1
|
Jiang Q, Xie Y, Zhou B, Wang Z, Ning D, Li H, Zhang J, Yin M, Shen J, Yan S. Nanomaterial inactivates environmental virus and enhances plant immunity for controlling tobacco mosaic virus disease. Nat Commun 2024; 15:8509. [PMID: 39353964 PMCID: PMC11445512 DOI: 10.1038/s41467-024-52851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Tobacco mosaic virus (TMV) is extremely pathogenic and resistant to stress There are great needs to develop methods to reduce the virus in the environment and induce plant immunity simultaneously. Here, we report a multifunctional nano-protectant to reduce the virus in the environment and induce plant immunity simultaneously. The star polycation (SPc) nanocarrier can act as an active ingredient to interact with virus coat protein via electrostatic interaction, which reduces the proportion of TMV particles to 2.9% and leads to a reduction of the amount of virus in the environment by half. SPc can act as an adjuvant to spontaneously assemble with an immune inducer lentinan (LNT) through hydrogen bonding into nanoscale (142 nm diameter) LNT/SPc complex, which improves the physicochemical property of LNT for better wetting performance on leaves and cellular uptake, and further activates plant immune responses. Finally, the LNT/SPc complex displays preventive and curative effects on TMV disease, reducing TMV-GFP relative expression by 26% in the laboratory and achieving 82% control efficacy in the field We hope the strategy reported here would be useful for control of crop virus disease.
Collapse
Affiliation(s)
- Qinhong Jiang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhijiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Dekai Ning
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Hongming Li
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Junzheng Zhang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
2
|
Gan C, Hu H, Meng Z, Zhu X, Gu R, Wu Z, Sun W, Han P, Wang H, Dou G, Gan H. Local Clays from China as Alternative Hemostatic Agents. Molecules 2023; 28:7756. [PMID: 38067486 PMCID: PMC10708434 DOI: 10.3390/molecules28237756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, the coagulation properties of inorganic minerals such as kaolin and zeolite have been demonstrated. This study aimed to assess the hemostatic properties of three local clays from China: natural kaolin from Hainan, natural halloysite from Yunnan, and zeolite synthesized by our group. The physical and chemical properties, blood coagulation performance, and cell biocompatibility of the three materials were tested. The studied materials were characterized by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). All three clays showed different morphologies and particle size, and exhibited negative potentials between pH 6 and 8. The TGA and DSC curves for kaolin and halloysite were highly similar. Kaolin showed the highest water absorption capacity (approximately 93.8% ± 0.8%). All three clays were noncytotoxic toward L929 mouse fibroblasts. Kaolin and halloysite showed blood coagulation effects similar to that exhibited by zeolite, indicating that kaolin and halloysite are promising alternative hemostatic materials.
Collapse
Affiliation(s)
- Changjiao Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
- National Medical Products Administration Institute of Executive Development, 16 Xi Zhan Nan Road, Beijing 100073, China
| | - Hongjie Hu
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Zhengzhou 450006, China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Xiaoxia Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Wenzhong Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Peng Han
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Hongliang Wang
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Zhengzhou 450006, China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (C.G.)
| |
Collapse
|
3
|
Ouyang L, Wang N, Irudayaraj J, Majima T. Virus on surfaces: Chemical mechanism, influence factors, disinfection strategies, and implications for virus repelling surface design. Adv Colloid Interface Sci 2023; 320:103006. [PMID: 37778249 DOI: 10.1016/j.cis.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
While SARS-CoV-2 is generally under control, the question of variants and infections still persists. Fundamental information on how the virus interacts with inanimate surfaces commonly found in our daily life and when in contact with the skin will be helpful in developing strategies to inhibit the spread of the virus. Here in, a critically important review of current understanding of the interaction between virus and surface is summarized from chemistry point-of-view. The Derjaguin-Landau-Verwey-Overbeek and extended Derjaguin-Landau-Verwey-Overbeek theories to model virus attachments on surfaces are introduced, along with the interaction type and strength, and quantification of each component. The virus survival and transfer are affected by a combination of biological, physical, and chemical parameters, as well as environmental parameters. The surface properties for virus and virus survival on typical surfaces such as metals, plastics, and glass are summarized. Attention is also paid to the transfer of virus to/from surfaces and skin. Typical virus disinfection strategies utilizing heat, light, chemicals, and ozone are discussed together with their disinfection mechanism. In the last section, design principles for virus repelling surface chemistry such as surperhydrophobic or surperhydrophilic surfaces are also introduced, to demonstrate how the integration of surface property control and advanced material fabrication can lead to the development of functional surfaces for mitigating the effect of viral infection upon contact.
