1
|
Pinto TS, van der Eerden BC, Schreuders-Koedam M, van de Peppel J, Ayada I, Pan Q, Verstegen MM, van der Laan LJ, Fuhler GM, Zambuzzi WF, Peppelenbosch MP. Interaction of high lipogenic states with titanium on osteogenesis. Bone 2024; 188:117242. [PMID: 39209139 DOI: 10.1016/j.bone.2024.117242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
As obesity rates continue to rise, the prevalence of metabolic dysfunction and alcohol-associated steatotic liver disease (MetALD), a new term for Nonalcoholic Fatty Liver Disease (NAFLD), also increases. In an aging population, it is crucial to understand the interplay between metabolic disorders, such as MetALD, and bone health. This understanding becomes particularly significant in the context of implant osseointegration. This study introduces an in vitro model simulating high lipogenesis through the use of human Mesenchymal Stroma Cells-derived adipocytes, 3D intrahepatic cholangiocyte organoids (ICO), and Huh7 hepatocytes, to evaluate the endocrine influence on osteoblasts interacting with titanium. We observed a significant increase in intracellular fat accumulation in all three cell types, along with a corresponding elevation in metabolic gene expression compared to the control groups. Notably, osteoblasts undergoing mineralization in this high-lipogenesis environment also displayed lipid vesicle accumulation. The study further revealed that titanium surfaces modulate osteogenic gene expression and impact cell cycle progression, cell survival, and extracellular matrix remodeling under lipogenic conditions. These findings provide new insights into the challenges of implant integration in patients with obesity and MetALD, offering a deeper understanding of the metabolic influences on bone regeneration and implant success.
Collapse
Affiliation(s)
- T S Pinto
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, SP, Brazil
| | - B C van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Schreuders-Koedam
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J van de Peppel
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - I Ayada
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Q Pan
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M M Verstegen
- Department of Surgery, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - L J van der Laan
- Department of Surgery, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - G M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - W F Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, SP, Brazil.
| | - M P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
2
|
de Almeida Camargo B, da Silva Feltran G, Fernandes CJDC, Carra MG, Saeki MJ, Zambuzzi WF. Impact of zirconia-based oxide on endothelial cell dynamics and extracellular matrix remodeling. J Trace Elem Med Biol 2024; 86:127537. [PMID: 39413570 DOI: 10.1016/j.jtemb.2024.127537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Zirconia (ZrO2) is highly regarded in dental restoration due to its aesthetic compatibility and mechanical properties that align with biological tissues. This study explores the effects of stabilized ZrO2 on endothelial cell function and extracellular matrix (ECM) remodeling, processes critical to successful osseointegration in dental implants. METHODOLOGY Human Umbilical Vein Endothelial Cells (HUVECs) were cultured in ZrO2 -enriched medium under both static and shear stress conditions. Newly implemented techniques, including detailed zirconia surface characterization using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD), were used to verify material properties. Gene and protein expression related to cell adhesion, proliferation, and ECM remodeling were assessed through RT-qPCR and Western blotting. Zymography was used to evaluate the activity of matrix metalloproteinases (MMP2 and MMP9) involved in ECM remodeling. RESULTS Characterization data confirmed the stability and structural properties of ZrO2, revealing a tetragonal crystalline structure and rough surface morphology conducive to cell adhesion. ZrO2 exposure led to the downregulation of Src, a key regulator of cell adhesion, while upregulating cell cycle regulators p15, CDK2, and CDK4, indicating enhanced cell proliferation. Under shear stress, ZrO2 modulated TGF-β and MAPK signaling, affecting cell proliferation and angiogenesis. MMP2 and MMP9 activity increased in static conditions but decreased under shear stress, suggesting ZrO2 dynamic role in ECM remodeling. CONCLUSION This study shows that stabilized zirconia (ZrO2) modulates endothelial cell dynamics and ECM remodeling, key for osseointegration. ZrO2 downregulated Src expression and upregulated cell cycle regulators, enhancing endothelial proliferation. It also affected TGF-β and MAPK pathways, influencing angiogenesis, and differentially modulated MMP2 and MMP9 activity depending on mechanical conditions. These findings highlight ZrO2 has potential ability to enhance vascular and tissue integration in dental applications.
