1
|
Wouters M, Van Moll L, De Vooght L, Choińska E, Idaszek J, Szlązak K, Heljak MK, Święszkowski W, Cos P. Polymyxin B Peptide Hydrogel Coating: A Novel Approach to Prevent Ventilator-Associated Pneumonia. Int J Mol Sci 2024; 25:10269. [PMID: 39408597 PMCID: PMC11477085 DOI: 10.3390/ijms251910269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) remains one of the most common hospital-acquired infections (HAI). Considering the complicated diagnosis and the lack of effective treatment, prophylactic measures are suggested as the new standard to prevent the disease. Although VAP often manifests a polymicrobial nature, Pseudomonas aeruginosa remains one of the pathogens associated with the highest morbidity and mortality rates within these mechanically ventilated patients. In this paper, we report on the development of an antibacterial hydrogel coating using the polymyxin B (PMB) peptide to prevent bacterial adhesion to the polymeric substrate. We fully characterized the properties of the coating using atomic force microscopy (AFM), scanning electron microscopy (SEM), wettability analyses and Fourier-transform infrared (FTIR) and Raman spectroscopy. Furthermore, several biological assays confirmed the antibacterial and anti-biofilm effect of the tubing for at least 8 days against P. aeruginosa. On top of that, the produced coating is compliant with the requirements regarding cytocompatibility stated in the ISO (International Organization for Standardization) 10993 guidelines and an extended release of PMB over a period of at least 42 days was detected. In conclusion, this study serves as a foundation for peptide-releasing hydrogel formulas in the prevention of VAP.
Collapse
Affiliation(s)
- Milan Wouters
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Emilia Choińska
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Joanna Idaszek
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Karol Szlązak
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Marcin K. Heljak
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Wojciech Święszkowski
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| |
Collapse
|
2
|
Ashton DM, Blaker CL, Hartnell N, Haubruck P, Liu Y, Hefferan SA, Little CB, Clarke EC. The Biomechanical, Biochemical, and Morphological Properties of 19 Human Cadaveric Lower Limb Tendons and Ligaments: An Open-Access Data Set. Am J Sports Med 2024; 52:2391-2401. [PMID: 38910352 DOI: 10.1177/03635465241260054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
BACKGROUND Methodological heterogeneity hinders data comparisons across isolated studies of tendon and ligament properties, limiting clinical understanding and affecting the development and evaluation of replacement materials. PURPOSE To create an open-access data set on the morphological, biomechanical, and biochemical properties of clinically important tendons and ligaments of the lower limb, using consistent methodologies, to enable direct tendon/ligament comparisons. STUDY DESIGN Descriptive laboratory study. METHODS Nineteen distinct lower limb tendons and ligaments were retrieved from 8 fresh-frozen human cadavers (5 male, 3 female; aged 49-65 years) including Achilles, tibialis posterior, tibialis anterior, fibularis (peroneus) longus, fibularis (peroneus) brevis, flexor hallucis longus, extensor hallucis longus, plantaris, flexor digitorum longus, quadriceps, patellar, semitendinosus, and gracilis tendons; anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments; and 10 mm-wide grafts from the contralateral quadriceps and patellar tendons. Outcomes included morphology (tissue length, ultrasound-quantified cross-sectional area [CSAUS], and major and minor axes), biomechanics (failure load, ultimate tensile strength [UTS], failure strain, and elastic modulus), and biochemistry (sulfated glycosaminoglycan [sGAG] and hydroxyproline contents). Tissue differences were analyzed using mixed-model regression. RESULTS There was a range of similarities and differences between tendons and ligaments across outcomes. A key finding relating to potential graft tissue suitability was the comparable failure loads, UTS, CSAUS, sGAG, and hydroxyproline present between hamstring tendons (a standard graft source) and 5 tendons not typically used for grafting: fibularis (peroneus) longus and brevis, flexor and extensor hallucis longus, and flexor digitorum longus tendons. CONCLUSION This study of lower limb tendons and ligaments has enabled direct comparison of morphological, biomechanical, and biochemical human tissue properties-key factors in the selection of suitable graft tissues. This analysis has identified 6 potential new donor tissues with properties comparable to currently used grafts. CLINICAL RELEVANCE This extensive data set reduces the need to utilize data from incompatible sources, which may aid surgical decisions (eg, evidence to expand the range of tendons considered suitable for use as grafts) and may provide congruent design inputs for new biomaterials and computational models. The complete data set has been provided to facilitate further investigations, with the capacity to expand the resource to include additional outcomes and tissues.
