1
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
2
|
Nam M, Lee JW, Cha GD. Biomedical Application of Enzymatically Crosslinked Injectable Hydrogels. Gels 2024; 10:640. [PMID: 39451293 PMCID: PMC11507637 DOI: 10.3390/gels10100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant interest in the biomedical field owing to their tissue-like properties and capability to incorporate various fillers. Among these, injectable hydrogels have been highlighted for their unique advantages, especially their minimally invasive administration mode for implantable use. These injectable hydrogels can be utilized in their pristine forms or as composites by integrating them with therapeutic filler materials. Given their primary application in implantable platforms, enzymatically crosslinked injectable hydrogels have been actively explored due to their excellent biocompatibility and easily controllable mechanical properties for the desired use. This review introduces the crosslinking mechanisms of such hydrogels, focusing on those mediated by horseradish peroxidase (HRP), transglutaminase (TG), and tyrosinase. Furthermore, several parameters and their relationships with the intrinsic properties of hydrogels are investigated. Subsequently, the representative biomedical applications of enzymatically crosslinked-injectable hydrogels are presented, including those for wound healing, preventing post-operative adhesion (POA), and hemostasis. Furthermore, hydrogel composites containing filler materials, such as therapeutic cells, proteins, and drugs, are analyzed. In conclusion, we examine the scientific challenges and directions for future developments in the field of enzymatically crosslinked-injectable hydrogels, focusing on material selection, intrinsic properties, and filler integration.
Collapse
Affiliation(s)
| | | | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; (M.N.); (J.W.L.)
| |
Collapse
|
3
|
Liu Y, Wang J, Sun Z. Aromatic Biobased Polymeric Materials Using Plant Polyphenols as Sustainable Alternative Raw Materials: A Review. Polymers (Basel) 2024; 16:2752. [PMID: 39408462 PMCID: PMC11479198 DOI: 10.3390/polym16192752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
In the foreseeable future, the development of petroleum-based polymeric materials may be limited, owing to the gradual consumption of disposable resources and the increasing emphasis on environmental protection policies. Therefore, it is necessary to focus on introducing environmentally friendly renewable biobased materials as a substitute for petroleum-based feed stocks in the preparation of different types of industrially important polymers. Plant polyphenols, a kind of natural aromatic biomolecule, exist widely in some plant species. Benefiting from their special macromolecular structure, high reactivity, and broad abundance, plant polyphenols are potent candidates to replace the dwindling aromatic monomers derived from petroleum-based resources in synthesizing high-quality polymeric materials. In this review, the most related and innovative methods for elaborating novel polymeric materials from plant polyphenols are addressed. After a brief historical overview, the classification, structural characteristics, and reactivity of plant polyphenols are summarized in detail. In addition, some interesting and innovative works concerning the chemical modifications and polymerization techniques of plant polyphenols are also discussed. Importantly, the main chemical pathways to create plant polyphenol-based organic/organic-inorganic polymeric materials as well as their properties and possible applications are systematically described. We believe that this review could offer helpful references for designing multifunctional polyphenolic materials.
Collapse
Affiliation(s)
- Yang Liu
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China;
- Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China
- Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
| | - Junsheng Wang
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China;
- Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China
- Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Xue R, He L, Wu J, Kong X, Wang Q, Chi Y, Liu J, Wang Z, Zeng K, Chen W, Ren H, Han B. Multifunctional sprayable carboxymethyl chitosan/polyphenol hydrogel for wound healing. Int J Biol Macromol 2024; 275:133303. [PMID: 38917923 DOI: 10.1016/j.ijbiomac.2024.133303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
The use of facile methods to synthesize environmentally friendly and multifunctional hydrogel dressings is still a major challenge in development. Herein, Turkish gall extract (TGE) and carboxymethyl chitosan (CMCS) were combined and sprayed using a dual syringe to form a multifunctional TGE-CMCS hydrogel (TC gel) in one step through abundant hydrogen bonding between functional groups as a green approach. TC gel showed rapid gelation at 19.0 ± 2.9 s. Apart from the advantage of being able to adapt to different wound shapes, TC gel retained the antioxidant, antibacterial, hemostatic and anti-inflammatory properties of TGE. In vitro antibacterial experiments showed that TC-gel eliminated 98.27 ± 0.79 % of Staphylococcus aureus and 98.87 ± 1.08 % of Escherichia coli. Compared with TGE or CMCS alone, TC gel accelerates skin wound healing due to its three-dimensional network structure and continuous release of active components at the wound site, enhancing re-epithelialization, improving collagen deposition, and increasing angiogenesis. The wound healing rate of full-thickness skin defect rats treated with TC gel was 93.98 ± 0.63 % on the 10th day. These results suggest that TC gel combined with a facile and scalable manufacturing method is a promising multifunctional wound dressing for clinical wound management.
