1
|
Kaymaz SV, Nobar HM, Sarıgül H, Soylukan C, Akyüz L, Yüce M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci 2023; 322:103035. [PMID: 37931382 DOI: 10.1016/j.cis.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Surface-functionalized nanostructures are at the forefront of biotechnology, providing new opportunities for biosensors, drug delivery, therapy, and bioimaging applications. The modification of nanostructures significantly impacts the performance and success of various applications by enabling selective and precise targeting. This review elucidates widely practiced surface modification strategies, including click chemistry, cross-coupling, silanization, aldehyde linkers, active ester chemistry, maleimide chemistry, epoxy linkers, and other protein and DNA-based methodologies. We also delve into the application-focused landscape of the nano-bio interface, emphasizing four key domains: therapeutics, biosensing, environmental monitoring, and point-of-care technologies, by highlighting prominent studies. The insights presented herein pave the way for further innovations at the intersection of nanotechnology and biotechnology, providing a useful handbook for beginners and professionals. The review draws on various sources, including the latest research articles (2018-2023), to provide a comprehensive overview of the field.
Collapse
Affiliation(s)
- Sümeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Hasan Sarıgül
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Lalehan Akyüz
- Department of Molecular Biology and Genetics, Aksaray University, 68100 Aksaray, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
2
|
Alhalili Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 2023; 28:3086. [PMID: 37049850 PMCID: PMC10096196 DOI: 10.3390/molecules28073086] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Nanotechnology (NT) is now firmly established in both the private home and commercial markets. Due to its unique properties, NT has been fully applied within multiple sectors like pharmacy and medicine, as well as industries like chemical, electrical, food manufacturing, and military, besides other economic sectors. With the growing demand for environmental resources from an ever-growing world population, NT application is a very advanced new area in the environmental sector and offers several advantages. A novel template synthesis approach is being used for the promising metal oxide nanostructures preparation. Synthesis of template-assisted nanomaterials promotes a greener and more promising protocol compared to traditional synthesis methods such as sol-gel and hydrothermal synthesis, and endows products with desirable properties and applications. It provides a comprehensive general view of current developments in the areas of drinking water treatment, wastewater treatment, agriculture, and remediation. In the field of wastewater treatment, we focus on the adsorption of heavy metals and persistent substances and the improved photocatalytic decomposition of the most common wastewater pollutants. The drinking water treatment section covers enhanced pathogen disinfection and heavy metal removal, point-of-use treatment, and organic removal applications, including the latest advances in pesticide removal.
Collapse
Affiliation(s)
- Zahrah Alhalili
- Department of Chemistry, College of Science and Arts-Sajir, Shaqra University, Sahqra 17684, Saudi Arabia
| |
Collapse
|
3
|
Kovo AS, Alaya-Ibrahim S, Abdulkareem AS, Adeniyi OD, Egbosiuba TC, Tijani JO, Saheed M, Okafor BO, Adeyinka YS. Column adsorption of biological oxygen demand, chemical oxygen demand and total organic carbon from wastewater by magnetite nanoparticles-zeolite A composite. Heliyon 2023; 9:e13095. [PMID: 36793965 PMCID: PMC9922975 DOI: 10.1016/j.heliyon.2023.e13095] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Herein, magnetite nanoparticles (NPs), zeolite A and magnetite-zeolite A (MAGZA) composite was developed by green methods. The produced nanomaterials were characterized and the effect of process parameters such as flow rate, adsorbent bed height and adsorbate inlet concentration was evaluated for the removal of biological oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC) in a column. The characterization results demonstrated the successful synthesis of magnetite NPs, zeolite A and MAGZA composite. The performance of the MAGZA composite in the fixed-bed column was superior to zeolite A and magnetite NPs. The parametric influence indicates that an increase in bed height and a decrease in the flow rate and inlet adsorbate concentration improved the performance of the adsorption column. The adsorption column demonstrated maximum performance at a flow rate (4 mL/min), bed height (5 cm) and inlet adsorbate concentration (10 mg/L). Under these conditions, the highest percent removal of BOD, COD and TOC were 99.96, 99.88 and 99.87%. Thomas and Yoon-Nelson's model suitably fitted the breakthrough curves. After five reusability cycles, the MAGZA composite demonstrated removal percent of BOD (76.5%), COD (55.5%) and TOC (64.2%). The produced MAGZA composite effectively removed BOD, COD and TOC from textile wastewater in a continuous operating mode.