Collapse
Affiliation(s)
- Beatriz de Almeida Camargo
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil
| | - Geórgia da Silva Feltran
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil
| | - Célio Junior da Costa Fernandes
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil
| | - Maria Gabriela Carra
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil
| | - Margarida Juri Saeki
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil
| | - Willian F Zambuzzi
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil.
| |
Collapse
|
3
|
de Almeida GS, Ferreira MR, Fernandes CC, de Biagi CAO, Silva WA, Rangel EC, Lisboa-Filho PN, Zambuzzi WF. Combination of in silico and cell culture strategies to predict biomaterial performance: Effects of sintering temperature on the biological properties of hydroxyapatite. J Biomed Mater Res B Appl Biomater 2024; 112:e35389. [PMID: 38356168 DOI: 10.1002/jbm.b.35389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
Advances in methodologies to evaluate biomaterials brought an explosive growth of data, ensuing computational challenges to better analyzing them and allowing for high-throughput profiling of biological systems cost-efficiently. In this sense, we have applied bioinformatics tools to better understand the biological effect of different sintering temperatures of hydroxyapatite (abbreviated HA; at 1100, 1150, and 1250°C) on osteoblast performance. To do, we have better analyzed an earlier deposited study, in which the access code is E-MTAB-7219, which the authors have explored different in silico tools on this purpose. In this study, differential gene expression analyses were performed using the gene set variation analysis (GSVA) algorithm from the transcriptomes respecting the thermal changes of HA, which were validated using exclusively in vitro strategies. Furthermore, in silico approaches elected biomarkers during cell behavior in response to different sintering temperatures of HA, and it was further validated using cell culture and qPCR technologies. Altogether, the combination of those strategies shows the capacity of sintered HA at 1250°C to present a better performance in organizing an adequate microenvironment favoring bone regeneration, angiogenesis and material resorption stimulus once it has promoted higher involvement of genes such as CDK2, CDK4 (biomarkers of cell proliferation), p15, Osterix gene (related with osteogenic differentiation), RANKL (related with osteoclastogenesis), VEGF gene (related with angiogenesis), and HIF1α (related with hypoxia microenvironment). Altogether, the combination of in silico and cell culture strategies shows the capacity of sintered HA at 1250°C in guaranteeing osteoblast differentiation and it can be related in organizing an adequate microenvironment favoring bone regeneration, angiogenesis, and material resorption stimulus.
Collapse
Affiliation(s)
- Gerson S de Almeida
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil
| | - Marcel R Ferreira
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil
| | - Célio C Fernandes
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil
| | - Carlos A O de Biagi
- Department of Genetics of the Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Wilson Araújo Silva
- Department of Genetics of the Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas (LaPTec), Engineering College, Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Paulo N Lisboa-Filho
- Department of Physics, School of Sciences, UNESP: São Paulo State University, São Paulo, Brazil
| | - Willian F Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil
| |
Collapse
|
4
|
de Almeida GS, Ferreira MR, da Costa Fernandes CJ, Suter LC, Carra MGJ, Correa DRN, Rangel EC, Saeki MJ, Zambuzzi WF. Development of cobalt (Co)-doped monetites for bone regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35319. [PMID: 37610175 DOI: 10.1002/jbm.b.35319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
Cobalt-doped monetite powders were synthesized by coprecipitation method under a cobalt nominal content between 2 and 20 mol % of total cation. Structural characterization of samples was performed by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. XRD results indicated that the Co-doped samples exhibited a monetite single-phase with the cell parameters and crystallite size dependent on the amount of substitutional element incorporated into the triclinic crystalline structure. Cell viability and adhesion assays using pre-osteoblastic cells showed there is no toxicity and the RTqPCR analysis showed significant differences in the expression for osteoblastic phenotype genes, showing a potential material for the bone regeneration.