Collapse
Affiliation(s)
- Rui Xue
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Linyun He
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Jie Wu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Xiangze Kong
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Qiuting Wang
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Yaping Chi
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Ji Liu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Zhe Wang
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Kewu Zeng
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Wen Chen
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Huanhuan Ren
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China.
| | - Bo Han
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
5
|
Riaz Z, Baddi S, Gao F, Qiu X, Feng C. Supramolecular Polymer Co-Assembled Multifunctional Chiral Hybrid Hydrogels with Adhesive, Self-Healing and Antibacterial Properties. Gels 2024; 10:489. [PMID: 39195018 DOI: 10.3390/gels10080489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Amino acid-derived self-assembled nanofibers comprising supramolecular chiral hydrogels with unique physiochemical characteristics are highly demanded biomaterials for various biological applications. However, their narrow functionality often limits practical use, necessitating the development of biomaterials with multiple features within a single system. Herein, chiral co-assembled hybrid hydrogel systems termed LPH-EGCG and DPH-EGCG were constructed by co-assembling L/DPFEG gelators with epigallocatechin gallate (EGCG) followed by cross-linking with polyvinyl alcohol (PVA) and hyaluronic acid (HA). The developed hybrid hydrogels exhibit superior mechanical strength, self-healing capabilities, and adhesive properties, owing to synergistic non-covalent interactions. Integrating hydrophilic polymers enhances the system's capacity to demonstrate favorable swelling characteristics. Furthermore, the introduction of EGCG facilitated the hybrid gels to display notable antibacterial properties against both Gram-positive and Gram-negative bacterial strains, alongside showcasing strong antioxidant capabilities. In vitro investigation demonstrated enhanced cell adhesion and migration with the LPH-EGCG system in comparison to DPH-EGCG, thus emphasizing the promising prospects of these hybrid hydrogels in advanced tissue engineering applications.
Collapse
Affiliation(s)
- Zakia Riaz
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
| | - Sravan Baddi
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
| | - Fengli Gao
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
| | - Xiaxin Qiu
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
| |
Collapse
|
6
|
Kalairaj MS, Pradhan R, Saleem W, Smith MM, Gaharwar AK. Intra-Articular Injectable Biomaterials for Cartilage Repair and Regeneration. Adv Healthc Mater 2024; 13:e2303794. [PMID: 38324655 PMCID: PMC11468459 DOI: 10.1002/adhm.202303794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Indexed: 02/09/2024]
Abstract
Osteoarthritis is a degenerative joint disease characterized by cartilage deterioration and subsequent inflammatory changes in the underlying bone. Injectable hydrogels have emerged as a promising approach for controlled drug delivery in cartilage therapies. This review focuses on the latest developments in utilizing injectable hydrogels as vehicles for targeted drug delivery to promote cartilage repair and regeneration. The pathogenesis of osteoarthritis is discussed to provide a comprehensive understanding of the disease progression. Subsequently, the various types of injectable hydrogels used for intra-articular delivery are discussed. Specifically, physically and chemically crosslinked injectable hydrogels are critically analyzed, with an emphasis on their fabrication strategies and their capacity to encapsulate and release therapeutic agents in a controlled manner. Furthermore, the potential of incorporating growth factors, anti-inflammatory drugs, and cells within these injectable hydrogels are discussed. Overall, this review offers a comprehensive guide to navigating the landscape of hydrogel-based therapeutics in osteoarthritis.
Collapse
Affiliation(s)
| | - Ridhi Pradhan
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Waqas Saleem
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Morgan M. Smith
- Department of Veterinary Integrative BiosciencesSchool of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTX77843USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Department of Material Science and EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Genetics and Genomics Interdisciplinary ProgramTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
7
|
Han J, Choi S, Hong J, Gang D, Lee S, Shin K, Ko J, Kim JU, Hwang NS, An YH, Gu M, Kim SH. Superoxide Dismutase-Mimetic Polyphenol-Based Carbon Dots for Multimodal Bioimaging and Treatment of Atopic Dermatitis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38686704 DOI: 10.1021/acsami.4c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Polyphenols have been investigated for their potential to mitigate inflammation in the context of atopic dermatitis (AD). In this study, epigallocatechin-3-gallate (EGCG)-based carbon dots (EGCG@CDs) were developed to enhance transdermal penetration, reduce inflammation, recapitulate superoxide dismutase (SOD) activity, and provide antimicrobial effects for AD treatment. The water-soluble EGCG@CDs in a few nanometers size exhibit a negative zeta potential, making them suitable for effective transdermal penetration. The fluorescence properties, including an upconversion effect, make EGCG@CDs suitable imaging probes for both in vitro and in vivo applications. By mimicking the SOD enzyme, EGCG@CDs scavenge reactive oxygen species (ROS) and actively produce hydrogen peroxide through a highly catalytic capability toward the oxygen reduction reaction, resulting in the inhibition of bacterial growth. The enhanced antioxidant properties, high charge mobility, and various functional groups of EGCG@CDs prove effective in reducing intracellular ROS in an in vitro AD model. In the mouse AD model, EGCG@CDs incorporated into a hydrogel actively penetrated the epidermal layer, leading to ROS scavenging, reduced mast cell activation, and histological recovery of skin barriers. This research represents the versatile potential of EGCG@CDs in addressing AD and advancing tissue engineering.