Collapse
Affiliation(s)
- Dylan M Ashton
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Nicholas Hartnell
- Bone Ligament and Tendon Pty Ltd, Bowral, New South Wales, Australia
| | - Patrick Haubruck
- Heidelberg Trauma Research Group, Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Ying Liu
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Samantha A Hefferan
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Musculoskeletal Health, Faculty of Medicine and Health, University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|
3
|
Blaker CL, Ashton DM, Hartnell N, Little CB, Clarke EC. Tendon biomechanical properties are altered by storage duration but not freeze-thaw temperatures or cycles. J Orthop Res 2024; 42:1180-1189. [PMID: 38245841 DOI: 10.1002/jor.25783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/24/2023] [Indexed: 01/22/2024]
Abstract
Tendon allograft and xenograft processing often involves one or more steps of freezing and thawing. As failure strength is an important graft consideration, this study aimed to evaluate effects on failure properties when varying freeze-thaw conditions. Kangaroo tendons, a potential xenograft source, were used to evaluate changes in ultimate tensile strength (UTS), failure strain and elastic modulus after exposure to different freezer-storage temperatures (-20°C vs. -80°C), storage durations (1, 3, 6, 9, or 12 months), number of freeze-thaw cycles (1, 2, 3, 4, 5, or 10), or freeze-thaw temperature ranges (including freezing in liquid nitrogen to thawing at 37°C). Tendons stored for 6 or more months had significantly increased UTS and elastic modulus compared with 1 or 3 months of storage. This increase occurred irrespective of the freezing temperature (-20°C vs. -80°C) or the number of freeze-thaw cycles (1 vs. 10). In contrast, UTS, failure strain and the elastic modulus were no different between storage temperatures, number of freeze-thaw cycles and multiple freeze-thaw cycles across a range of freeze and thaw temperatures. Common freeze-thaw protocols did not negatively affect failure properties, providing flexibility for graft testing, storage, transportation and decellularisation procedures. However, the change in properties with the overall storage duration has implications for assessing the consistent performance of grafts stored for short versus extended periods of time (<6 months vs. >6 months), and the interpretation of data obtained from tissues of varying or unknown storage durations.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Dylan M Ashton
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Christopher B Little
- Sydney Musculoskeletal Health, The University of Sydney, Sydney, New South Wales, Australia
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Zamboulis DE, Marr N, Lenzi L, Birch HL, Screen HRC, Clegg PD, Thorpe CT. The Interfascicular Matrix of Energy Storing Tendons Houses Heterogenous Cell Populations Disproportionately Affected by Aging. Aging Dis 2024; 15:295-310. [PMID: 37307816 PMCID: PMC10796100 DOI: 10.14336/ad.2023.0425-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 06/14/2023] Open
Abstract
Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to injury, with incidence increasing with aging, peaking in the 5th decade of life in the human Achilles tendon. The interfascicular matrix (IFM), which binds tendon fascicles, plays a key role in energy storing tendon mechanics, and aging alterations to the IFM negatively impact tendon function. While the mechanical role of the IFM in tendon function is well-established, the biological role of IFM-resident cell populations remains to be elucidated. Therefore, the aim of this study was to identify IFM-resident cell populations and establish how these populations are affected by aging. Cells from young and old SDFTs were subjected to single cell RNA-sequencing, and immunolabelling for markers of each resulting population used to localise cell clusters. Eleven cell clusters were identified, including tenocytes, endothelial cells, mural cells, and immune cells. One tenocyte cluster localised to the fascicular matrix, whereas nine clusters localised to the IFM. Interfascicular tenocytes and mural cells were preferentially affected by aging, with differential expression of genes related to senescence, dysregulated proteostasis and inflammation. This is the first study to establish heterogeneity in IFM cell populations, and to identify age-related alterations specific to IFM-localised cells.