Collapse
Affiliation(s)
- Gerson Santos de Almeida
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Marcel Rodrigues Ferreira
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Célio Junior da Costa Fernandes
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Luísa Camilo Suter
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Maria Gabriela Jacheto Carra
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Diego Rafael Nespeque Correa
- Laboratory of Anelasticity and Biomaterials, Department of Physics and Meteorology, School of Sciences, São Paulo State University-UNESP, Bauru, São Paulo, Brazil
| | - Elidiane Cipriano Rangel
- Laboratory of Technological Plasmas (LaPTec), Institute of Science and Technology, Sao Paulo State University (UNESP), Sorocaba, São Paulo, Brazil
| | - Margarida Juri Saeki
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
5
|
Fernandes CJDC, de Almeida GS, Wood PF, Gomes AM, Bezerra FJ, Vieira JCS, Padilha PM, Zambuzzi WF. Mechanosignaling-related angiocrine factors drive osteoblastic phenotype in response to zirconia. J Trace Elem Med Biol 2024; 81:127337. [PMID: 38000168 DOI: 10.1016/j.jtemb.2023.127337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The growing use of zirconia as a ceramic material in dentistry is attributed to its biocompatibility, mechanical properties, esthetic appearance, and reduced bacterial adhesion. These favorable properties make ceramic materials a viable alternative to commonly used titanium alloys. Mimicking the physiological properties of blood flow, particularly the mechanosignaling in endothelial cells (ECs), is crucial for enhancing our understanding of their role in the response to zirconia exposure. METHODS In this study, EC cultures were subjected to shear stress while being exposed to zirconia for up to 3 days. The conditioned medium obtained from these cultures was then used to expose osteoblasts for a duration of 7 days. To investigate the effects of zirconia on osteoblasts, we examined the expression of genes associated with osteoblast differentiation, including Runx2, Osterix, bone sialoprotein, and osteocalcin genes. Additionally, we assessed the impact of mechanosignaling-related angiocrine factors on extracellular matrix (ECM) remodeling by measuring the activities of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) during the acquisition of the osteogenic phenotype, which precedes mineralization. RESULTS Our data revealed that mechanosignaling-related angiocrine factors play a crucial role in promoting an osteoblastic phenotype in response to zirconia exposure. Specifically, exposed osteoblasts exhibited significantly higher expression levels of genes associated with osteoblast differentiation, such as Runx2, Osterix, bone sialoprotein, and osteocalcin genes. Furthermore, the activities of MMP2 and MMP9, which are involved in ECM remodeling, were modulated by mechanosignaling-related angiocrine factors. This modulation is likely an initial event preceding the mineralization phase. CONCLUSION Based on our findings, we propose that mechanosignaling drives the release of angiocrine factors capable of modulating the osteogenic phenotype at the biointerface with zirconia. This process creates a microenvironment that promotes wound healing and osseointegration. Moreover, these results highlight the importance of considering the mechanosignaling of endothelial cells in the modulation of bone healing and osseointegration in the context of blood vessel effects. Our data provide new insights and open avenues for further investigation into the influence of mechanosignaling on bone healing and the osseointegration of dental devices.
Collapse
Affiliation(s)
- Célio Junior da C Fernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Gerson Santos de Almeida
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Patrícia Fretes Wood
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Anderson M Gomes
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Fábio J Bezerra
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - José C S Vieira
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Pedro M Padilha
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Willian F Zambuzzi
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP, São Paulo State University, Botucatu, São Paulo, CEP 18618-970, Brazil.