Collapse
Affiliation(s)
- Abdulsalami Sanni Kovo
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Sherifat Alaya-Ibrahim
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Ambali Saka Abdulkareem
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Olalekan David Adeniyi
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Titus Chinedu Egbosiuba
- Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli Campus, Anambra State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Corresponding author. Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli Campus, Anambra State, Nigeria.
| | - Jimoh Oladejo Tijani
- Chemistry Department, Federal University of Technology, Minna, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Mustapha Saheed
- Chemistry Department, Federal University of Technology, Minna, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Blessing Onyinye Okafor
- Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli Campus, Anambra State, Nigeria
| | - Yusuff Sikiru Adeyinka
- Chemical and Petroleum Engineering Department, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
4
|
Hajiali S, Daneshjou S, Daneshjoo S. Biomimetic synthesis of iron oxide nanoparticles from Bacillus megaterium to be used in hyperthermia therapy. AMB Express 2022; 12:145. [DOI: 10.1186/s13568-022-01490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
AbstractThe suitable structural characteristics of magnetic nanoparticles have resulted in their widespread use in magnetic hyperthermia therapy. Moreover, they are considered a proper and operational choice for pharmaceutical nanocarriers. Using the biomimetic method, we were able to produce iron oxide magnetic nanoparticles from the bacterial source of PTCC1250, Bacillus megaterium, for therangostic diagnosis systems and targeted drug delivery. Some of the benefits of this method include mitigated environmental and biological dangers, low toxicity, high biocompatibility, cheap and short-term mass production possibilities in each synthesis round compared to other biological sources, simple equipment required for the synthesis; and the possibility of industrial-scale production. Bacillus megaterium is a magnetotactic bacteria (MTB) that has a magnetosome organelle capable of orienting based on external magnetic fields, caused by the mineralization of magnetic nanocrystals. Utilizing this capability and adding an iron nitrate solution to the bacterial suspension, we synthesized iron oxide nanoparticles. The extent of synthesis was measured using UV–visible spectrophotometry. The morphology was evaluated using FESEM. The crystallized structure was characterized using RAMAN and XRD. The size and distribution of the nanoparticles were assessed using DLS. The surface charge of the nanoparticles was measured using zeta potential. The synthesis of iron oxide nanoparticles was confirmed using FT-IR, and the magnetic property was measured using VSM. This study is continued to identify industrial and clinical applications.
Collapse
|
5
|
Biogenic Preparation, Characterization, and Biomedical Applications of Chitosan Functionalized Iron Oxide Nanocomposite. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chitosan (CS) functionalization over nanomaterials has gained more attention in the biomedical field due to their biocompatibility, biodegradability, and enhanced properties. In the present study, CS functionalized iron (II) oxide nanocomposite (CS/FeO NC) was prepared using Sida acuta leaf extract by a facile and eco-friendly green chemistry route. Phyto-compounds of S. acuta leaf were used as a reductant to prepare CS/FeO NC. The existence of CS and FeO crystalline peaks in CS/FeO NC was confirmed by XRD. FE-SEM analysis revealed that the prepared CS/FeO NC were spherical with a 10–100 nm average size. FTIR analyzed the existence of CS and metal-oxygen bands in the prepared NC. The CS/FeO NC showed the potential bactericidal activity against E. coli, B. subtilis, and S. aureus pathogens. Further, CS/FeO NC also exhibited the dose-dependent anti-proliferative property against human lung cancer cells (A549). Thus, the obtained outcomes revealed that the prepared CS/FeO NC could be a promising candidate in the biomedical sector to inhibit the growth of bacterial pathogens and lung cancer cells.
