1
|
Chadha J, Ahuja P, Mudgil U, Khullar L, Harjai K. Citral and triclosan synergistically silence quorum sensing and potentiate antivirulence response in Pseudomonas aeruginosa. Arch Microbiol 2024; 206:324. [PMID: 38913239 DOI: 10.1007/s00203-024-04059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Among the ESKAPE pathogens, Pseudomonas aeruginosa is an extensively notorious superbug that causes difficult-to-treat infections. Since quorum sensing (QS) directly promotes pseudomonal virulence, targeting QS circuits is a promising approach for disarming phenotypic virulence. Hence, this study scrutinizes the anti-QS, antivirulence, and anti-biofilm potential of citral (CiT; phytochemical) and triclosan (TcN; disinfectant), alone and in combination, against P. aeruginosa PAO1/PA14. The findings confirmed synergism between CiT and TcN and revealed their quorum quenching (QQ) potential. At sub-inhibitory levels, CiT-TcN combination significantly impeded pyocyanin, total bacterial protease, hemolysin, and pyochelin production alongside inhibiting biofilm formation in P. aeruginosa. Moreover, the QQ and antivirulence potential of CiT and TcN was positively correlated by molecular docking studies that predicted strong associations of the drugs with QS receptors of P. aeruginosa. Collectively, the study identifies CiT-TcN as an effective drug combination that harbors QQ, antivirulence, and anti-biofilm prospects against P. aeruginosa.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna Ahuja
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Gutiérrez-Pacheco MM, Torres-Moreno H, Flores-Lopez ML, Velázquez Guadarrama N, Ayala-Zavala JF, Ortega-Ramírez LA, López-Romero JC. Mechanisms and Applications of Citral's Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations. Antibiotics (Basel) 2023; 12:1608. [PMID: 37998810 PMCID: PMC10668791 DOI: 10.3390/antibiotics12111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
Citral is a monoterpene constituted by two isomers known as neral and geranial. It is present in different plant sources and recognized as safe (GRAS) by the Food and Drug Administration (FDA). In recent years, investigations have demonstrated that this compound exhibited several biological activities, such as antibacterial, antifungal, antibiofilm, antiparasitic, antiproliferative, anti-inflammatory, and antioxidant properties, by in vitro and in vivo assays. Additionally, when incorporated into different food matrices, citral can reduce the microbial load of pathogenic microorganisms and extend the shelf life. This compound has acceptable drug-likeness properties and does not present any violations of Lipinski's rules, which could be used for drug development. The above shows that citral could be a compound of interest for developing food additives to extend the shelf life of animal and vegetable origin foods and develop pharmaceutical products.
Collapse
Affiliation(s)
| | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, H. Caborca 83600, Sonora, Mexico;
| | - María Liliana Flores-Lopez
- Centro de Investigación e Innovación Científica y Tecnológica, Universidad Autónoma de Coahuila, Saltillo 25070, Coahuila, Mexico;
| | - Norma Velázquez Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - J. Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Sonora, Mexico;
| | - Luis Alberto Ortega-Ramírez
- Departamento de Ciencias de la Salud, Universidad Estatal de Sonora, San Luis Río Colorado 83430, Sonora, Mexico;
| | - Julio César López-Romero
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, H. Caborca 83600, Sonora, Mexico;
| |
Collapse
|
4
|
Dhiman NK, Reddy MS, Agnihotri S. Graphene oxide reinforced chitosan/polyvinyl alcohol antibacterial coatings on stainless steel surfaces exhibit superior bioactivity without human cell cytotoxicity. Colloids Surf B Biointerfaces 2023; 227:113362. [PMID: 37257298 DOI: 10.1016/j.colsurfb.2023.113362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