| |
Collapse
|
6
|
Wood PF, da Costa Fernandes CJ, de Almeida GS, Suter LC, de Lima Parra JPRL, Bezerra FJ, Zambuzzi WF. The Action of Angiocrine Molecules Sourced from Mechanotransduction-Related Endothelial Cell Partially Explain the Successful of Titanium in Osseointegration. J Funct Biomater 2023; 14:415. [PMID: 37623660 PMCID: PMC10455987 DOI: 10.3390/jfb14080415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Since Branemark's findings, titanium-based alloys have been widely used in implantology. However, their success in dental implants is not known when considering the heterogenicity of housing cells surrounding the peri-implant microenvironment. Additionally, they are expected to recapitulate the physiological coupling between endothelial cells and osteoblasts during appositional bone growth during osseointegration. To investigate whether this crosstalk was happening in this context, we considered the mechanotransduction-related endothelial cell signaling underlying laminar shear stress (up to 3 days), and this angiocrine factor-enriched medium was harvested further to use exposing pre-osteoblasts (pOb) for up to 7 days in vitro. Two titanium surfaces were considered, as follows: double acid etching treatment (w_DAE) and machined surfaces (wo_DAE). These surfaces were used to conditionate the cell culture medium as recommended by ISO10993-5:2016, and this titanium-enriched medium was later used to expose ECs. First, our data showed that there is a difference between the surfaces in releasing Ti molecules to the medium, providing very dynamic surfaces, where the w_DAE was around 25% higher (4 ng/mL) in comparison to the wo_DAE (3 ng/mL). Importantly, the ECs took up some of this titanium content for up to 3 days in culture. However, when this conditioned medium was used to expose pOb for up to 7 days, considering the angiocrine factors released from ECs, the concentration of Ti was lesser than previously reported, reaching around 1 ng/mL and 2 ng/mL, respectively. Thereafter, pOb exposed to this angiocrine factor-enriched medium presented a significant difference when considering the mechanosignaling subjected to the ECs. Shear-stressed ECs showed adequate crosstalk with osteoblasts, stimulating the higher expression of the Runx2 gene and driving higher expressions of Alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin. Mechanotransduction-related endothelial cell signaling as a source of angiocrine molecules also stimulated the higher expression of the Col3A1 gene in osteoblasts, which suggests it is a relevant protagonist during trabecular bone growth. In fact, we investigated ECM remodeling by first evaluating the expression of genes related to it, and our data showed a higher expression of matrix metalloproteinase (MMP) 2 and MMP9 in response to mechanosignaling-based angiocrine molecules, independent of considering w_DAE or the wo_DAE, and this profile reflected on the MMP2 and MMP9 activities evaluated via gelatin-based zymography. Complimentarily, the ECM remodeling seemed to be a very regulated mechanism in mature osteoblasts during the mineralization process once both TIMP metallopeptidase inhibitor 1 and 2 (TIMP1 and TIMP2, respectively) genes were significantly higher in response to mechanotransduction-related endothelial cell signaling as a source of angiocrine molecules. Altogether, our data show the relevance of mechanosignaling in favoring ECs' release of bioactive factors peri-implant, which is responsible for creating an osteogenic microenvironment able to drive osteoblast differentiation and modulate ECM remodeling. Taking this into account, it seems that mechanotransduction-based angiocrine molecules explain the successful use of titanium during osseointegration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Willian Fernando Zambuzzi
- Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| |
Collapse
|
7
|
Fernandes CJDC, da Silva RAF, Wood PF, Ferreira MR, de Almeida GS, de Moraes JF, Bezerra FJ, Zambuzzi WF. Titanium-Enriched Medium Promotes Environment-Induced Epigenetic Machinery Changes in Human Endothelial Cells. J Funct Biomater 2023; 14:jfb14030131. [PMID: 36976055 PMCID: PMC10055987 DOI: 10.3390/jfb14030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
It is important to understand whether endothelial cells are epigenetically affected by titanium-enriched media when angiogenesis is required during bone development and it is expected to be recapitulated during osseointegration of biomaterials. To better address this issue, titanium-enriched medium was obtained from incubation of titanium discs for up to 24 h as recommended by ISO 10993-5:2016, and further used to expose human umbilical vein endothelial cells (HUVECs) for up to 72 h, when the samples were properly harvested to allow molecular analysis and epigenetics. In general, our data show an important repertoire of epigenetic players in endothelial cells responding to titanium, reinforcing protein related to the metabolism of acetyl and methyl groups, as follows: Histone deacetylases (HDACs) and NAD-dependent deacetylase sirtuin-1 (Sirt1), DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) methylcytosine dioxygenases, which in conjunction culminate in driving chromatin condensation and the methylation profile of DNA strands, respectively. Taking our data into consideration, HDAC6 emerges as important player of this environment-induced epigenetic mechanism in endothelial cells, while Sirt1 is required in response to stimulation of reactive oxygen species (ROS) production, as its modulation is relevant to vasculature surrounding implanted devices. Collectively, all these findings support the hypothesis that titanium keeps the surrounding microenvironment dynamically active and so affects the performance of endothelial cells by modulating epigenetics. Specifically, this study shows the relevance of HDAC6 as a player in this process, possibly correlated with the cytoskeleton rearrangement of those cells. Furthermore, as those enzymes are druggable, it opens new perspectives to consider the use of small molecules to modulate their activities as a biotechnological tool in order to improve angiogenesis and accelerate bone growth with benefits of a fast recovery time for patients.