Collapse
Affiliation(s)
- Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joseph Irudayaraj
- Department of Bioengineering, College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Tetsuro Majima
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
4
|
Wu Q, Liao J, Yang H. Recent Advances in Kaolinite Nanoclay as Drug Carrier for Bioapplications: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300672. [PMID: 37344357 PMCID: PMC10477907 DOI: 10.1002/advs.202300672] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Advanced functional two-dimensional (2D) nanomaterials offer unique advantages in drug delivery systems for disease treatment. Kaolinite (Kaol), a nanoclay mineral, is a natural 2D nanomaterial because of its layered silicate structure with nanoscale layer spacing. Recently, Kaol nanoclay is used as a carrier for controlled drug release and improved drug dissolution owing to its advantageous properties such as surface charge, strong biocompatibility, and naturally layered structure, making it an essential development direction for nanoclay-based drug carriers. This review outlines the main physicochemical characteristics of Kaol and the modification methods used for its application in biomedicine. The safety and biocompatibility of Kaol are addressed, and details of the application of Kaol as a drug delivery nanomaterial in antibacterial, anti-inflammatory, and anticancer treatment are discussed. Furthermore, the challenges and prospects of Kaol-based drug delivery nanomaterials in biomedicine are discussed. This review recommends directions for the further development of Kaol nanocarriers by improving their physicochemical properties and expanding the bioapplication range of Kaol.
Collapse
Affiliation(s)
- Qianwen Wu
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Juan Liao
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
- Engineering Research Center of Nano‐Geomaterials of Ministry of EducationChina University of GeosciencesWuhan430074China
- Laboratory of Advanced Mineral MaterialsChina University of GeosciencesWuhan430074China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| |
Collapse
|
5
|
Sahihi M, Faraudo J. Computer Simulation of the Interaction between SARS-CoV-2 Spike Protein and the Surface of Coinage Metals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14673-14685. [PMID: 36418228 PMCID: PMC9730903 DOI: 10.1021/acs.langmuir.2c02120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
A prominent feature of the SARS-CoV-2 virus is the presence of a large glycoprotein spike protruding from the virus envelope. The spike determines the interaction of the virus with the environment and the host. Here, we used an all-atom molecular dynamics simulation method to investigate the interaction of up- and down-conformations of the S1 subunit of the SARS-CoV-2 spike with the (100) surface of Au, Ag, and Cu. Our results revealed that the spike protein is adsorbed onto the surface of these metals, with Cu being the metal with the highest interaction with the spike. In our simulations, we considered the spike protein in both its up-conformation Sup (one receptor binding domain exposed) and down-conformation Sdown (no exposed receptor binding domain). We found that the affinity of the metals for the up-conformation was higher than their affinity for the down-conformation. The structural changes in the spike in the up-conformation were also larger than the changes in the down-conformation. Comparing the present results for metals with those obtained in our previous MD simulations of Sup with other materials (cellulose, graphite, and human skin models), we see that Au induces the highest structural change in Sup, larger than those obtained in our previous studies.
Collapse
|
6
|
López-Píriz R, Goyos-Ball L, Cabal B, Martínez S, Moya JS, Bartolomé JF, Torrecillas R. New Ceramic Multi-Unit Dental Abutments with an Antimicrobial Glassy Coating. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5422. [PMID: 35955356 PMCID: PMC9369483 DOI: 10.3390/ma15155422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The choice of suitable materials and new designs in oral implantology and the subsequent enhancement of the characteristics of the dental implant developed is an important research topic with wide scope. The present work aims to develop a new multifunctional zirconia-ceria/alumina (Ce-TZP/Al2O3) composite with an antimicrobial glass-based coating to be used in multi-unit abutments compatible with commercially available Ti implants for peri-implantitis prevention. An airbrush spraying technique was effectively applied to coat the sintered ceramic composite starting from a glass powder suspension. This deposition technique was appropriate for obtaining continuous antimicrobial glass-based coatings with homogenous thickness (~35 µm) on ceramic dental implant components. The dental implant systems with the antimicrobial glassy coating were subjected to a mechanical integrity test following ISO 14801 to determine their long-term stability. The tested implant-coating structure seems to be stable under in vitro conditions with ultimate applied forces exceeding the maximum physiological occlusal loading force. This paper also presents a pilot clinical case report that shows peri-implant tissue around the mechanically stable glass coating with no signs of inflammation 1 year after implant insertion. This result is a preliminary probe of the durability and biological tolerance of the glassy material by the gingiva, as well as the antimicrobial effect on the peri-implant microbiota displayed by the coating.