Collapse
Affiliation(s)
- Jeongmin Han
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Sumi Choi
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Jinwoo Hong
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Dayeong Gang
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Seunghoon Lee
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
- Department of Chemistry, Dong-A University, Busan 49315, Republic of Korea
| | - Kwangsoo Shin
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Institute of Bioengineering, Institute of Engineering Research, Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, The Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Institute of Bioengineering, Institute of Engineering Research, Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsu Gu
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| | - Su-Hwan Kim
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
8
|
Kim BS, Kim JU, Lee JW, Ryu KM, Koh RH, So KH, Hwang NS. Comparative analysis of supercritical fluid-based and chemical-based decellularization techniques for nerve tissue regeneration. Biomater Sci 2024; 12:1847-1863. [PMID: 38411258 DOI: 10.1039/d3bm02072j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Axon regeneration and Schwann cell proliferation are critical processes in the repair and functional recovery of damaged neural tissues. Biomaterials can play a crucial role in facilitating cell proliferative processes that can significantly impact the target tissue repair. Chemical decellularization and supercritical fluid-based decellularization methods are similar approaches that eliminate DNA from native tissues for tissue-mimetic biomaterial production by using different solvents and procedures to achieve the final products. In this study, we conducted a comparative analysis of these two methods in the context of nerve regeneration and neuron cell differentiation efficiency. We evaluated the efficacy of each method in terms of biomaterial quality, preservation of extracellular matrix components, promotion of neuronal cell differentiation and nerve tissue repair ability in vivo. Our results indicate that while both methods produce high-quality biomaterials, supercritical fluid-based methods have several advantages over conventional chemical decellularization, including better preservation of extracellular matrix components and mechanical properties and superior promotion of cellular responses. We conclude that supercritical fluid-based methods show great promise for biomaterial production for nerve regeneration and neuron cell differentiation applications.
Collapse
Affiliation(s)
- Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Woo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Min Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Mahmoudi N, Mohamed E, Dehnavi SS, Aguilar LMC, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Calming the Nerves via the Immune Instructive Physiochemical Properties of Self-Assembling Peptide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303707. [PMID: 38030559 PMCID: PMC10837390 DOI: 10.1002/advs.202303707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Current therapies for the devastating damage caused by traumatic brain injuries (TBI) are limited. This is in part due to poor drug efficacy to modulate neuroinflammation, angiogenesis and/or promoting neuroprotection and is the combined result of challenges in getting drugs across the blood brain barrier, in a targeted approach. The negative impact of the injured extracellular matrix (ECM) has been identified as a factor in restricting post-injury plasticity of residual neurons and is shown to reduce the functional integration of grafted cells. Therefore, new strategies are needed to manipulate the extracellular environment at the subacute phase to enhance brain regeneration. In this review, potential strategies are to be discussed for the treatment of TBI by using self-assembling peptide (SAP) hydrogels, fabricated via the rational design of supramolecular peptide scaffolds, as an artificial ECM which under the appropriate conditions yields a supramolecular hydrogel. Sequence selection of the peptides allows the tuning of these hydrogels' physical and biochemical properties such as charge, hydrophobicity, cell adhesiveness, stiffness, factor presentation, degradation profile and responsiveness to (external) stimuli. This review aims to facilitate the development of more intelligent biomaterials in the future to satisfy the parameters, requirements, and opportunities for the effective treatment of TBI.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Elmira Mohamed
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
| | - Shiva Soltani Dehnavi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
| | - Lilith M. Caballero Aguilar
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Alan R. Harvey
- School of Human SciencesThe University of Western Australiaand Perron Institute for Neurological and Translational SciencePerthWA6009Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleMelbourneVIC3010Australia
| | | | - David R. Nisbet
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
- Melbourne Medical SchoolFaculty of MedicineDentistry and Health ScienceThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
10
|
Ning Y, Yuan Z, Wang Q, He J, Zhu W, Ren DN, Wo D. Epigallocatechin-3-gallate promotes wound healing response in diabetic mice by activating keratinocytes and promoting re-epithelialization. Phytother Res 2024; 38:1013-1027. [PMID: 38140774 DOI: 10.1002/ptr.8099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Type 2 diabetes (T2D) is a metabolic disorder that causes numerous complications including impaired wound healing and poses a significant challenge for the management of diabetic patients. Epigallocatechin-3-gallate (EGCG) is a natural polyphenol that exhibits anti-inflammatory and anti-oxidative benefits in skin wounds, however, the direct effect of EGCG on epidermal keratinocytes, the primary cells required for re-epithelialization in wound healing remains unknown. Our study aims to examine the underlying mechanisms of EGCG's ability to promote re-epithelialization and wound healing in T2D-induced wounds. Murine models of wound healing in T2D were established via feeding high-fat high-fructose diet (HFFD) and the creation of full-thickness wounds. Mice were administered daily with EGCG or vehicle to examine the wound healing response and underlying molecular mechanisms of EGCG's protective effects. Systemic administration of EGCG in T2D mice robustly accelerated the wound healing response following injury. EGCG induced nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) and promoted cytokeratin 16 (K16) expression to activate epidermal keratinocytes and robustly promoted re-epithelialization of wounds in diabetic mice. Further, EGCG demonstrated high binding affinity with Kelch-like ECH-associated protein 1 (KEAP1), thereby inhibiting KEAP1-mediated degradation of NRF2. Our findings provide important evidence that EGCG accelerates the wound healing response in diabetic mice by activating epidermal keratinocytes, thereby promoting re-epithelialization of wounds via K16/NRF2/KEAP1 signaling axis. These mechanistic insights into the protective effects of EGCG further suggest its therapeutic potential as a promising drug for treating chronic wounds in T2D.