Collapse
Affiliation(s)
- Célio Júnior da C. Fernandes
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Rodrigo A. Foganholi da Silva
- Department of Dentistry, University of Taubaté, Taubaté 12020-340, SP, Brazil
- Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, SP, Brazil
| | - Patrícia F. Wood
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Marcel Rodrigues Ferreira
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Gerson S. de Almeida
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Julia Ferreira de Moraes
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Fábio J. Bezerra
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Willian F. Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—São Paulo State University, Botucatu 18618-970, SP, Brazil
- Correspondence:
| |
Collapse
|
8
|
Nanohydroxyapatite-Blasted Bioactive Surface Drives Shear-Stressed Endothelial Cell Growth and Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1433221. [PMID: 35252440 PMCID: PMC8890866 DOI: 10.1155/2022/1433221] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 12/22/2022]
Abstract
Nanosized crystalline hydroxyapatite coating (HAnano®) accelerates the osteointegration of dental implants which is hypothesized to drive angiogenesis. In order to test this hypothesis, we have subjected shear-stressed human umbilical vein endothelial cells (HUVECs) to a HAnano®-enriched medium, as well as to surface presenting dual acid etching (DAE) as a control. To note, the titanium implants were coated with 10 nm in diameter HA particles using the Promimic HAnano method. Our data reveals that HAnano® modulates higher expression of genes related with endothelial cell performance and viability, such as VEGF, eNOS, and AKT, and further angiogenesis in vitro by promoting endothelial cell migration. Additionally, the data shows a significant extracellular matrix (ECM) remodeling, and this finding seems developing a dual role in promoting the expression of VEGF and control endothelial cell growth during angiogenesis. Altogether, these data prompted us to further validate this phenomenon by exploring genes related with the control of cell cycle and in fact our data shows that HAnano® promotes higher expression of CDK4 gene, while p21 and p15 genes (suppressor genes) were significantly lower. In conjunction, our data shows for the first time that HAnano®-coated surfaces drive angiogenesis by stimulating a proliferative and migration phenotype of endothelial cells, and this finding opens novel comprehension about osseointegration mechanism considering nanosized hydroxyapatite coating dental implants.
Collapse
|
9
|
Li B, Zhang M, Lu Q, Zhang B, Miao Z, Li L, Zheng T, Liu P. Application and Development of Modern 3D Printing Technology in the Field of Orthopedics. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8759060. [PMID: 35211626 PMCID: PMC8863440 DOI: 10.1155/2022/8759060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022]
Abstract
3D printing, also known as additive manufacturing, is a technology that uses a variety of adhesive materials such as powdered metal or plastic to construct objects based on digital models. Recently, 3D printing technology has been combined with digital medicine, materials science, cytology, and other multidisciplinary fields, especially in the field of orthopedic built-in objects. The development of advanced 3D printing materials continues to meet the needs of clinical precision medicine and customize the most suitable prosthesis for everyone to improve service life and satisfaction. This article introduces the development of 3D printing technology and different types of materials. We also discuss the shortcomings of 3D printing technology and the current challenges, including the poor bionics of 3D printing products, lack of ideal bioinks, product safety, and lack of market supervision. We also prospect the future development trends of 3D printing.
Collapse
Affiliation(s)
- Binglong Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
- Shandong University Cheeloo College of Medicine, Jinan, 250100 Shandong, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
| | - Qunshan Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Baoqing Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Zhuang Miao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Lei Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Tong Zheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Peilai Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| |
Collapse
|