The study proposes an alternative therapeutics to diminish bacterial attachment in biomedical implants by modifying their surface with passive coatings. A uniform, thin-film of chitosan/polyvinyl alcohol/graphene oxide (CS/PVA/GO) was coated on 316 L stainless steel (SS) surface through spread casting followed by solvent evaporation. The abundant anchoring sites available at macromolecular interfaces of chitosan/PVA matrix facilitated a smooth, dense loading of GO. The effect of GO content on physicochemical features, antibacterial potential, and biocompatibility of coatings was thoroughly studied. The hybrid films displayed good adhesion behavior, and UV-protection ability with desired mechanical and thermal stability when coated on SS surface. Coatings manifested a 1.5-1.7 fold rise in antibacterial efficacy against Staphylococcus epidermidis and Staphylococcus aureus and exhibited a permanent biocidal response after 6 h of contact-active behaviour. We investigated a 3-fold generation of reactive oxygen species as the predominant antibacterial mechanism, which diminishes bacterial integrity by inducing protein leakage (8.5-9 fold higher) and suppressing respiratory chain activity as two secondary mechanisms. All coatings with varying GO content appeared non-haemolytic (<2%) with ultra-low cytotoxicity (<29.08%) against human hepatocellular carcinoma (HepG2) and peripheral blood mononuclear cells. The degradation rate of coatings in simulated body fluid exhibited a higher stability, indicated by a lower weight loss (69-78%) and a decrease in pH values as the GO content in coatings increased from 0.05 to 0.15 wt%. Such anti-infective coating is a step forward in inhibiting bacterial colonization on SS surfaces to extend its lifespan.
Collapse
Affiliation(s)
- Navneet Kaur Dhiman
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala 147004, Punjab, India
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala 147004, Punjab, India
| | - Shekhar Agnihotri
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India; Centre for Advanced Translational Research in Food Nano-Biotechnology (CATR-FNB), National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India.
| |
Collapse
|
5
|
Moshaverinia M, Sahmeddini S, Lavee F, Zareshahrabadi Z, Zomorodian K. Antimicrobial and Anti-Biofilm Activities of Thymus fallax Essential Oil against Oral Pathogens. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9744153. [PMID: 39281058 PMCID: PMC11401671 DOI: 10.1155/2022/9744153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 09/18/2024]
Abstract
Aim Oral infections associated with a wide diversity of microorganisms, including bacteria and yeasts, occur frequently in humans, affecting the whole oral cavity and well-being. Oral pathogens easily grow and propagate in the oral cavity, leading to the formation of dental plaque on both soft and hard tissue. The oral cavity contains up to 700 different species of microorganisms, which Candida and Streptococci are the most common organisms. Oral diseases continue to increase despite the best efforts of the medical and scientific communities. During the past decades, drug resistance to common antibiotics used in the treatment of oral infections has been raised to high levels worldwide. To overcome such resistance, there is a growing tendency to use herbal medicine as alternative. This study was conducted to find out the chemical constitution of Thymus fallax (T. fallax) essential oil and to determine its antimicrobial and anti-biofilm efficacy against common oral pathogens. Materials and Methods The chemical compositions of the essential oil distilled from T. fallax plants were analyzed using gas chromatography/mass spectrometry (GC/MS). Antimicrobial susceptibility testing against common Streptococcus, Enterococcus, Staphylococcus, and Candida strains was assessed by broth microdilution in 96-well plates as suggested by the Clinical and Laboratory Standards Institute (CLSI) methods. Biofilm growth and development were assessed using XTT reduction assay. Results Based on the GC/MS test results, thymol (67.75%) followed by caryophyllene (E-) (7.27%) was the main component of this essential oil. T. fallax inhibited the growth of examined microbial pathogens at concentrations of 0.031-16 μL/mL. Also, the essential oil showed biofilm inhibition of greater than 95% in the concentration of 8 μL/mL against all tested bacterial strains as well as Candida albicans (p value < 0.05). Conclusions Considering the significant antimicrobial activities of T. fallax, this essential oil has the potential to be used as further antimicrobial and anti-biofilm pharmaceutical products in the control and treatment of oral infections.