Collapse
Affiliation(s)
- Yongling Ning
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhiying Yuan
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qing Wang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia He
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weidong Zhu
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dan-Ni Ren
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Da Wo
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
11
|
Zhang W, Wei Y, Wei Q, Zhao Y, Jin Z, Wang Y, Ma G, He X, Hu Z, Jiang Y. Cascade enzymatic preparation of carboxymethyl chitosan-based multifunctional hydrogels for promoting cutaneous wound healing. Int J Biol Macromol 2023; 248:125793. [PMID: 37442505 DOI: 10.1016/j.ijbiomac.2023.125793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Designing wound dressings with inherent multifunctional therapeutic effects is desirable for clinical applications. Herein, a series of multifunctional carboxymethyl chitosan (CMCS)-based hydrogels were fabricated by the facile urate oxidase (UOX)-horseradish peroxidase (HRP) cascade enzymatic crosslinking system. For the first time, the cascade enzymatic crosslinking system was not only used for preparing hydrogel wound dressings but also for accelerating wound healing due to the activity retention of the self-compartmental enzymes. A CMCS derivative (HCMCS-mF) synthesized by successively grafting 4-hydroxybenzaldehyde (H) and 5-methylfurfural (mF) on CMCS and a quaternary ammonium crosslinker (QMal) with terminal grafting maleimide (Mal) groups were combined with enzymatic system for the facile preparation of hydrogels. The mild Diels-Alder (DA) crosslinking reaction between mF and Mal groups constructed the first network of hydrogels. The cascade UOX-HRP system mediated the oxidative crosslinking of phenols thus forming the second gel network. Self-entrapped UOX maintained its enzymatic activity and could continuously catalyze the oxidation of uric acid, generating therapeutic allantoin. These porous, degradable, mechanically stable hydrogels with excellent antioxidant performance and enhanced antibacterial capacity could effectively accelerate skin wound repair by simultaneously reducing oxidative stress, relieving inflammation, promoting collagen deposition and upregulating the expression level of CD31.
Collapse
Affiliation(s)
- Weiwei Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yixing Wei
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qingcong Wei
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Yanfei Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ziming Jin
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yaxing Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guanglei Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Hu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
12
|
Kim NG, Kim SC, Kim TH, Je JY, Lee B, Lee SG, Kim YM, Kang HW, Qian ZJ, Kim N, Jung WK. Ishophloroglucin A-based multifunctional oxidized alginate/gelatin hydrogel for accelerating wound healing. Int J Biol Macromol 2023; 245:125484. [PMID: 37348579 DOI: 10.1016/j.ijbiomac.2023.125484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
This study investigated the potential applicability of wound dressing hydrogels for tissue engineering, focusing on their ability to deliver pharmacological agents and absorb exudates. Specifically, we explored the use of polyphenols, as they have shown promise as bioactive and cross-linking agents in hydrogel fabrication. Ishophloroglucin A (IPA), a polyphenol not previously utilized in tissue engineering, was incorporated as both a drug and cross-linking agent within the hydrogel. We integrated the extracted IPA, obtained through the utilization of separation and purification techniques such as high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR) into oxidized alginate (OA) and gelatin (GEL) hydrogels. Our findings revealed that the mechanical properties, thermal stability, swelling, and degradation of the multifunctional hydrogel can be modulated via intermolecular interactions between the natural polymer and IPA. Moreover, the controlled release of IPA endows the hydrogel with antioxidant and antimicrobial characteristics. Overall, the wound healing efficacy, based on intermolecular interactions and drug potency, has been substantiated through accelerated wound closure and collagen deposition in an ICR mouse full-thickness wound model. These results suggest that incorporating IPA into natural polymers as both a drug and cross-linking agent has significant implications for tissue engineering applications.
Collapse
Affiliation(s)
- Nam-Gyun Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Se-Chang Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan 48513, South Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun Wook Kang
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA; Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea; Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX 78666, USA
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
13
|
Li Z, Lu F, Liu Y. A Review of the Mechanism, Properties, and Applications of Hydrogels Prepared by Enzymatic Cross-linking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390351 DOI: 10.1021/acs.jafc.3c01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Hydrogels, as biological materials, are widely used in food, tissue engineering, and biomedical applications. Nevertheless, many issues remain in the preparation of hydrogels by physical and chemical methods, such as low bioaffinity, weak mechanical properties, and unstable structures, which also limit their applications in other fields. However, the enzymatic cross-linking method has the advantages of high catalytic efficiency, mild reaction conditions, and the presence of nontoxic substances. In this review, we evaluated the chemical, physical, and biological methods of preparing hydrogels and introduced three common cross-linking enzymes and their principles for preparing hydrogels. This review introduced the applications and properties of hydrogels prepared by the enzymatic method and also provided some suggestions regarding the current situation and future development of hydrogels prepared by enzymatic cross-linking.
