1
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
2
|
Zhao Y, Liu Y, Liu Z, Ren K, Jiao D, Ren J, Wu P, Li X, Wang Z, Han X. In Situ Nanofiber Patch Boosts Postoperative Hepatocellular Carcinoma Immune Activation by Trimodal Combination Therapy. ACS NANO 2024; 18:245-263. [PMID: 38117780 PMCID: PMC10786167 DOI: 10.1021/acsnano.3c05829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023]
Abstract
Poor clinical efficacy associated with postoperative hepatocellular carcinoma (HCC) often results from recurrence and metastasis. Hence, research has focused on establishing an effective multimodal therapy. However, complex combinations of active ingredients require multiple functions in therapeutic systems. Herein, a portable nanofiber patch composing germanium phosphorus (GeP) and anlotinib (AL) was designed to form a versatile platform for molecularly targeted photothermal-immune checkpoint blockade (ICB) trimodal combination therapy. The patches possess hydrophilic, satisfactory mechanical, and excellent photothermal conversion properties. Moreover, they achieve a penetrating and sustained drug release. The near-infrared light-assisted GeP-induced temperature increase regulates AL release, downregulating the expression of vascular-related factor receptors, triggering immunogenic cell death of tumor cells, and inducing dendritic cell maturation. Simultaneously, ICB therapy (programmed cell death ligand 1, PD-L1) was introduced to improve treatment outcomes. Notably, this trimodal combination therapy significantly inhibits vascular hypergrowth, enhances effector T-cell infiltration, and sensitizes the PD-L1 antibody response, boosting immunotherapy to suppress residual HCC recurrence and metastasis. Further validation of the genome sequencing results revealed cell pathways related primarily to regulatory immune effects. This study demonstrates the use of an effective and practical nanofiber patch to improve multimodal therapy of postoperative HCC, with high clinical translation value.
Collapse
Affiliation(s)
- Yanan Zhao
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Yiming Liu
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Zaoqu Liu
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Kewei Ren
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Dechao Jiao
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Jianzhuang Ren
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Ping Wu
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaokun Li
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhouguang Wang
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xinwei Han
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|