1
|
Alsharabasy AM, Pandit A. Hyaluronan-Based Hydrogels for 3D Modeling of Tumor Tissues. Tissue Eng Part C Methods 2024; 30:452-499. [PMID: 39345138 DOI: 10.1089/ten.tec.2024.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Although routine two-dimensional (2D) cell culture techniques have advanced basic cancer research owing to their simplicity, cost-effectiveness, and reproducibility, they have limitations that necessitate the development of advanced three-dimensional (3D) tumor models that better recapitulate the tumor microenvironment. Various biomaterials have been used to establish these 3D models, enabling the study of cancer cell behavior within different matrices. Hyaluronic acid (HA), a key component of the extracellular matrix (ECM) in tumor tissues, has been widely studied and employed in the development of multiple cancer models. This review first examines the role of HA in tumors, including its function as an ECM component and regulator of signaling pathways that affect tumor progression. It then explores HA-based models for various cancers, focusing on HA as a central component of the 3D matrix and its mobilization within the matrix for targeted studies of cell behavior and drug testing. The tumor models discussed included those for breast cancer, glioblastoma, fibrosarcoma, gastric cancer, hepatocellular carcinoma, and melanoma. The review concludes with a discussion of future prospects for developing more robust and high-throughput HA-based models to more accurately mimic the tumor microenvironment and improve drug testing. Impact Statement This review underscores the transformative potential of hyaluronic acid (HA)-based hydrogels in developing advanced tumor models. By exploring HA's dual role as a critical extracellular matrix component and a regulator of cancer cell dynamics, we highlight its unique contributions to replicating the tumor microenvironment. The recent advancements in HA-based models provide new opportunities for more accurate studies of cancer cell behavior and drug responses. Looking ahead, these innovations pave the way for high-throughput, biomimetic platforms that could revolutionize drug testing and accelerate the discovery of effective cancer therapies.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Behrendt F, Gottschaldt M, Schubert US. Surface functionalized cryogels - characterization methods, recent progress in preparation and application. MATERIALS HORIZONS 2024; 11:4600-4637. [PMID: 39021096 DOI: 10.1039/d4mh00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cryogels are polymeric materials with a sponge-like microstructure and have attracted significant attention in recent decades. Research has focused on their composition, fabrication techniques, characterization methods as well as potential or existing fields of applications. The use of functional precursors or functionalizing ligands enables the preparation of cryogels with desired properties such as biocompatibility or responsivity. They can also exhibit adsorptive properties or can be used for catalytical purposes. Although a very brief overview about several functional (macro-)monomers and functionalizing ligands has been provided by previous reviewers for certain cryogel applications, so far there has been no particular focus on the evaluation of the functionalization success and the characterization methods used. This review will provide a comprehensive overview of different characterization methods most recently used for the evaluation of cryogel functionalization. Furthermore, new functional (macro-)monomers and subsequent cryogel functionalization strategies are discussed, based on synthetic polymers, biopolymers and a combination of both. This review highlights the importance of the functionalization aspect in cryogel research in order to produce materials with tailored properties for certain applications.
