1
|
Kyser AJ, Mahmoud MY, Fotouh B, Patel R, Armstrong C, Aagard M, Rush I, Lewis W, Lewis A, Frieboes HB. Sustained dual delivery of metronidazole and viable Lactobacillus crispatus from 3D-printed silicone shells. BIOMATERIALS ADVANCES 2024; 165:214005. [PMID: 39208497 PMCID: PMC11443601 DOI: 10.1016/j.bioadv.2024.214005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bacterial vaginosis (BV) is an imbalance of the vaginal microbiome in which there are limited lactobacilli and an overgrowth of anaerobic and fastidious bacteria such as Gardnerella. The propensity for BV recurrence is high, and therapies involving multiple treatment modalities are emerging to meet this need. However, current treatments requiring frequent therapeutic administration are challenging for patients and impact user compliance. Three-dimensional (3D)-printing offers a novel alternative to customize platforms to facilitate sustained therapeutic delivery to the vaginal tract. This study designed a novel vehicle intended for dual sustained delivery of both antibiotic and probiotic. 3D-printed compartmental scaffolds consisting of an antibiotic-containing silicone shell and a core containing probiotic Lactobacillus were developed with multiple formulations including biomaterials sodium alginate (SA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyethylene oxide (PEO), and kappa-carrageenan (KC). The vehicles were loaded with 50 μg of metronidazole/mg polymer and 5 × 107 CFU of L. crispatus/mg scaffold. Metronidazole-containing shells exhibited cumulative drug release of 324.2 ± 31.2 μg/mL after 14 days. Multiple polymeric formulations for the probiotic core demonstrated cumulative L. crispatus recovery of >5 × 107 CFU/mg scaffold during this timeframe. L. crispatus-loaded polymeric formulations exhibited ≥2 log CFU/mL reduction in free Gardnerella in the presence of VK2/E6E7 vaginal epithelial cells. As a first step towards the goal of facilitating patient compliance, this study demonstrates in vitro effect of a novel 3D-printed dual antibiotic and probiotic delivery platform to target BV.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Rudra Patel
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Christy Armstrong
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marnie Aagard
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Isaiah Rush
- Department of Chemical Engineering, University of Dayton, Dayton, OH, USA
| | - Warren Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; UofL Health - Brown Cancer Center, University of Louisville, KY, USA.
| |
Collapse
|
2
|
Patel R, Patel S, Shah N, Shah S, Momin I, Shah S. 3D printing chronicles in medical devices and pharmaceuticals: tracing the evolution and historical milestones. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-44. [PMID: 39102337 DOI: 10.1080/09205063.2024.2386222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The objective of this study is to collect the significant advancements of 3D printed medical devices in the biomedical area in recent years. Especially related to a range of diseases and the polymers employed in drug administration. To address the existing limitations and constraints associated with the method used for producing 3D printed medical devices, in order to optimize their suitability for degradation. The compilation and use of research papers, reports, and patents that are relevant to the key keywords are employed to improve comprehension. According to this thorough investigation, it can be inferred that the 3D Printing method, specifically Fuse Deposition Modeling (FDM), is the most suitable and convenient approach for preparing medical devices. This study provides an analysis and summary of the development trend of 3D printed implantable medical devices, focusing on the production process, materials specially the polymers, and typical items associated with 3D printing technology. This study offers a comprehensive examination of nanocarrier research and its corresponding discoveries. The FDM method, which is already facing significant challenges in terms of achieving optimal performance and cost reduction, will experience remarkable advantages from this highly valuable technology. The objective of this analysis is to showcase the efficacy and limitations of 3D-printing applications in medical devices through thorough research, highlighting the significant technological advancements it offers. This article provides a comprehensive overview of the most recent research and discoveries on 3D-printed medical devices, offering significant insights into their study.