Collapse
Affiliation(s)
- Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
14
|
Jia B, Li G, Cao E, Luo J, Zhao X, Huang H. Recent progress of antibacterial hydrogels in wound dressings. Mater Today Bio 2023; 19:100582. [PMID: 36896416 PMCID: PMC9988584 DOI: 10.1016/j.mtbio.2023.100582] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Hydrogels are essential biomaterials due to their favorable biocompatibility, mechanical properties similar to human soft tissue extracellular matrix, and tissue repair properties. In skin wound repair, hydrogels with antibacterial functions are especially suitable for dressing applications, so novel antibacterial hydrogel wound dressings have attracted widespread attention, including the design of components, optimization of preparation methods, strategies to reduce bacterial resistance, etc. In this review, we discuss the fabrication of antibacterial hydrogel wound dressings and the challenges associated with the crosslinking methods and chemistry of the materials. We have investigated the advantages and limitations (antibacterial effects and antibacterial mechanisms) of different antibacterial components in the hydrogels to achieve good antibacterial properties, and the response of hydrogels to stimuli such as light, sound, and electricity to reduce bacterial resistance. Conclusively, we provide a systematic summary of antibacterial hydrogel wound dressings findings (crosslinking methods, antibacterial components, antibacterial methods) and an outlook on long-lasting antibacterial effects, a broader antibacterial spectrum, diversified hydrogel forms, and the future development prospects of the field.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Guowei Li
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ertai Cao
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518063, China
| |
Collapse
|
15
|
Herman RA, Zhu X, Ayepa E, You S, Wang J. Advances in the One-Step Approach of Polymeric Materials Using Enzymatic Techniques. Polymers (Basel) 2023; 15:703. [PMID: 36772002 PMCID: PMC9922006 DOI: 10.3390/polym15030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The formulation in which biochemical enzymes are administered in polymer science plays a key role in retaining their catalytic activity. The one-step synthesis of polymers with highly sequence-controlled enzymes is a strategy employed to provide enzymes with higher catalytic activity and thermostability in material sustainability. Enzyme-catalyzed chain growth polymerization reactions using activated monomers, protein-polymer complexation techniques, covalent and non-covalent interaction, and electrostatic interactions can provide means to develop formulations that maintain the stability of the enzyme during complex material processes. Multifarious applications of catalytic enzymes are usually attributed to their efficiency, pH, and temperature, thus, progressing with a critical structure-controlled synthesis of polymer materials. Due to the obvious economics of manufacturing and environmental sustainability, the green synthesis of enzyme-catalyzed materials has attracted significant interest. Several enzymes from microorganisms and plants via enzyme-mediated material synthesis have provided a viable alternative for the appropriate synthesis of polymers, effectively utilizing the one-step approach. This review analyzes more and deeper strategies and material technologies widely used in multi-enzyme cascade platforms for engineering polymer materials, as well as their potential industrial applications, to provide an update on current trends and gaps in the one-step synthesis of materials using catalytic enzymes.
Collapse
Affiliation(s)
- Richard Ansah Herman
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade P.O. Box 74, Ghana
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
16
|
Kim SH, Shin K, Kim BG, Hwang NS, Hyeon T. Dual action of a tyrosinase-mesoporous silica nanoparticle complex for synergistic tissue adhesion. Chem Commun (Camb) 2022; 59:94-97. [PMID: 36472163 DOI: 10.1039/d2cc05678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bridging biological tissues for immediate adhesion and long-term sustainability was accomplished using a combination of mesoporous silica nanoparticles (MSNs) and tyrosinase. Tyrosinase-loaded MSNs provided rapid physical adsorption, while tyrosinase within MSNs induced enzymatic chemical bond gluing of tissues. This synergistic strategy has robust potential in tissue adhesives for clinical settings.