Collapse
Affiliation(s)
- Florian Behrendt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Abbe Center of Photonics (ACP), Albert-Einstein-Straße 6, 07743 Jena, Germany
| |
Collapse
|
3
|
Lv S, Jiang H, Yu L, Zhang Y, Sun L, Xu J. SNX14 inhibits autophagy via the PI3K/AKT/mTOR signaling cascade in breast cancer cells. J Mol Histol 2024; 55:391-401. [PMID: 38869753 DOI: 10.1007/s10735-024-10209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Sorting nexin 14 (SNX14) is a member of the sorting junction protein family. Its specific roles in cancer development remain unclear. Therefore, in this study, we aimed to determine the effects and underlying mechanisms of SNX14 on autophagy of breast cancer cells to aid in the therapeutic treatment of breast cancer. METHODS In this study, we performed in vitro experiments to determine the effect of SNX14 on breast cancer cell growth. Moreover, we used an MCF7 breast cancer tumor-bearing mouse model to confirm the effect of SNX14 on tumor cell growth in vivo. We also performed western blotting and quantitative polymerase chain reaction to identify the mechanism by which SNX14 affects breast cancer MCF7 cells. RESULTS We found that SNX14 regulated the onset and progression of breast cancer by promoting the proliferation and inhibiting the autophagy of MCF7 breast cancer cells. In vivo experiments further confirmed that SNX14 knockdown inhibited the tumorigenicity and inhibited the growth of tumor cells in tumor tissues of nude mice. In addition, western blotting analysis revealed that SNX14 modulate the autophagy of MCF7 breast cancer cells via the phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin kinase signaling pathway. CONCLUSION Our findings indicate that SNX14 is an essential tumor-promoting factor in the development of breast cancer.
Collapse
Affiliation(s)
- Sha Lv
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, 310013, China
| | - Hongyan Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lingyan Yu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yafei Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liangliang Sun
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, 310013, China
| | - Junjun Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
4
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
5
|
Kim S, Li S, Jangid AK, Park HW, Lee DJ, Jung HS, Kim K. Surface Engineering of Natural Killer Cells with CD44-targeting Ligands for Augmented Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306738. [PMID: 38161257 DOI: 10.1002/smll.202306738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Indexed: 01/03/2024]
Abstract
Adoptive immunotherapy utilizing natural killer (NK) cells has demonstrated remarkable efficacy in treating hematologic malignancies. However, its clinical intervention for solid tumors is hindered by the limited expression of tumor-specific antigens. Herein, lipid-PEG conjugated hyaluronic acid (HA) materials (HA-PEG-Lipid) for the simple ex-vivo surface coating of NK cells is developed for 1) lipid-mediated cellular membrane anchoring via hydrophobic interaction and thereby 2) sufficient presentation of the CD44 ligand (i.e., HA) onto NK cells for cancer targeting, without the need for genetic manipulation. Membrane-engineered NK cells can selectively recognize CD44-overexpressing cancer cells through HA-CD44 affinity and subsequently induce in situ activation of NK cells for cancer elimination. Therefore, the surface-engineered NK cells using HA-PEG-Lipid (HANK cells) establish an immune synapse with CD44-overexpressing MIA PaCa-2 pancreatic cancer cells, triggering the "recognition-activation" mechanism, and ultimately eliminating cancer cells. Moreover, in mouse xenograft tumor models, administrated HANK cells demonstrate significant infiltration into solid tumors, resulting in tumor apoptosis/necrosis and effective suppression of tumor progression and metastasis, as compared to NK cells and gemcitabine. Taken together, the HA-PEG-Lipid biomaterials expedite the treatment of solid tumors by facilitating a sequential recognition-activation mechanism of surface-engineered HANK cells, suggesting a promising approach for NK cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Hee Won Park
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Oral Histology, Dankook University College of Dentistry, 119, Dandae-ro, Dongnam-gu, Cheonan, 31116, Chungcheongnam-do, Republic of Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| |
Collapse
|
6
|
Bhatt K, Nukovic A, Colombani T, Bencherif SA. Biomaterial-assisted local oxygenation safeguards the prostimulatory phenotype and functions of human dendritic cells in hypoxia. Front Immunol 2023; 14:1278397. [PMID: 38169677 PMCID: PMC10758617 DOI: 10.3389/fimmu.2023.1278397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
Dendritic cells (DCs), professional antigen-presenting cells, function as sentinels of the immune system. DCs initiate and fine-tune adaptive immune responses by presenting antigenic peptides to B and T lymphocytes to mount an effective immune response against cancer and pathogens. However, hypoxia, a condition characterized by low oxygen (O2) tension in different tissues, significantly impacts DC functions, including antigen uptake, activation and maturation, migration, as well as T-cell priming and proliferation. In this study, we employed O2-releasing biomaterials (O2-cryogels) to study the effect of localized O2 supply on human DC phenotype and functions. Our results indicate that O2-cryogels effectively mitigate DC exposure to hypoxia under hypoxic conditions. Additionally, O2-cryogels counteract hypoxia-induced inhibition of antigen uptake and migratory activity in DCs through O2 release and hyaluronic acid (HA) mediated mechanisms. Furthermore, O2-cryogels preserve and restore DC maturation and co-stimulation markers, including HLA-DR, CD86, and CD40, along with the secretion of proinflammatory cytokines in hypoxic conditions. Finally, our findings demonstrate that the supplemental O2 released from the cryogels preserves DC-mediated T-cell priming, ultimately leading to the activation and proliferation of allogeneic CD3+ T cells. This work emphasizes the potential of local oxygenation as a powerful immunomodulatory agent to improve DC activation and functions in hypoxia, offering new approaches for cancer and infectious disease treatments.