Collapse
Affiliation(s)
- Danae E. Zamboulis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK.
| | - Neil Marr
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK.
| | - Luca Lenzi
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Helen L. Birch
- Department of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK.
| | - Hazel R. C. Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| | - Peter D. Clegg
- Department of Musculoskeletal and AgingScience, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Chavaunne T. Thorpe
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK.
| |
Collapse
|
5
|
Klahr B, Lanzendorf JZ, Thiesen JLM, Pinto OT, Müller LG, Carniel TA, Fancello EA. On the contribution of solid and fluid behavior to the modeling of the time-dependent mechanics of tendons under semi-confined compression. J Mech Behav Biomed Mater 2023; 148:106220. [PMID: 37944227 DOI: 10.1016/j.jmbbm.2023.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The present work aims to investigate whether it is possible to identify and quantify the contributions of the interstitial fluid and the solid skeleton to the overall time-dependent behavior of tendons based on a single mechanical test. For this purpose, the capabilities of three different time-dependent models (a viscoelastic, a poroelastic and a poroviscoelastic) were investigated in the modeling of the experimental behavior obtained from semi-confined compression with stress relaxation tests transverse to collagen fibers. The main achieved result points out that the poroviscoelastic model was the only one capable to characterize both the experimental responses of the force and volume changes of the tissue samples. Moreover, further analysis of this model shows that while the kinematics of the sample are mainly governed by the fluid flow (pore pressure contribution of the model), the behavior intrinsically associated with the viscoelastic solid skeleton makes a significant contribution to the experimental force response. This study reinforces the importance of taking both the experimental kinematics and kinetics of tendon tissues into account during the constitutive characterization procedure.
Collapse
Affiliation(s)
- Bruno Klahr
- Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Jonas Zin Lanzendorf
- Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - José Luís Medeiros Thiesen
- Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Otávio Teixeira Pinto
- Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Liz Girardi Müller
- Graduate Program in Environmental Sciences, Community University of Chapecó Region, Chapecó, Santa Catarina, Brazil
| | - Thiago André Carniel
- Graduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, Santa Catarina, Brazil; Polytechnic School, Community University of Chapecó Region, Chapecó, Santa Catarina, Brazil.
| | - Eduardo Alberto Fancello
- Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
6
|
Dabrowska S, Ekiert-Radecka M, Karbowniczek J, Weglarz WP, Heljak M, Lojkowski M, Obuchowicz R, Swieszkowski W, Mlyniec A. Calcification alters the viscoelastic properties of tendon fascicle bundles depending on matrix content. Acta Biomater 2023; 166:360-374. [PMID: 37172636 DOI: 10.1016/j.actbio.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Tendon fascicle bundles are often used as biological grafts and thus must meet certain quality requirements, such as excluding calcification, which alters the biomechanical properties of soft tissues. In this work, we investigate the influence of early-stage calcification on the mechanical and structural properties of tendon fascicle bundles with varying matrix content. The calcification process was modeled using sample incubation in concentrated simulated body fluid. Mechanical and structural properties were investigated using uniaxial tests with relaxation periods, dynamic mechanical analysis, as well as magnetic resonance imaging and atomic force microscopy. Mechanical tests showed that the initial phase of calcification causes an increase in the elasticity, storage, and loss modulus, as well as a drop in the normalized value of hysteresis. Further calcification of the samples results in decreased modulus of elasticity and a slight increase in the normalized value of hysteresis. Analysis via MRI and scanning electron microscopy showed that incubation alters fibrillar relationships within the tendon structure and the flow of body fluids. In the initial stage of calcification, calcium phosphate crystals are barely visible; however, extending the incubation time for the next 14 days results in the appearance of calcium phosphate crystals within the tendon structure and leads to damage in its structure. Our results show that the calcification process modifies the collagen-matrix relationships and leads to a change in their mechanical properties. These findings will help to understand the pathogenesis of clinical conditions caused by calcification process, leading to the development of effective treatments for these conditions. STATEMENT OF SIGNIFICANCE: This study investigates how calcium mineral deposition in tendons affects their mechanical response and which processes are responsible for this phenomenon. By analyzing the elastic and viscoelastic properties of animal fascicle bundles affected by calcification induced via incubation in concentrated simulated body fluid, the study sheds light on the relationship between structural and biochemical changes in tendons and their altered mechanical response. This understanding is crucial for optimizing tendinopathy treatment and preventing tendon injury. The findings provide insights into the calcification pathway and its resulting changes in the biomechanical behaviors of affected tendons, which have been previously unclear.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Martyna Ekiert-Radecka
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Joanna Karbowniczek
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland.