Collapse
Affiliation(s)
- Riya Patel
- School of Pharmacy, Indrashil University, Kadi, Gujarat, India
| | - Shivani Patel
- Department of Pharmaceutics, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Nehal Shah
- School of Pharmacy, Indrashil University, Kadi, Gujarat, India
| | - Sakshi Shah
- L.J. Institute of Pharmacy, L J University, Ahmedabad, Gujarat, India
| | - Ilyas Momin
- L.J. Institute of Pharmacy, L J University, Ahmedabad, Gujarat, India
| | - Shreeraj Shah
- L.J. Institute of Pharmacy, L J University, Ahmedabad, Gujarat, India
| |
Collapse
|
3
|
Paleel F, Qin M, Tagalakis AD, Yu-Wai-Man C, Lamprou DA. Manufacturing and characterisation of 3D-printed sustained-release Timolol implants for glaucoma treatment. Drug Deliv Transl Res 2024:10.1007/s13346-024-01589-8. [PMID: 38578377 DOI: 10.1007/s13346-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Timolol maleate (TML) is a beta-blocker drug that is commonly used to lower the intraocular pressure in glaucoma. This study focused on using a 3D printing (3DP) method for the manufacturing of an ocular, implantable, sustained-release drug delivery system (DDS). Polycaprolactone (PCL), and PCL with 5 or 10% TML implants were manufactured using a one-step 3DP process. Their physicochemical characteristics were analysed using light microscopy, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC) / thermal gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The in vitro drug release was evaluated by UV-spectrophotometry. Finally, the effect of the implants on cell viability in human trabecular meshwork cells was assessed. All the implants showed a smooth surface. Thermal analysis demonstrated that the implants remained thermally stable at the temperatures used for the printing, and FTIR studies showed that there were no significant interactions between PCL and TML. Both concentrations (5 & 10%) of TML achieved sustained release from the implants over the 8-week study period. All implants were non-cytotoxic to human trabecular cells. This study shows proof of concept that 3DP can be used to print biocompatible and personalised ocular implantable sustained-release DDSs for the treatment of glaucoma.
Collapse
Affiliation(s)
- Fathima Paleel
- School of Pharmacy, Queen's University Belfast, BT9 7BL, Belfast, UK
- Faculty of Life Sciences & Medicine, King's College London, SE1 7EH, London, UK
| | - Mengqi Qin
- Faculty of Life Sciences & Medicine, King's College London, SE1 7EH, London, UK
| | | | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King's College London, SE1 7EH, London, UK.
| | | |
Collapse
|
4
|
Dedeloudi A, Martinez-Marcos L, Quinten T, Andersen S, Lamprou DA. Biopolymeric 3D printed implantable scaffolds as a potential adjuvant treatment for acute post-operative pain management. Expert Opin Drug Deliv 2024:1-13. [PMID: 38555481 DOI: 10.1080/17425247.2024.2336492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Pain is characterized as a major symptom induced by tissue damage occurring from surgical procedures, whose potency is being experienced subjectively, while current pain relief strategies are not always efficient in providing individualized treatment. 3D printed implantable devices hold the potential to offer a precise and customized medicinal approach, targeting both tissue engineering and drug delivery. RESEARCH DESIGN AND METHODS Polycaprolactone (PCL) and PCL - chitosan (CS) composite scaffolds loaded with procaine (PRC) were fabricated by bioprinting. Geometrical features including dimensions, pattern, and infill of the scaffolds were mathematically optimized and digitally determined, aiming at developing structurally uniform 3D printed models. Printability studies based on thermal imaging of the bioprinting system were performed, and physicochemical, surface, and mechanical attributes of the extruded scaffolds were evaluated. The release rate of PRC was examined at different time intervals up to 1 week. RESULTS Physicochemical stability and mechanical integrity of the scaffolds were studied, while in vitro drug release studies revealed that CS contributes to the sustained release dynamic of PRC. CONCLUSIONS The printing extrusion process was capable of developing implantable devices for a local and sustained delivery of PRC as a 7-day adjuvant regimen in post-operative pain management.
Collapse
Affiliation(s)
| | - Laura Martinez-Marcos
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | - Thomas Quinten
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | - Sune Andersen
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | | |
Collapse
|
5
|
Kyser AJ, Fotouh B, Mahmoud MY, Frieboes HB. Rising role of 3D-printing in delivery of therapeutics for infectious disease. J Control Release 2024; 366:349-365. [PMID: 38182058 PMCID: PMC10923108 DOI: 10.1016/j.jconrel.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Modern drug delivery to tackle infectious disease has drawn close to personalizing medicine for specific patient populations. Challenges include antibiotic-resistant infections, healthcare associated infections, and customizing treatments for local patient populations. Recently, 3D-printing has become a facilitator for the development of personalized pharmaceutic drug delivery systems. With a variety of manufacturing techniques, 3D-printing offers advantages in drug delivery development for controlled, fine-tuned release and platforms for different routes of administration. This review summarizes 3D-printing techniques in pharmaceutics and drug delivery focusing on treating infectious diseases, and discusses the influence of 3D-printing design considerations on drug delivery platforms targeting these diseases. Additionally, applications of 3D-printing in infectious diseases are summarized, with the goal to provide insight into how future delivery innovations may benefit from 3D-printing to address the global challenges in infectious disease.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
6
|
Park JK, Kim KW, Kim HJ, Choi SY, Son KH, Lee JW. 3D-Printed Auxetic Skin Scaffold for Decreasing Burn Wound Contractures at Joints. J Funct Biomater 2023; 14:516. [PMID: 37888181 PMCID: PMC10607279 DOI: 10.3390/jfb14100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
For patients with severe burns that consist of contractures induced by fibrous scar tissue formation, a graft must adhere completely to the wound bed to enable wound healing and neovascularization. However, currently available grafts are insufficient for scar suppression owing to their nonuniform pressure distribution in the wound area. Therefore, considering the characteristics of human skin, which is omnidirectionally stretched via uniaxial stretching, we proposed an auxetic skin scaffold with a negative Poisson's ratio (NPR) for tight adherence to the skin scaffold on the wound bed site. Briefly, a skin scaffold with the NPR effect was fabricated by creating a fine pattern through 3D printing. Electrospun layers were also added to improve adhesion to the wound bed. Fabricated skin scaffolds displayed NPR characteristics (-0.5 to -0.1) based on pulling simulation and experiment. Finger bending motion tests verified the decreased marginal forces (<50%) and deformation (<60%) of the NPR scaffold. In addition, the filling of human dermal fibroblasts in most areas (>95%) of the scaffold comprising rarely dead cells and their spindle-shaped morphologies revealed the high cytocompatibility of the developed scaffold. Overall, the developed skin scaffold may help reduce wound strictures in the joints of patients with burns as it exerts less pressure on the wound margin.