Collapse
Affiliation(s)
- Su-Hwan Kim
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan, 49315, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Kwangsoo Shin
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea. .,Institute of Molecular Biology and Genetics, Institute for Sustainable Development (ISD), Seoul National University, Seoul, 08826, Republic of Korea.,Bio-MAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea. .,Bio-MAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| |
Collapse
|
17
|
Injectable chitosan hydrogels tailored with antibacterial and antioxidant dual functions for regenerative wound healing. Carbohydr Polym 2022; 298:120103. [DOI: 10.1016/j.carbpol.2022.120103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 12/19/2022]
|
18
|
Badali E, Goodarzi A, Khodayari H, Khodayari S, Habibi A, Hasanzadeh S, Khanmohammadi M. Layered dermal reconstitution through epigallocatechin 3-gallate loaded chitosan nanoparticle within enzymatically crosslinked polyvinyl alcohol/collagen fibrous mat. J Biomater Appl 2022; 37:502-516. [DOI: 10.1177/08853282221104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biocompatible electrospun fiber comprising bioactive substrates has potential to implant into the wound site as a reliable therapeutic approach in tissue regeneration. Here, electrospun polyvinyl alcohol conjugated tyramine (PVA-Tyr) and collagen (Col) fibrous mat containing chitosan nanoparticle loaded with epigallocatechin 3-gallate (NCs-EGCG) developed and the composite was applied to evaluate in vivo wound healing ability of fabricated wound patch. The synthesized PVA-Tyr and Col were electrospun and crosslinked through peroxidase reaction in presence of vaporized H2O2 as an electron donor which covalently proceeded conjugation of phenolic groups and could develop hybrid fibrous mat in stable structure and uniform shapes. The EGCG as anti-oxidative/inflammatory substrate was encapsulated efficiently in NCs and released in a sustained manner. The hybrid fibers seeded with adipose-derived stem cells presented appropriate biocompatibility from biophysical and biochemical viewpoints and in following wound healing ability in a full-thickness excisional animal model. Fourier transform infrared spectroscopy (FTIR) confirmed all typical absorption characteristics of PVA-Tyr and Col as well as NCs and EGCG. The results showed the perfect hydrophilic/hydrophobic ratio and good mechanical and structural characteristics including shape uniformity and porosity. Interestingly, cellular attachment and proliferation on the PVA-Tyr/Col fibers containing NCs-EGCG were higher than control samples. The histological analysis of hybrid fibrous patch could be suggested the applicability of this structure as suitable skin substitutes to repair injured skin.
Collapse
Affiliation(s)
- Elham Badali
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Arash Goodarzi
- School of Medicine, Fasa University of Medical Sciences (FUMS), Fasa, Iran
| | - Hamid Khodayari
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Center for Personalized Medicine, Düsseldorf, Germany
| | - Saeed Khodayari
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Center for Personalized Medicine, Düsseldorf, Germany
| | | | - Sajad Hasanzadeh
- Skull Base Research Center, The Five Senses Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
19
|
Cao H, Yang L, Tian R, Wu H, Gu Z, Li Y. Versatile polyphenolic platforms in regulating cell biology. Chem Soc Rev 2022; 51:4175-4198. [PMID: 35535743 DOI: 10.1039/d1cs01165k] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyphenolic materials are a class of fascinating and versatile bioinspired materials for biointerfacial engineering. In particular, due to the presence of active chemical groups, a series of unique physicochemical properties become accessible and tunable of the as-prepared polyphenolic platforms, which could delicately regulate the cell activities via cell-material contact-dependent interactions. More interestingly, polyphenols could also affect the cell behaviors via cell-material contact-independent manner, which arise due to their intrinsically functional characteristics (e.g., antioxidant and photothermal behaviors). As such, a comprehensive understanding on the relationship between material properties and desired biomedical applications, as well as the underlying mechanism at the cellular and molecular level would provide material design principles and accelerate the lab-to-clinic translation of polyphenolic platforms. In this review, we firstly give a brief overview of cell hallmarks governed by surrounding cues, followed by the introduction of polyphenolic material engineering strategies. Subsequently, a detailed discussion on cell-polyphenols contact-dependent interfacial interaction and contact-independent interaction was also carefully provided. Lastly, their biomedical applications were elaborated. We believe that this review could provide guidances for the rational material design of multifunctional polyphenols and extend their application window.
Collapse
Affiliation(s)
- Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Lei Yang
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Rong Tian
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Gu
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Yiwen Li
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Lee U, Ko J, Kim S, Lee P, An Y, Yun H, Flood DT, Dawson PE, Hwang NS, Kim B. Light-Triggered In Situ Biosynthesis of Artificial Melanin for Skin Protection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103503. [PMID: 34989175 PMCID: PMC8895148 DOI: 10.1002/advs.202103503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/29/2021] [Indexed: 05/05/2023]
Abstract
Tyrosinase-mediated melanin synthesis is an essential biological process that can protect skin from UV radiation and radical species. This work reports on in situ biosynthesis of artificial melanin in native skin using photoactivatable tyrosinase (PaTy). The I41Y mutant of Streptomyces avermitilis tyrosinase (SaTy) shows enzymatic activity comparable to that of wild-type SaTy. This Y41 is replaced with photocleavable o-nitrobenzyl tyrosine (ONBY) using the introduction of amber codon and ONBY-tRNA synthetase/tRNA pairs. The ONBY efficiently blocks the active site and tyrosinase activity is rapidly recovered by the photo-cleavage of ONBY. The activated PaTy successfully oxidizes L-tyrosine and tyramine-conjugated hyaluronic acid (HA_T) to synthesize melanin particles and hydrogel, respectively. To produce artificial melanin in living tissues, PaTy is encapsulated into lipid nanoparticles as an artificial melanosome. Using liposomes containing PaTy (PaTy_Lip), PaTy is transdermally delivered into ex vivo porcine skin and in vivo mouse skin tissues, thus achieving the in situ biosynthesis of artificial melanin for skin tissue protection under UV irradiation. The results of this study demonstrate that this biomimetic system can recapitulate the biosynthetic analogs of naturally occurring melanin. It should therefore be considered to be a promising strategy for producing protective biological molecules within living systems for tissue protection.