| | | | - Marcin Heljak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland.
| | - Maciej Lojkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland; Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, Poland.
| | - Rafal Obuchowicz
- Jagiellonian University Collegium Medicum, Department of Radiology, Krakow, Poland.
| | - Wojciech Swieszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland.
| | - Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| |
Collapse
|
7
|
Pringels L, Cook JL, Witvrouw E, Burssens A, Vanden Bossche L, Wezenbeek E. Exploring the role of intratendinous pressure in the pathogenesis of tendon pathology: a narrative review and conceptual framework. Br J Sports Med 2023; 57:1042-1048. [PMID: 36323498 PMCID: PMC10423488 DOI: 10.1136/bjsports-2022-106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 02/07/2023]
Abstract
Despite the high prevalence of tendon pathology in athletes, the underlying pathogenesis is still poorly understood. Various aetiological theories have been presented and rejected in the past, but the tendon cell response model still holds true. This model describes how the tendon cell is the key regulator of the extracellular matrix and how pathology is induced by a failed adaptation to a disturbance of tissue homeostasis. Such failure has been attributed to various kinds of stressors (eg, mechanical, thermal and ischaemic), but crucial elements seem to be missing to fully understand the pathogenesis. Importantly, a disturbance of tissue pressure homeostasis has not yet been considered a possible factor, despite it being associated with numerous pathologies. Therefore, we conducted an extensive narrative literature review on the possible role of intratendinous pressure in the pathogenesis of tendon pathology. This review explores the current understanding of pressure dynamics and the role of tissue pressure in the pathogenesis of other disorders with structural similarities to tendons. By bridging these insights with known structural changes that occur in tendon pathology, a conceptual model was constituted. This model provides an overview of the possible mechanism of how an increase in intratendinous pressure might be involved in the development and progression of tendon pathology and contribute to tendon pain. In addition, some therapies that could reduce intratendinous pressure and accelerate tendon healing are proposed. Further experimental research is encouraged to investigate our hypotheses and to initiate debate on the relevance of intratendinous pressure in tendon pathology.
Collapse
Affiliation(s)
- Lauren Pringels
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Jill L Cook
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Erik Witvrouw
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Arne Burssens
- Department of Orthopaedic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Luc Vanden Bossche
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Evi Wezenbeek
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Carniel TA, Eckert JP, Atuatti EB, Klahr B, Thiesen JLM, Mentges J, Pinto OT, Müller LG, Fancello EA. Is the fluid volume fraction equal to the water content in tendons? Insights on biphasic modeling. J Mech Behav Biomed Mater 2023; 140:105703. [PMID: 36764169 DOI: 10.1016/j.jmbbm.2023.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
The mass density of highly hydrated soft tissues is generally assumed to be very close to that of the water, resulting that the fluid mass fraction (water content) being equal to the fluid volume fraction. Within this context, the present study aims to investigate whether such an assumption actually holds for tendon tissues and to what extent it may affect the constitutive characterizations based on biphasic (poroelastic) models. Once the water content was assessed by a classical drying assay, the fluid volume fraction was obtained based on an image segmentation approach. The main achieved results point out that the fluid volume fraction is ∼20% higher than the water content in the studied tendons (flexor digitorum profundus bovine tendons). Based on this, it is shown that the use of the water content instead of the fluid volume fraction may considerably bias the results drawn by biphasic modeling of tendons. Accordingly, a proper measurement of the fluid volume fraction is then required.
Collapse
Affiliation(s)
- Thiago André Carniel
- Polytechnic School, Community University of Chapecó Region, Chapecó, SC, Brazil.