Collapse
Affiliation(s)
- Jung-Kyu Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| | - Kun Woo Kim
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, Republic of Korea; (K.W.K.); (H.J.K.); (S.Y.C.)
| | - Hyun Joo Kim
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, Republic of Korea; (K.W.K.); (H.J.K.); (S.Y.C.)
| | - Seon Young Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, Republic of Korea; (K.W.K.); (H.J.K.); (S.Y.C.)
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, Republic of Korea; (K.W.K.); (H.J.K.); (S.Y.C.)
| | - Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea;
- Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| |
Collapse
|
7
|
Glover K, Mathew E, Pitzanti G, Magee E, Lamprou DA. 3D bioprinted scaffolds for diabetic wound-healing applications. Drug Deliv Transl Res 2023; 13:2096-2109. [PMID: 35018558 PMCID: PMC10315349 DOI: 10.1007/s13346-022-01115-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 11/25/2022]
Abstract
The treatment strategy required for the effective healing of diabetic foot ulcer (DFU) is a complex process that is requiring several combined therapeutic approaches. As a result, there is a significant clinical and economic burden associated in treating DFU. Furthermore, these treatments are often unsuccessful, commonly resulting in lower-limb amputation. The use of drug-loaded scaffolds to treat DFU has previously been investigated using electrospinning and fused deposition modelling (FDM) 3D printing techniques; however, the rapidly evolving field of bioprinting is creating new opportunities for innovation within this research area. In this study, 3D-bioprinted scaffolds with different designs have been fabricated for the delivery of an antibiotic (levoflocixin) to DFU. The scaffolds were fully characterised by a variety of techniques (e.g. SEM, DSC/TGA, FTIR, and mechanical characterisation), demonstrating excellent mechanical properties and providing sustained drug release for 4 weeks. This proof of concept study demonstrates the innovative potential of bioprinting technologies in fabrication of antibiotic scaffolds for the treatment of DFU.
Collapse
Affiliation(s)
- Katie Glover
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Giulia Pitzanti
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Erin Magee
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
8
|
Zoabi A, Redenski I, Oren D, Kasem A, Zigron A, Daoud S, Moskovich L, Kablan F, Srouji S. 3D Printing and Virtual Surgical Planning in Oral and Maxillofacial Surgery. J Clin Med 2022; 11:jcm11092385. [PMID: 35566511 PMCID: PMC9104292 DOI: 10.3390/jcm11092385] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Compared to traditional manufacturing methods, additive manufacturing and 3D printing stand out in their ability to rapidly fabricate complex structures and precise geometries. The growing need for products with different designs, purposes and materials led to the development of 3D printing, serving as a driving force for the 4th industrial revolution and digitization of manufacturing. 3D printing has had a global impact on healthcare, with patient-customized implants now replacing generic implantable medical devices. This revolution has had a particularly significant impact on oral and maxillofacial surgery, where surgeons rely on precision medicine in everyday practice. Trauma, orthognathic surgery and total joint replacement therapy represent several examples of treatments improved by 3D technologies. The widespread and rapid implementation of 3D technologies in clinical settings has led to the development of point-of-care treatment facilities with in-house infrastructure, enabling surgical teams to participate in the 3D design and manufacturing of devices. 3D technologies have had a tremendous impact on clinical outcomes and on the way clinicians approach treatment planning. The current review offers our perspective on the implementation of 3D-based technologies in the field of oral and maxillofacial surgery, while indicating major clinical applications. Moreover, the current report outlines the 3D printing point-of-care concept in the field of oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Adeeb Zoabi
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Idan Redenski
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Daniel Oren
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Adi Kasem
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Asaf Zigron
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Shadi Daoud
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Liad Moskovich
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Fares Kablan
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Samer Srouji
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Correspondence:
| |
Collapse
|