Collapse
Affiliation(s)
- Uk‐Jae Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Institute of Molecular Biology and GeneticsSeoul National UniversitySeoul08826South Korea
| | - Junghyeon Ko
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
| | - Su‐Hwan Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Department of Chemical Engineering (BK 21 FOUR)Dong‐A UniversityBusan49315South Korea
| | - Pyung‐Gang Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Institute of Molecular Biology and GeneticsSeoul National UniversitySeoul08826South Korea
| | - Young‐Hyeon An
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Bio‐MAX/N‐BioInstitute of BioEngineerigSeoul National UniversitySeoul08826South Korea
| | - Hyungdon Yun
- Department of Systems BiotechnologyKonkuk UniversitySeoul05029South Korea
| | - Dillon T. Flood
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA92037USA
| | - Philip E. Dawson
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA92037USA
| | - Nathaniel S. Hwang
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Bio‐MAX/N‐BioInstitute of BioEngineerigSeoul National UniversitySeoul08826South Korea
- Institute for Engineering ResearchSeoul National UniversitySeoul08826South Korea
| | - Byung‐Gee Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826South Korea
- Institute of Molecular Biology and GeneticsSeoul National UniversitySeoul08826South Korea
- Bio‐MAX/N‐BioInstitute of BioEngineerigSeoul National UniversitySeoul08826South Korea
- Institute for Sustainable Development(ISD)Seoul National UniversitySeoul08826South Korea
| |
Collapse
|
21
|
Bu W, Wu Y, Ghaemmaghami AM, Sun H, Mata A. Rational design of hydrogels for immunomodulation. Regen Biomater 2022; 9:rbac009. [PMID: 35668923 PMCID: PMC9160883 DOI: 10.1093/rb/rbac009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The immune system protects organisms against endogenous and exogenous harm and plays a key role in tissue development, repair, and regeneration. Traditional immunomodulatory biologics exhibit limitations including degradation by enzymes, short half-life, and lack of targeting ability. Encapsulating or binding these biologics within biomaterials is an effective way to address these problems. Hydrogels are promising immunomodulatory materials because of their prominent biocompatibility, tuneability, and versatility. However, to take advantage of these opportunities and optimize material performance, it is important to more specifically elucidate, and leverage on, how hydrogels affect and control the immune response. Here, we summarize how key physical and chemical properties of hydrogels affect the immune response. We first provide an overview of underlying steps of the host immune response upon exposure to biomaterials. Then, we discuss recent advances in immunomodulatory strategies where hydrogels play a key role through a) physical properties including dimensionality, stiffness, porosity, and topography; b) chemical properties including wettability, electric property, and molecular presentation; and c) the delivery of bioactive molecules via chemical or physical cues. Thus, this review aims to build a conceptual and practical toolkit for the design of immune-instructive hydrogels capable of modulating the host immune response.
Collapse
Affiliation(s)
- Wenhuan Bu
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, 110001, China
- Department of Dental Materials, School of Stomatology, China Medical University, Shenyang, 110001, China
- Department of Center Laboratory, School of Stomatology, China Medical University, Shenyang, 110001, China
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yuanhao Wu
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Hongchen Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, 110001, China
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
22
|
Guo S, Yao M, Zhang D, He Y, Chang R, Ren Y, Guan F. One-Step Synthesis of Multifunctional Chitosan Hydrogel for Full-Thickness Wound Closure and Healing. Adv Healthc Mater 2022; 11:e2101808. [PMID: 34787374 DOI: 10.1002/adhm.202101808] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/08/2021] [Indexed: 12/15/2022]
Abstract
Multifunctional hydrogel as a sealant or wound dressing with high adhesiveness and excellent antibacterial activity is highly desirable in clinical applications. In this contribution, one-step synthetic hydrogel based on quaternized chitosan (QCS), tannic acid (TA), and ferric iron (Fe(III)) is developed for skin incision closure and Staphylococcus aureus (S. aureus)-infected wound healing. In this hydrogel system, the ionic bonds and hydrogen bonds between QCS and TA form the main backbone of hydrogel, the metal coordination bonds between TA and Fe(III) (catechol-Fe) endow hydrogel with excellent adhesiveness and (near-infrared light) NIR-responsive photothermal property, and these multiple dynamic physical crosslinks enable QCS/TA/Fe hydrogel with flexible self-healing ability and injectability. Moreover, QCS/TA/Fe hydrogel possesses superior antioxidant, anti-inflammatory, hemostasis, and biocompatibility. Also, it is safe for vital organs. The data from the mouse skin incision model and infected full-thickness skin wound model presented the high wound closure effectiveness and acceleration of the wound healing process by this multifunctional hydrogel, highlighting its great potential in wound management.