Collapse
Affiliation(s)
- Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Alexandra Nukovic
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| |
Collapse
|
7
|
Liu Y, Yuan Z, Liu S, Zhong X, Wang Y, Xie R, Song W, Ren L. Bioactive Phenylboronic Acid-Functionalized Hyaluronic Acid Hydrogels Induce Chondro-Aggregates and Promote Chondrocyte Phenotype. Macromol Biosci 2023; 23:e2300153. [PMID: 37400079 DOI: 10.1002/mabi.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Hydrogels are extensively investigated as biomimetic extracellular matrix (ECM) scaffolds in tissue engineering. The physiological properties of ECM affect cellular behaviors, which is an inspiration for cell-based therapies. Photocurable hyaluronic acid (HA) hydrogel (AHAMA-PBA) modified with 3-aminophenylboronic acid, sodium periodate, and methacrylic anhydride simultaneously is constructed in this study. Chondrocytes are then cultured on the surface of the hydrogels to evaluate the effect of the physicochemical properties of the hydrogels on modulating cellular behaviors. Cell viability assays demonstrate that the hydrogel is non-toxic to chondrocytes. The existence of phenylboronic acid (PBA) moieties enhances the interaction of chondrocytes and hydrogel, promoting cell adhesion and aggregation through filopodia. RT-PCR indicates that the gene expression levels of type II collagen, Aggrecan, and Sox9 are significantly up-regulated in chondrocytes cultured on hydrogels. Moreover, the mechanical properties of the hydrogels have a significant effect on the cell phenotype, with soft gels (≈2 kPa) promoting chondrocytes to exhibit a hyaline phenotype. Overall, PBA-functionalized HA hydrogel with low stiffness exhibits the best effect on promoting the chondrocyte phenotype, which is a promising biomaterial for cartilage regeneration.
