-PDA hollow microspheres exhibited excellent photothermal conversion efficiency and photothermal stability. The molecular dynamics simulations showed that PDA and HAp can form mutual binding mainly through Ca-O bonding, while doxorubicin (DOX) is mainly bound to PDA molecules through hydrogen bonding and π-π stacking interaction.
Collapse
Affiliation(s)
- Xiaodan Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaowei Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiayi Cai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shibo Wei
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yanan Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhuqing Duan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zeao Zhou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruixue Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiaofei Qu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yuanzheng Tang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
6
|
Sekar S, Lee S. In Situ Facile Synthesis of Low-Cost Biogenic Eggshell-Derived Nanohydroxyapatite/Chitosan Biocomposites for Orthopedic Implant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4302. [PMID: 36500924 PMCID: PMC9739235 DOI: 10.3390/nano12234302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In situ facile synthesis and the characterization of nanohydroxyapatite/chitosan (nHAP/CS) biocomposites were investigated for examining their potential applications in orthopedic implant technology. Firstly, the bare nHAP, europium-doped hydroxyapatite (Eu-nHAP), yttrium-doped hydroxyapatite (Y-nHAP), and Eu- and Y-codoped hydroxyapatite (Eu,Y-nHAP) nanoparticles were synthesized by the wet precipitation technique using biowaste-eggshell-derived calcium oxide powders. Then, through ultrasonication using the nanohydroxyapatite/chitosan mixtures (molar ratio = 1:2), the nHAP/CS, Eu-nHAP/CS, Y-nHAP/CS, and Eu,Y-nHAP/CS biocomposites were fabricated. Among them, Eu,Y-nHAP/CS showed higher cell viability (94.9%), higher solubility (pH = 7.6 after 21 days), and greater antibacterial activity than those of the other composites. In addition, Eu,Y-nHAP/CS exhibited improved mechanical properties compared with the other composites. For example, the nanoindentation test displayed the Eu,Y-nHAP/CS-coated 316L stainless steel implant to possess a higher Young's modulus value (9.24 GPa) and greater hardness value (300.71 MPa) than those of the others. The results indicate that the biomass-eggshell-derived Eu,Y-doped nHAP is of good use for orthopedic implant applications.
Collapse
Affiliation(s)
- Sankar Sekar
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sejoon Lee
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
7
|
Jain S, Parashar V. Analytical review on the biocompatibility of surface-treated Ti-alloys for joint replacement applications. Expert Rev Med Devices 2022; 19:699-719. [PMID: 36240236 DOI: 10.1080/17434440.2022.2132146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION With the advancement of joint replacements such as total hip replacement (THR), Titanium (Ti) and its alloys are widely used as implant materials. The bearing surface of Ti improves the longevity of implants. In this perception, researchers design a Ti-alloy that increases the wear and corrosion resistance to enhance osteogenesis and mechanical stability. AREAS COVERED : This paper is dedicated to finding the major causes of the failure of THR. Further, this paper provides an overview of the application of metallic alloys and their influencing factors that influence biocompatibility. The most contributing part of this paper focuses on the post-treatment impact on Ti-alloys biocompatibility. EXPERT OPINION This paper revealed and discussed that Ti alloys' biocompatibility for orthopedic applications mainly depends on antibacterial activities that decide tissue-implant compatibility. Therefore, performing surface treatment enhances the biocompatibility of Ti alloys. It was also observed that more water contact angle (WCA) induces bacterial growth and enhances cell adhesion. In contrast, the treated surface increases the antibacterial activities at lower WCA. Surface heat treatment with sintering or micro-arc oxidation achieves suitable antibacterial or antimicrobial activities.