Collapse
Affiliation(s)
- Shen Guo
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Minghao Yao
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Dan Zhang
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Yuanmeng He
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Rong Chang
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Yikun Ren
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| | - Fangxia Guan
- School of Life Science Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China
| |
Collapse
|
23
|
An YH, Kim SH. Facile Fabrication of Three-Dimensional Hydrogel Film with Complex Tissue Morphology. Bioengineering (Basel) 2021; 8:bioengineering8110164. [PMID: 34821730 PMCID: PMC8614799 DOI: 10.3390/bioengineering8110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we proposed a simple and easy method for fabricating a three-dimensional (3D) structure that can recapitulate the morphology of a tissue surface and deliver biological molecules into complex-shaped target tissues. To fabricate the 3D hydrogel film structure, we utilized a direct tissue casting method that can recapitulate tissue structure in micro-/macroscale using polydimethylsiloxane (PDMS). A replica 3D negative mold was manufactured by a polyurethane acrylate (PUA)-based master mold. Then, we poured the catechol-conjugated alginate (ALG-C) solution into the mold and evaporated it to form a dried film, followed by crosslinking the film using calcium chloride. The ALG-C hydrogel film had a tensile modulus of 725.2 ± 123.4 kPa and maintained over 95% of initial weight after 1 week without significant degradation. The ALG-C film captured over 4.5 times as much macromolecule (FITC-dextran) compared to alginate film (ALG). The cardiomyoblast cells exhibited high cell viability over 95% on ALG-C film. Moreover, the ALG-C film had about 70% of surface-bound lentivirus (1% in ALG film), which finally exhibited much higher viral transfection efficiency of GFP protein to C2C12 cells on the film than ALG film. In conclusion, we demonstrated a 3D film structure of biofunctionalized hydrogel for substrate-mediated drug delivery, and this approach could be utilized to recapitulate the complex-shaped tissues.
Collapse
Affiliation(s)
- Young-Hyeon An
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Korea;
| | - Su-Hwan Kim
- Department of Chemical Engineering (BK 21 FOUR), Dong-A University, Busan 49315, Korea
- Correspondence:
| |
Collapse
|
24
|
Xu FW, Lv YL, Zhong YF, Xue YN, Wang Y, Zhang LY, Hu X, Tan WQ. Beneficial Effects of Green Tea EGCG on Skin Wound Healing: A Comprehensive Review. Molecules 2021; 26:6123. [PMID: 34684703 PMCID: PMC8540743 DOI: 10.3390/molecules26206123] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is associated with various health benefits. In this review, we searched current work about the effects of EGCG and its wound dressings on skin for wound healing. Hydrogels, nanoparticles, micro/nanofiber networks and microneedles are the major types of EGCG-containing wound dressings. The beneficial effects of EGCG and its wound dressings at different stages of skin wound healing (hemostasis, inflammation, proliferation and tissue remodeling) were summarized based on the underlying mechanisms of antioxidant, anti-inflammatory, antimicrobial, angiogenesis and antifibrotic properties. This review expatiates on the rationale of using EGCG to promote skin wound healing and prevent scar formation, which provides a future clinical application direction of EGCG.
Collapse
Affiliation(s)
- Fa-Wei Xu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Ying-Li Lv
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310013, China;
| | - Yu-Fan Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Ya-Nan Xue
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Li-Yun Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Xian Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| |
Collapse
|
25
|
Kim BS, Kim JU, So KH, Hwang NS. Supercritical Fluid-Based Decellularization Technologies for Regenerative Medicine Applications. Macromol Biosci 2021; 21:e2100160. [PMID: 34121330 DOI: 10.1002/mabi.202100160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Supercritical fluid-based extraction technologies are currently being increasingly utilized in high purity extract products for food industries. In recent years, supercritical fluid-based extraction technology is transformed in biomaterials process fields to be further utilized for tissue engineering and other biomedical applications. In particular, supercritical fluid-based decellularization protocols have great advantage over the conventional decellularization as it may allow preservation of extracellular matrix components and structures. In this review, the latest technological development utilizing the supercritical fluid-based decellularization for regenerative medicine is introduced.
Collapse
Affiliation(s)
- Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.,Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
26
|
Song W, Ko J, Choi YH, Hwang NS. Recent advancements in enzyme-mediated crosslinkable hydrogels: In vivo-mimicking strategies. APL Bioeng 2021; 5:021502. [PMID: 33834154 PMCID: PMC8018798 DOI: 10.1063/5.0037793] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Enzymes play a central role in fundamental biological processes and have been traditionally used to trigger various processes. In recent years, enzymes have been used to tune biomaterial responses and modify the chemical structures at desired sites. These chemical modifications have allowed the fabrication of various hydrogels for tissue engineering and therapeutic applications. This review provides a comprehensive overview of recent advancements in the use of enzymes for hydrogel fabrication. Strategies to enhance the enzyme function and improve biocompatibility are described. In addition, we describe future opportunities and challenges for the production of enzyme-mediated crosslinkable hydrogels.
Collapse
Affiliation(s)
- Wonmoon Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S. Hwang
- Author to whom correspondence should be addressed:. Tel.: 82-2-880-1635. Fax: 82-2-880-7295
| |
Collapse
|