Kay AD, Blazevich AJ, Tysoe JC, Baxter BA. Cross-Education Effects of Isokinetic Eccentric Plantarflexor Training on Flexibility, Strength, and Muscle-Tendon Mechanics.
Med Sci Sports Exerc 2024;
56:1242-1255. [PMID:
38451696 DOI:
10.1249/mss.0000000000003418]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
INTRODUCTION
Large increases in joint range of motion (ROM) have been reported after eccentric resistance training; however, limited data exist describing the associated mechanisms or potential cross-education effects in the contralateral limb. Therefore, the effects of a 6-wk isokinetic eccentric plantarflexor training program were examined in 26 participants.
METHODS
Before and after the training program, dorsiflexion ROM, plantarflexor strength, and muscle-tendon unit (MTU) morphology and mechanics were measured in control ( n = 13) and experimental ( n = 13) young adult groups. Training consisted of 5 sets of 12 maximal isokinetic eccentric plantarflexor contractions twice weekly on the right limb.
RESULTS
Significant ( P < 0.05) increases in dorsiflexion ROM (4.0-9.5°), stretch tolerance (40.3-95.9%), passive elastic energy storage (47.5-161.3%), and isometric (38.1-40.6%) and eccentric (46.7-67.0%) peak plantarflexor torques were detected in both trained and contralateral limbs in the experimental group. Significant increases in gastrocnemius medialis and soleus thickness (5.4-6.1%), gastrocnemius medialis fascicle length (7.6 ± 8.5%), passive plantarflexor MTU stiffness (30.1 ± 35.5%), and Achilles tendon stiffness (5.3 ± 4.9%) were observed in the trained limb only. Significant correlations were detected between the changes in trained and contralateral limbs for dorsiflexion ROM ( r = 0.59) and both isometric ( r = 0.79) and eccentric ( r = 0.73) peak torques. No significant changes in any metric were detected in the control group.
CONCLUSIONS
Large ROM increases in the trained limb were associated with neurological, mechanical, and structural adaptations, with evidence of a cross-education effect in the contralateral limb being primarily driven by neurological adaptation (stretch tolerance). The large improvements in ROM, muscle size, and strength confirm that isokinetic eccentric training is a highly effective training tool, with potential for use in athletic and clinical populations where MTU function is impaired and current therapies are ineffective.
Collapse