Collapse
Affiliation(s)
- Ying Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhongrun Yuan
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiupeng Zhong
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yanyan Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Renjian Xie
- School of Medical Information Engineering, Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of the Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Wenjing Song
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Li Ren
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Colombani T, Rogers ZJ, Bhatt K, Sinoimeri J, Gerbereux L, Hamrangsekachaee M, Bencherif SA. Hypoxia-inducing cryogels uncover key cancer-immune cell interactions in an oxygen-deficient tumor microenvironment. Bioact Mater 2023; 29:279-295. [PMID: 37600932 PMCID: PMC10432785 DOI: 10.1016/j.bioactmat.2023.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 08/22/2023] Open
Abstract
Hypoxia is a major factor shaping the immune landscape, and several cancer models have been developed to emulate hypoxic tumors. However, to date, they still have several limitations, such as the lack of reproducibility, inadequate biophysical cues, limited immune cell infiltration, and poor oxygen (O2) control, leading to non-pathophysiological tumor responses. Therefore, it is essential to develop better cancer models that mimic key features of the tumor extracellular matrix and recreate tumor-associated hypoxia while allowing cell infiltration and cancer-immune cell interactions. Herein, hypoxia-inducing cryogels (HICs) have been engineered using hyaluronic acid (HA) to fabricate three-dimensional microtissues and model a hypoxic tumor microenvironment. Specifically, tumor cell-laden HICs have been designed to deplete O2 locally and induce long-standing hypoxia. HICs promoted changes in hypoxia-responsive gene expression and phenotype, a metabolic adaptation to anaerobic glycolysis, and chemotherapy resistance. Additionally, HIC-supported tumor models induced dendritic cell (DC) inhibition, revealing a phenotypic change in the plasmacytoid DC (pDC) subset and an impaired conventional DC (cDC) response in hypoxia. Lastly, our HIC-based melanoma model induced CD8+ T cell inhibition, a condition associated with the downregulation of pro-inflammatory cytokine secretion, increased expression of immunomodulatory factors, and decreased degranulation and cytotoxic capacity of T cells. Overall, these data suggest that HICs can be used as a tool to model solid-like tumor microenvironments and has great potential to deepen our understanding of cancer-immune cell relationship in low O2 conditions and may pave the way for developing more effective therapies.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - James Sinoimeri
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Lauren Gerbereux
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | | | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
9
|
Wiśniewska P, Haponiuk J, Saeb MR, Rabiee N, Bencherif SA. Mitigating Metal-Organic Framework (MOF) Toxicity for Biomedical Applications. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 471:144400. [PMID: 39280062 PMCID: PMC11394873 DOI: 10.1016/j.cej.2023.144400] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline porous materials, consisting of metal ions and organic linkers. These hybrid materials possess exceptional porosity and specific surface area, which have recently garnered significant interest due to their potential applications in gas separation and storage, energy storage, biomedical imaging, and drug delivery. As MOFs are being explored for biomedical applications, it is essential to comprehensively assess their toxicity. Although nearly ninety thousand MOFs have been investigated, evaluating and optimizing their physico-chemical properties in relevant biological systems remain critical for their clinical translation. In this review article, we first provide a brief classification of MOFs based on their chemical structures. We then conduct a comprehensive evaluation of in vitro and in vivo studies that assess the biocompatibility of MOFs. Additionally, we discuss various approaches to mitigate the critical factors associated with MOF toxicity. To this end, the effects of chemistry, particle size, morphology, and particle aggregation are examined. To better understand MOFs' potential toxicity to living organisms, we also delve into the toxicity mechanisms of nanoparticles (NPs). Furthermore, we introduce and evaluate strategies such as surface modification to reduce the inherent toxicity of MOFs. Finally, we discuss current challenges, the path to clinical trials, and new research directions.
Collapse
Affiliation(s)
- Paulina Wiśniewska
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
- Advanced Materials Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, 6150 Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109 Australia