Collapse
Affiliation(s)
- Maryam Moshaverinia
- Department of Oral and Maxillofacial Disease, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sarina Sahmeddini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Lavee
- Oral and Dental Disease Research Center, Oral and Maxillofacial Disease Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Antibiofilm activity of 3,3'-diindolylmethane on Staphylococcus aureus and its disinfection on common food-contact surfaces. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
8
|
Chen X, Ling X, Liu G, Xiao J. Antimicrobial Coating: Tracheal Tube Application. Int J Nanomedicine 2022; 17:1483-1494. [PMID: 35378882 PMCID: PMC8976493 DOI: 10.2147/ijn.s353071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Ventilator-associated pneumonia (VAP) is a common and serious nosocomial infection in mechanically ventilated patients, increasing mortality, prolonging the patient length of stay, and increasing costs. In recent years, extensive studies on ventilator-associated pneumonia have shown that tracheal intubation plays an essential role in the pathogenesis of VAP, with the primary mechanism being the rapid colonization of the tracheal intubation surface by microbiota. Antibiotics do not combat microbial airway colonization, and antimicrobial coating materials offer new ideas to solve this problem. This paper reviews the current research progress on the role of endotracheal tube (ET) biofilms in the pathogenesis of VAP and antimicrobial coating materials.
Collapse
Affiliation(s)
- Xuemeng Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaomei Ling
- Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Gaowang Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jinfang Xiao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Jinfang Xiao, Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Jingxi Street, Guangzhou, 510515, Guangdong, People’s Republic of China, Tel +86 198 6518 2069, Email
| |
Collapse
|
9
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
10
|
Gherasim O, Popescu-Pelin G, Florian P, Icriverzi M, Roseanu A, Mitran V, Cimpean A, Socol G. Bioactive Ibuprofen-Loaded PLGA Coatings for Multifunctional Surface Modification of Medical Devices. Polymers (Basel) 2021; 13:polym13091413. [PMID: 33925498 PMCID: PMC8123841 DOI: 10.3390/polym13091413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022] Open
Abstract
To modulate the biofunctionality of implantable medical devices commonly used in clinical practice, their surface modification with bioactive polymeric coatings is an attractive and successful emerging strategy. Biodegradable coatings based on poly(lactic acid-co-glycolic acid), PLGA, represent versatile and safe candidates for surface modification of implantable biomaterials and devices, providing additional tunable ability for topical delivery of desired therapeutic agents. In the present study, Ibuprofen-loaded PLGA coatings (PLGA/IBUP) were obtained by using the dip-coating and drop-casting combined protocol. The composite materials demonstrated long-term drug release under biologically simulated dynamic conditions. Reversible swelling phenomena of polymeric coatings occurred in the first two weeks of testing, accompanied by the gradual matrix degradation and slow release of the therapeutic agent. Irreversible degradation of PLGA coatings occurred after one month, due to copolymer's hydrolysis (evidenced by chemical and structural modifications). After 30 days of dynamic testing, the cumulative release of IBUP was ~250 µg/mL. Excellent cytocompatibility was revealed on human-derived macrophages, fibroblasts and keratinocytes. The results herein evidence the promising potential of PLGA/IBUP coatings to be used for surface modification of medical devices, such as metallic implants and wound dressings.
Collapse
Affiliation(s)
- Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, RO-077125 Magurele, Ilfov County, Romania; (O.G.); (G.P.-P.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Gheorghe Polizu Street, RO-011061 Bucharest, Romania
| | - Gianina Popescu-Pelin
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, RO-077125 Magurele, Ilfov County, Romania; (O.G.); (G.P.-P.)
| | - Paula Florian
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, RO-060031 Bucharest, Romania; (P.F.); (M.I.); (A.R.)
| | - Madalina Icriverzi
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, RO-060031 Bucharest, Romania; (P.F.); (M.I.); (A.R.)
| | - Anca Roseanu
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, RO-060031 Bucharest, Romania; (P.F.); (M.I.); (A.R.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, RO-050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, RO-050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, RO-077125 Magurele, Ilfov County, Romania; (O.G.); (G.P.-P.)
- Correspondence:
| |
Collapse
|