Collapse
|
6
|
A Review on Green Synthesis of Nanoparticles and Their Diverse Biomedical and Environmental Applications. Catalysts 2022. [DOI: 10.3390/catal12050459] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
In recent times, metal oxide nanoparticles (NPs) have been regarded as having important commercial utility. However, the potential toxicity of these nanomaterials has also been a crucial research concern. In this regard, an important solution for ensuring lower toxicity levels and thereby facilitating an unhindered application in human consumer products is the green synthesis of these particles. Although a naïve approach, the biological synthesis of metal oxide NPs using microorganisms and plant extracts opens up immense prospects for the production of biocompatible and cost-effective particles with potential applications in the healthcare sector. An important area that calls for attention is cancer therapy and the intervention of nanotechnology to improve existing therapeutic practices. Metal oxide NPs have been identified as therapeutic agents with an extended half-life and therapeutic index and have also been reported to have lesser immunogenic properties. Currently, biosynthesized metal oxide NPs are the subject of considerable research and analysis for the early detection and treatment of tumors, but their performance in clinical experiments is yet to be determined. The present review provides a comprehensive account of recent research on the biosynthesis of metal oxide NPs, including mechanistic insights into biological production machinery, the latest reports on biogenesis, the properties of biosynthesized NPs, and directions for further improvement. In particular, scientific reports on the properties and applications of nanoparticles of the oxides of titanium, cerium, selenium, zinc, iron, and copper have been highlighted. This review discusses the significance of the green synthesis of metal oxide nanoparticles, with respect to therapeutically based pharmaceutical applications as well as energy and environmental applications, using various novel approaches including one-minute sonochemical synthesis that are capable of responding to various stimuli such as radiation, heat, and pH. This study will provide new insight into novel methods that are cost-effective and pollution free, assisted by the biodegradation of biomass.
Collapse
|
7
|
Fatimah I, Fadillah G, Purwiandono G, Sahroni I, Purwaningsih D, Riantana H, Avif AN, Sagadevan S. Magnetic-silica nanocomposites and the functionalized forms for environment and medical applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Sudhakar C, Poonkothai M, Selvankmuar T, Selvam K, Rajivgandhi G, Siddiqi MZ, Alharbi NS, Kadaikunnan S, Vijayakumar N. Biomimetic synthesis of iron oxide nanoparticles using Canthium coromandelicum leaf extract and its antibacterial and catalytic degradation of Janus green. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Anti-Caking Coatings for Improving the Useful Properties of Ammonium Nitrate Fertilizers with Composition Modeling Using Box-Behnken Design. MATERIALS 2021; 14:ma14195761. [PMID: 34640158 PMCID: PMC8510308 DOI: 10.3390/ma14195761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Granular fertilizers (especially those based on ammonium nitrate (AN)) tend to agglomerate during storage. The aims of this research were to develop effective anti-caking coatings for ammonium nitrate fertilizers while improving the quality of fertilizers and to optimize the composition of effective anti-caking coatings. The influence of the composition of the prepared organic coatings on the effectiveness of preventing the caking of fertilizers was studied by response surface methodology (RSM) using Box–Behnken design (BBD). Additionally, the effect of the developed anti-caking agents on the quality of fertilizers was determined by measuring the crushing strength of the granules. The prepared coatings included fatty amine, stearic acid, surfactant, and paraffin wax. Gas chromatography–mass spectrometry (GC–MS) was used to analyze these coatings. The morphology of the fertilizers were examined by scanning electron microscopy (SEM). Composition studies, based on statistical assessment, showed the coating components had a varying influence on preventing the caking of fertilizers after granulation and after 30 days of storage. The results demonstrated that increasing the content of fatty amines and reducing surfactant in the composition of coating had positive effects on caking prevention. In this study, more effective and economically viable anti-caking coatings were developed. In addition, the present work could serve as a basis to further improve anti-caking coatings.
Collapse
|