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, MA 02155, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02155, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02155, USA
| |
Collapse
|
10
|
Colombani T, Bhatt K, Epel B, Kotecha M, Bencherif SA. HIF-stabilizing biomaterials: from hypoxia-mimicking to hypoxia-inducing. MATERIALS ADVANCES 2023; 4:3084-3090. [PMID: 38013688 PMCID: PMC10388397 DOI: 10.1039/d3ma00090g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 08/22/2023]
Abstract
Recent advances in our understanding of hypoxia and hypoxia-mediated mechanisms shed light on the critical implications of the hypoxic stress on cellular behavior. However, tools emulating hypoxic conditions (i.e., low oxygen tensions) for research are limited and often suffer from major shortcomings, such as lack of reliability and off-target effects, and they usually fail to recapitulate the complexity of the tissue microenvironment. Fortunately, the field of biomaterials is constantly evolving and has a central role to play in the development of new technologies for conducting hypoxia-related research in several aspects of biomedical research, including tissue engineering, cancer modeling, and modern drug screening. In this perspective, we provide an overview of several strategies that have been investigated in the design and implementation of biomaterials for simulating or inducing hypoxic conditions-a prerequisite in the stabilization of hypoxia-inducible factor (HIF), a master regulator of the cellular responses to low oxygen. To this end, we discuss various advanced biomaterials, from those that integrate hypoxia-mimetic agents to artificially induce hypoxia-like responses, to those that deplete oxygen and consequently create either transient (<1 day) or sustained (>1 day) hypoxic conditions. We also aim to highlight the advantages and limitations of these emerging biomaterials for biomedical applications, with an emphasis on cancer research.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical Engineering, Northeastern University Boston MA 02115 USA
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University Boston MA 02115 USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago IL 60637 USA
- Oxygen Measurement Core, O2M Technologies, LLC Chicago IL 60612 USA
| | | | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University Boston MA 02115 USA
- Department of Bioengineering, Northeastern University Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge MA 02138 USA
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University 60203 Compiègne France
| |
Collapse
|
11
|
Rostami N, Gomari MM, Abdouss M, Moeinzadeh A, Choupani E, Davarnejad R, Heidari R, Bencherif SA. Synthesis and Characterization of Folic Acid-Functionalized DPLA-co-PEG Nanomicelles for the Targeted Delivery of Letrozole. ACS APPLIED BIO MATERIALS 2023; 6:1806-1815. [PMID: 37093754 PMCID: PMC10629236 DOI: 10.1021/acsabm.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
An effective treatment for hormone-dependent breast cancer is chemotherapy using cytotoxic agents such as letrozole (LTZ). However, most anticancer drugs, including LTZ, are classified as class IV biopharmaceuticals, which are associated with low water solubility, poor bioavailability, and significant toxicity. As a result, developing a targeted delivery system for LTZ is critical for overcoming these challenges and limitations. Here, biodegradable LTZ-loaded nanocarriers were synthesized by solvent emulsification evaporation using nanomicelles prepared with dodecanol-polylactic acid-co-polyethylene glycol (DPLA-co-PEG). Furthermore, cancer cell-targeting folic acid (FA) was conjugated into the nanomicelles to achieve a more effective and safer cancer treatment. During our investigation, DPLA-co-PEG and DPLA-co-PEG-FA displayed a uniform and spherical morphology. The average diameters of DPLA-co-PEG and DPLA-co-PEG-FA nanomicelles were 86.5 and 241.3 nm, respectively. Our preliminary data suggest that both nanoformulations were cytocompatible, with ≥90% cell viability across all concentrations tested. In addition, the amphiphilic nature of the nanomicelles led to high drug loading and dispersion in water, resulting in the extended release of LTZ for up to 50 h. According to the Higuchi model, nanomicelles functionalized with FA have a greater potential for the controlled delivery of LTZ into target cells. This model was confirmed experimentally, as LTZ-containing DPLA-co-PEG-FA was significantly and specifically more cytotoxic (up to 90% cell death) toward MCF-7 cells, a hormone-dependent human breast cancer cell line, when compared to free LTZ and LTZ-containing DPLA-co-PEG. Furthermore, a half-maximal inhibitory concentration (IC50) of 87 ± 1 nM was achieved when MCF-7 cells were exposed to LTZ-containing DPLA-co-PEG-FA, whereas higher doses of 125 ± 2 and 100 ± 2 nM were required for free LTZ and LTZ-containing DPLA-co-PEG, respectively. Collectively, DPLA-co-PEG-FA represents a promising nanosized drug delivery system to target controllably the delivery of drugs such as chemotherapeutics.