Collapse
Affiliation(s)
- Roberto López-Píriz
- Instituto de Cirugía Oral Avanzada-ICOA, Calle de Fray Luis de León, 14, 28012 Madrid, Spain
| | - Lidia Goyos-Ball
- Nanoker Research, Pol. Ind. Olloniego, Parcela 22A, Nave 5, 33660 Oviedo, Spain
| | - Belén Cabal
- Nanomaterials and Nanotechnology Research Centre (CINN), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Oviedo (UO), Principado de Asturias (PA), Avenida de la Vega 4-6, 33940 El Entrego, Spain
| | - Susana Martínez
- Nanoker Research, Pol. Ind. Olloniego, Parcela 22A, Nave 5, 33660 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Oviedo (UO), Principado de Asturias (PA), Avenida de la Vega 4-6, 33940 El Entrego, Spain
| | - José S. Moya
- Nanomaterials and Nanotechnology Research Centre (CINN), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Oviedo (UO), Principado de Asturias (PA), Avenida de la Vega 4-6, 33940 El Entrego, Spain
| | - José F. Bartolomé
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Ramón Torrecillas
- Nanoker Research, Pol. Ind. Olloniego, Parcela 22A, Nave 5, 33660 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Oviedo (UO), Principado de Asturias (PA), Avenida de la Vega 4-6, 33940 El Entrego, Spain
| |
Collapse
|
7
|
López-Martín R, Rodrigo I, Ballesta C, Arias A, Mas A, Santos Burgos B, Normile PS, De Toro JA, Binns C. Effectiveness of Silver Nanoparticles Deposited in Facemask Material for Neutralising Viruses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2662. [PMID: 35957092 PMCID: PMC9370635 DOI: 10.3390/nano12152662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/23/2023]
Abstract
Cloth used for facemask material has been coated with silver nanoparticles using an aerosol method that passes pure uncoated nanoparticles through the cloth and deposits them throughout the volume. The particles have been characterized by electron microscopy and have a typical diameter of 4 nm with the atomic structure of pure metallic silver presented as an assortment of single crystals and polycrystals. The particles adhere well to the cloth fibers, and the coating consists of individual nanoparticles at low deposition times, evolving to fully agglomerated assemblies in heavy coatings. The cloth was exposed to Usutu virus and murine norovirus particles in suspension and allowed to dry, following which, the infectious virus particles were rescued by soaking the cloth in culture media. It was found that up to 98% of the virus particles were neutralized by this contact with the silver nanoparticles for optimum deposition conditions. The best performance was obtained with agglomerated films and with polycrystalline nanoparticles. The work indicates that silver nanoparticles embedded in masks can neutralize the majority of virus particles that enter the mask and thus increase the opacity of masks to infectious viruses by up to a factor of 50. In addition, the majority of the virus particles released from the mask after use are non-infectious.
Collapse
Affiliation(s)
- Raúl López-Martín
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13005 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Imanol Rodrigo
- Unidad de Biomedicina, CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (I.R.); (C.B.); (A.A.); (A.M.)
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Carlos Ballesta
- Unidad de Biomedicina, CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (I.R.); (C.B.); (A.A.); (A.M.)
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Armando Arias
- Unidad de Biomedicina, CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (I.R.); (C.B.); (A.A.); (A.M.)
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Antonio Mas
- Unidad de Biomedicina, CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (I.R.); (C.B.); (A.A.); (A.M.)
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Facultad de Farmacia, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Benito Santos Burgos
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13005 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Peter S. Normile
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13005 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Jose A. De Toro
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13005 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Chris Binns
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13005 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
- Departamento de Física Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
8
|
Iraci N, Corsaro C, Giofrè SV, Neri G, Mezzasalma AM, Vacalebre M, Speciale A, Saija A, Cimino F, Fazio E. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs. Biomolecules 2022; 12:1060. [PMID: 36008954 PMCID: PMC9405735 DOI: 10.3390/biom12081060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Martina Vacalebre
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| |
Collapse
|
9
|
Iron oxide and iron oxyhydroxide nanoparticles impair SARS-CoV-2 infection of cultured cells. J Nanobiotechnology 2022; 20:352. [PMID: 35907835 PMCID: PMC9338509 DOI: 10.1186/s12951-022-01542-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/02/2022] [Indexed: 12/11/2022] Open
Abstract
Background Coronaviruses usually cause mild respiratory disease in humans but as seen recently, some human coronaviruses can cause more severe diseases, such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the global spread of which has resulted in the ongoing coronavirus pandemic. Results In this study we analyzed the potential of using iron oxide nanoparticles (IONPs) coated with biocompatible molecules like dimercaptosuccinic acid (DMSA), 3-aminopropyl triethoxysilane (APS) or carboxydextran (FeraSpin™ R), as well as iron oxyhydroxide nanoparticles (IOHNPs) coated with sucrose (Venofer®), or iron salts (ferric ammonium citrate -FAC), to treat and/or prevent SARS-CoV-2 infection. At non-cytotoxic doses, IONPs and IOHNPs impaired virus replication and transcription, and the production of infectious viruses in vitro, either when the cells were treated prior to or after infection, although with different efficiencies. Moreover, our data suggest that SARS-CoV-2 infection affects the expression of genes involved in cellular iron metabolism. Furthermore, the treatment of cells with IONPs and IOHNPs affects oxidative stress and iron metabolism to different extents, likely influencing virus replication and production. Interestingly, some of the nanoparticles used in this work have already been approved for their use in humans as anti-anemic treatments, such as the IOHNP Venofer®, and as contrast agents for magnetic resonance imaging in small animals like mice, such as the FeraSpin™ R IONP. Conclusions Therefore, our results suggest that IONPs and IOHNPs may be repurposed to be used as prophylactic or therapeutic treatments in order to combat SARS-CoV-2 infection. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01542-2.
Collapse
|