| | - João Paulo Eckert
- Polytechnic School, Community University of Chapecó Region, Chapecó, SC, Brazil
| | | | - Bruno Klahr
- Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Julia Mentges
- Polytechnic School, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Otávio Teixeira Pinto
- Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Liz Girardi Müller
- Graduate Program in Environmental Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Eduardo Alberto Fancello
- Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; University Hospital, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
9
|
Kalemba M, Ekiert-Radecka M, Wajdzik M, Mlyniec A. An in-House System for the Precise Measurement of Electrical Potentials and Mechanical Properties of Soft Tissues: Design and Validation Using Adult Mammalian Tendon Fascicle Bundles. MATERIALS 2022; 15:ma15134444. [PMID: 35806569 PMCID: PMC9267749 DOI: 10.3390/ma15134444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Tissues, such as skin, bones, and tendons, exhibit a piezoelectric effect, which may be an important phenomenon in terms of tissue renewal and regeneration as well as the possibility of modifying their mechanical behavior. In this article, we present the design and development of an in-house system for the precise measurement of electrical potentials and mechanical properties of tendons. The system was validated using tendon fascicle bundles derived from positional as well as energy-storing tendons from various adult mammals (porcine, bovine, and deer samples). The presented system is able to capture changes in elastic and viscoelastic properties of tissue as well as its time–voltage response and, thus, may be used in a broad spectrum of future studies to uncover factors influencing piezoelectric phenomena in tendons. This, in turn, will help to optimize current methods used in physiotherapy and postoperative treatment for effective tendon recovery.
Collapse
Affiliation(s)
- Marek Kalemba
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland; (M.K.); (M.E.-R.)
| | - Martyna Ekiert-Radecka
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland; (M.K.); (M.E.-R.)
| | - Marek Wajdzik
- Faculty of Forestry, University of Agriculture, Al. 29-listopada 46, 31-425 Krakow, Poland;
| | - Andrzej Mlyniec
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland; (M.K.); (M.E.-R.)
- Correspondence:
| |
Collapse
|
10
|
Rehydration of the Tendon Fascicle Bundles Using Simulated Body Fluid Ensures Stable Mechanical Properties of the Samples. MATERIALS 2022; 15:ma15093033. [PMID: 35591368 PMCID: PMC9104251 DOI: 10.3390/ma15093033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
Abstract
In this work, we investigate the influence of dehydration and subsequent rehydration of tendon fascicle bundles on their structural and mechanical properties by using distilled water, 0.9% NaCl, 10% NaCl, SBF, and double concentrated SBF (SBFx2). The properties of tendon fascicle bundles were investigated by means of uniaxial tests with relaxation periods and hysteresis for samples with various interfascicular matrix content, dissected from the anterior and posterior areas of bovine tendon. Uniaxial tests with relaxation periods and analysis of sample geometry and weight showed that dehydration alters the modulus of elasticity dependent on the interfascicular matrix content and influences the viscoelastic properties of tendon fascicle bundles. Tensile and relaxation tests revealed that changes resulting from excessive sample drying can be reversed by rehydration in an SBF bath solution for elastic strain range above the toe region. Rehydration in SBF solution led to minor differences in mechanical properties when compared to control samples. Moreover, anterior samples with greater interfascicular matrix content, despite their lower stiffness, are less sensitive to sample drying. The obtained results allow us to limit the discrepancies in the measurement of mechanical properties of wet biological samples and can be useful to researchers investigating soft tissue mechanics and the stability of transplant materials.
Collapse
|
11
|
The Development of a Gracilis and Quadriceps Tendons Calibration Device for Uniaxial Tensile Tests. MACHINES 2021. [DOI: 10.3390/machines9120364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To determine the biomechanical properties of the distal tendon of the gracilis muscle and the upper third of the quadriceps femoris muscle used for reconstruction of the medial patellofemoral ligament (MPFL), it is necessary to develop a calibration device for specimen preparation for uniaxial tensile tests. The need to develop this device also stems from the fact that there is currently no suitable regulatory or accurate protocol by which soft tissues such as tendons should be tested. In recent studies, various methods have been used to prepare test specimens, such as the use of different ratios of gauge lengths, different gripping techniques, etc., with the aim of obtaining measurable and comparable biomechanical tissue properties. Since tendons, as anisotropic materials, have viscoelastic properties, the guideline for manufacturing calibrator devices was the ISO 527-1:1993 standard, used for testing polymers, since they also have viscoelastic behaviour. The functionality of a calibrator device was investigated by preparing gracilis and quadriceps tendon samples. Fused deposition modeling (FDM) technology was used for the manufacturing of parts with complex geometry. The proposed calibrator could operate in two positions, horizontal and vertical. The maximum gauge length to be achieved was 60 mm, with the maximum tendon length of 120 mm. The average preparation time was 3 min per tendon. It was experimentally proven that it is possible to use a calibrator to prepare tendons for tensile tests. This research can help in the further development of soft tissue testing devices and also in the establishment of standards and exact protocols for their testing.
Collapse
|