Collapse
Affiliation(s)
- Neda Rostami
- Department
of Chemistry, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Mohammad Mahmoudi Gomari
- Department
of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Majid Abdouss
- Department
of Chemistry, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Alaa Moeinzadeh
- Department
of Tissue Engineering and Regenerative Medicine, Faculty of Advanced
Technologies in Medicine, Iran University
of Medical Sciences, Tehran 1449614535, Iran
| | - Edris Choupani
- Department
of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Reza Davarnejad
- Department
of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
| | - Reza Heidari
- Research
Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran 1411718541, Iran
| | - Sidi A. Bencherif
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Sorbonne
University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI),
University of Technology of Compiègne, Compiègne 60203, France
| |
Collapse
|
12
|
Rana D, Colombani T, Saleh B, Mohammed HS, Annabi N, Bencherif SA. Engineering injectable, biocompatible, and highly elastic bioadhesive cryogels. Mater Today Bio 2023; 19:100572. [PMID: 36880083 PMCID: PMC9984686 DOI: 10.1016/j.mtbio.2023.100572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM), an integral component of all organs, is inherently tissue adhesive and plays a pivotal role in tissue regeneration and remodeling. However, man-made three-dimensional (3D) biomaterials that are designed to mimic ECMs do not intrinsically adhere to moisture-rich environments and often lack an open macroporous architecture required for facilitating cellularization and integration with the host tissue post-implantation. Furthermore, most of these constructs usually entail invasive surgeries and potentially a risk of infection. To address these challenges, we recently engineered biomimetic and macroporous cryogel scaffolds that are syringe injectable while exhibiting unique physical properties, including strong bioadhesive properties to tissues and organs. These biomimetic catechol-containing cryogels were prepared from naturally-derived polymers such as gelatin and hyaluronic acid and were functionalized with mussel-inspired dopamine (DOPA) to impart bioadhesive properties. We found that using glutathione as an antioxidant and incorporating DOPA into cryogels via a PEG spacer arm led to the highest tissue adhesion and improved physical properties overall, whereas DOPA-free cryogels were weakly tissue adhesive. As shown by qualitative and quantitative adhesion tests, DOPA-containing cryogels were able to adhere strongly to several animal tissues and organs such as the heart, small intestine, lung, kidney, and skin. Furthermore, these unoxidized (i.e., browning-free) and bioadhesive cryogels showed negligible cytotoxicity toward murine fibroblasts and prevented the ex vivo activation of primary bone marrow-derived dendritic cells. Finally, in vivo data suggested good tissue integration and a minimal host inflammatory response when subcutaneously injected in rats. Collectively, these minimally invasive, browning-free, and strongly bioadhesive mussel-inspired cryogels show great promise for various biomedical applications, potentially in wound healing, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Devyesh Rana
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Bahram Saleh
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
13
|
Colombani T, Rogers ZJ, Bhatt K, Sinoimeri J, Gerbereux L, Hamrangsekachaee M, Bencherif SA. Hypoxia-inducing cryogels uncover key cancer-immune cell interactions in an oxygen-deficient tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523477. [PMID: 36711715 PMCID: PMC9882080 DOI: 10.1101/2023.01.10.523477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hypoxia, an important feature of solid tumors, is a major factor shaping the immune landscape, and several cancer models have been developed to emulate hypoxic tumors. However, to date, they still have several limitations, such as the lack of reproducibility, inadequate biophysical cues, limited immune cell infiltration, and poor oxygen (O 2 ) control, leading to non-pathophysiological tumor responses. As a result, it is essential to develop new and improved cancer models that mimic key features of the tumor extracellular matrix and recreate tumor-associated hypoxia while allowing cell infiltration and cancer-immune cell interactions. Herein, hypoxia-inducing cryogels (HICs) have been engineered using hyaluronic acid (HA) as macroporous scaffolds to fabricate three-dimensional microtissues and model a hypoxic tumor microenvironment. Specifically, tumor cell-laden HICs have been designed to deplete O 2 locally and induce long-standing hypoxia. This state of low oxygen tension, leading to HIF-1α stabilization in tumor cells, resulted in changes in hypoxia-responsive gene expression and phenotype, a metabolic adaptation to anaerobic glycolysis, and chemotherapy resistance. Additionally, HIC-supported