Collapse
Affiliation(s)
- Shubham Jain
- Department of Mechanical Engineering, MANIT, Bhopal,462003, India
| | - Vishal Parashar
- Department of Mechanical Engineering, MANIT, Bhopal,462003, India
| |
Collapse
|
8
|
Han J, Liu S, Ai S, Wan D. Development of sea urchin type silica stabilised zirconia nanospheres with enhanced antimicrobial and osteoactivity properties. J Appl Biomater Funct Mater 2022; 20:22808000221136367. [DOI: 10.1177/22808000221136367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Zirconia based ceramics are giving new hope in hard tissues replacement and implants application. Among the three forms of zirconia (ZrO2), tetragonal form ( t-ZrO2) possess high mechanical stability in comparison with the other two which makes it suitable for fabricating biomedical implants with enhanced osteo activity. Here, tetragonal phase nanospheres consisting of silica stabilised zirconia (1:1) were prepared via sol gel method. The nanospheres exhibit sea urchin type morphology as observed from FESEM analysis. XRD patterns confirm the formation of t -SiO2-ZrO2 binary phase after high temperature calcination at 650°C. The immersion studies in SBF help in the formation of a layer of apatite in a gradual manner over the pallets for the period of 7, 14, 21 and 28 days which was confirmed by XRD, FTIR analysis. Moreover, t- SiO2 – ZrO2 samples were subjected to cytotoxicity tests through MTT assay on MG-63 cell lines. Antibacterial properties were investigated quantitatively using colony forming unit method against both gram positive as well as gram-negative bacteria.
Collapse
Affiliation(s)
- Jiyu Han
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People’s Republic of China, Shanghai, China
| | - Siyu Liu
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daqian Wan
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People’s Republic of China, Shanghai, China
| |
Collapse
|
9
|
Hussin MSF, Mohd Serah A, Azlan KA, Abdullah HZ, Idris MI, Ghazali I, Mohd Shariff AH, Huda N, Zakaria AA. A Bibliometric Analysis of the Global Trend of Using Alginate, Gelatine, and Hydroxyapatite for Bone Tissue Regeneration Applications. Polymers (Basel) 2021; 13:647. [PMID: 33671617 PMCID: PMC7927100 DOI: 10.3390/polym13040647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Collecting information from previous investigations and expressing it in a scientometrics study can be a priceless guide to getting a complete overview of a specific research area. The aim of this study is to explore the interrelated connection between alginate, gelatine, and hydroxyapatite within the scope of bone tissue and scaffold. A review of traditional literature with data mining procedures using bibliometric analyses was considered to identify the evolution of the selected research area between 2009 and 2019. Bibliometric methods and knowledge visualization technologies were implemented to investigate diverse publications based on the following indicators: year of publication, document type, language, country, institution, author, journal, keyword, and number of citations. An analysis using a bibliometric study found that 7446 papers were located with the keywords "bone tissue" and "scaffold", and 1767 (alginate), 185 (gelatine), 5658 (hydroxyapatite) papers with those specific sub keywords. The number of publications that relate to "tissue engineering" and bone more than doubled between 2009 (1352) and 2019 (2839). China, the United States and India are the most productive countries, while Sichuan University and the Chinese Academy of Science from China are the most important institutions related to bone tissue scaffold. Materials Science and Engineering C is the most productive journal, followed by the Journal of Biomedical Materials Research Part A. This paper is a starting point, providing the first bibliometric analysis study of bone tissue and scaffold considering alginate, gelatine and hydroxyapatite. A bibliometric analysis would greatly assist in giving a scientific insight to support desired future research work, not only associated with bone tissue engineering applications. It is expected that the analysis of alginate, gelatine and hydroxyapatite in terms of 3D bioprinting, clinical outcomes, scaffold architecture, and the regenerative medicine approach will enhance the research into bone tissue engineering in the near future. Continued studies into these research fields are highly recommended.
Collapse
Affiliation(s)
- Mohamed Saiful Firdaus Hussin
- Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka 76100, Malaysia; (A.M.S.); (K.A.A.); (I.G.)
| | - Aludin Mohd Serah
- Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka 76100, Malaysia; (A.M.S.); (K.A.A.); (I.G.)
| | - Khairul Azri Azlan
- Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka 76100, Malaysia; (A.M.S.); (K.A.A.); (I.G.)
| | - Hasan Zuhudi Abdullah
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor 86400, Malaysia; (H.Z.A.); (M.I.I.)
| | - Maizlinda Izwana Idris
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor 86400, Malaysia; (H.Z.A.); (M.I.I.)
| | - Ihwan Ghazali
- Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Melaka 76100, Malaysia; (A.M.S.); (K.A.A.); (I.G.)
| | - Amir Husni Mohd Shariff
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia;
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia;
| | - Azrul Abidin Zakaria
- Department of Mechanical Engineering, Universiti Tenaga Nasional, Kajang, Selangor 43000, Malaysia;
| |
Collapse
|