tumor models induced dendritic cell (DC) inhibition, revealing a phenotypic change in plasmacytoid B220 + DC (pDC) subset and an impaired conventional B220 - DC (cDC) response in hypoxia. Lastly, our HIC-based melanoma model induced CD8+ T cell inhibition, a condition associated with the downregulation of pro-inflammatory cytokine secretion, increased expression of immunomodulatory factors, and decreased degranulation and cytotoxic capacity of T cells. Overall, these data suggest that HICs can be used as a tool to model solid-like tumor microenvironments and identify a phenotypic transition from cDC to pDC in hypoxia and the key contribution of HA in retaining cDC phenotype and inducing their hypoxia-mediated immunosuppression. This technology has great potential to deepen our understanding of the complex relationships between cancer and immune cells in low O 2 conditions and may pave the way for developing more effective therapies.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - James Sinoimeri
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Lauren Gerbereux
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Mohammad Hamrangsekachaee
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States of America
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
14
|
Jafari A, Ajji Z, Mousavi A, Naghieh S, Bencherif SA, Savoji H. Latest Advances in 3D Bioprinting of Cardiac Tissues. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101636. [PMID: 38044954 PMCID: PMC10691862 DOI: 10.1002/admt.202101636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 12/05/2023]
Abstract
Cardiovascular diseases (CVDs) are known as the major cause of death worldwide. In spite of tremendous advancements in medical therapy, the gold standard for CVD treatment is still transplantation. Tissue engineering, on the other hand, has emerged as a pioneering field of study with promising results in tissue regeneration using cells, biological cues, and scaffolds. Three-dimensional (3D) bioprinting is a rapidly growing technique in tissue engineering because of its ability to create complex scaffold structures, encapsulate cells, and perform these tasks with precision. More recently, 3D bioprinting has made its debut in cardiac tissue engineering, and scientists are investigating this technique for development of new strategies for cardiac tissue regeneration. In this review, the fundamentals of cardiac tissue biology, available 3D bioprinting techniques and bioinks, and cells implemented for cardiac regeneration are briefly summarized and presented. Afterwards, the pioneering and state-of-the-art works that have utilized 3D bioprinting for cardiac tissue engineering are thoroughly reviewed. Finally, regulatory pathways and their contemporary limitations and challenges for clinical translation are discussed.
Collapse
Affiliation(s)
- Arman Jafari
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Zineb Ajji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, 60203 Compiègne, France
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02128, United States
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
15
|
Kudaibergen G, Zhunussova M, Mun EA, Ramankulov Y, Ogay V. Macroporous Cell-Laden Gelatin/Hyaluronic Acid/Chondroitin Sulfate Cryogels for Engineered Tissue Constructs. Gels 2022; 8:590. [PMID: 36135302 PMCID: PMC9498617 DOI: 10.3390/gels8090590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cryogels are a unique macroporous material for tissue engineering. In this work, we study the effect of hyaluronic acid on the physicochemical properties of cryogel as well as on the proliferation of a 3D model of mesenchymal stem cells. The functional groups of the synthesized cryogels were identified using Fourier transform infrared spectroscopy. With an increase in the content of hyaluronic acid in the composition of the cryogel, an increase in porosity, gel content and swelling behavior was observed. As the hyaluronic acid content increased, the average pore size increased and more open pores were formed. Degradation studies have shown that all cryogels were resistant to PBS solution for 8 weeks. Cytotoxicity assays demonstrated no toxic effect on viability of rat adipose-derived mesenchymal stem cells (ADMSCs) cultured on cryogels. ADMSC spheroids were proliferated on scaffolds and showed the ability of the cryogels to orient cell differentiation into chondrogenic lineage even in the absence of inductive agents. Thus, our results demonstrate an effective resemblance to extracellular matrix structures specific to cartilage-like microenvironments by cryogels and their further perspective application as potential biomaterials.
Collapse
Affiliation(s)
| | - Madina Zhunussova
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan
| | - Ellina A. Mun
- School of Science and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Yerlan Ramankulov
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan
- School of Science and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|