1
|
Mostafavi M, Ghazi F, Mehrabifard M, Alivirdiloo V, Hajiabbasi M, Rahimi F, Mobed A, Taheripak G, Ramezani Farani M, Huh YS, Bakhtiyari S, Alipourfard I. State-of-the-art application of nanoparticles in radiotherapy: a platform for synergistic effects in cancer treatment. Strahlenther Onkol 2024:10.1007/s00066-024-02301-y. [PMID: 39367110 DOI: 10.1007/s00066-024-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 10/06/2024]
Abstract
Radiotherapy (RT) is a gold standard cancer treatment worldwide. However, RT has limitations and many side effects. Nanoparticles (NPs) have exclusive properties that allow them to be used in cancer therapy. Consequently, the combination of NP and RT opens up a new frontier in cancer treatment. Among NPs, gold nanoparticles (GNPs) are the most extensively studied and are considered ideal radiosensitizers for radiotherapy due to their unique physicochemical properties and high X‑ray absorption. This review analyzes the various roles of NPs as radiosensitizers in radiotherapy of glioblastoma (GBS), prostate cancer, and breast cancer and summarizes recent advances. Furthermore, the underlying mechanisms of NP radiosensitization, including physical, chemical, and biological mechanisms, are discussed, which may provide new directions for next-generation GNP optimization and clinical transformation.
Collapse
Affiliation(s)
- Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhood Ghazi
- Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | | | - Fatemeh Rahimi
- Division of Clinical Laboratory, Zahra Mardani Azar Children Training Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mobed
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Taheripak
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, Korea (Republic of)
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, Korea (Republic of)
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Alipourfard
- Iraj Alipourfard, Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
2
|
Wang Y, Wang T, Zhang Y. A Case Report of Pathologically Complete Response of a Huge Lymph Node Metastasis of Colorectal Cancer After Treatment with Intratumoral Oncolytic Virus H101 and Capecitabine. Immunotargets Ther 2024; 13:343-348. [PMID: 38978969 PMCID: PMC11230130 DOI: 10.2147/itt.s470018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Unresectable recurrent lymph node metastasis of colorectal cancer (CRC) is considered as an incurable disease clinically and has a very poor prognosis. Here, we report a male KRAS wild-type CRC case with a huge abdominal lymph node metastasis (12 cm in diameter) after CRC surgery. After three intratumoral injections of oncolytic virus (H101) combined with four cycles of low-dose oral capecitabine, the size of the metastatic lymph node shrank remarkably in response to the anticancer drug and a complete response (CR) was achieved with progression-free survival (PFS) of 19 months. The main adverse reaction was mild fever, which was relieved after physical cooling. The patient is in a general good condition now without any relapse of abdominal lymph node for over a year. On this basis, we propose that the combination therapy of oncolytic virus and capecitabine could be a promising clinical therapeutic strategy for unresectable recurrent lymph node metastasis in CRC patients.
Collapse
Affiliation(s)
- Yaqin Wang
- Hepatobiliary Pancreatic Center Department, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, 102218, People’s Republic of China
| | - Tianxiao Wang
- Hepatobiliary Pancreatic Center Department, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, 102218, People’s Republic of China
| | - Yuewei Zhang
- Hepatobiliary Pancreatic Center Department, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, 102218, People’s Republic of China
| |
Collapse
|
3
|
Lu X, Wang S, Hua X, Chen X, Zhan M, Hu Q, Cao L, Wu Z, Zhang W, Zuo X, Gui R, Fan L, Li J, Shi W, Jin H. Targeting the cGAS-STING Pathway Inhibits Peripheral T-cell Lymphoma Progression and Enhances the Chemotherapeutic Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306092. [PMID: 38145335 PMCID: PMC10933671 DOI: 10.1002/advs.202306092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Indexed: 12/26/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is a highly heterogeneous group of mature T-cell malignancies. The efficacy of current first-line treatment is dismal, and novel agents are urgently needed to improve patient outcomes. A close association between the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway and tumor promotion exists, revealing prospective therapeutic targets. This study, investigates the role of the cGAS-STING pathway and its underlying mechanisms in PTCL progression. Single-cell RNA sequencing showes that the cGAS-STING pathway is highly expressed and closely associated with PTCL proliferation. cGAS inhibition suppresses tumor growth and impaires DNA damage repair. Moreover, Cdc2-like kinase 1 (CLK1) is critical for residual tumor cell survival after treatment with cGAS inhibitors, and CLK1 suppression enhances sensitivity to cGAS inhibitors. Single-cell dynamic transcriptomic analysis indicates reduced proliferation-associated nascent RNAs as the underlying mechanism. In first-line therapy, chemotherapy-triggered DNA damage activates the cGAS-STING pathway, and cGAS inhibitors can synergize with chemotherapeutic agents to kill tumors. The cGAS-STING pathway is oncogenic in PTCL, whereas targeting cGAS suppresses tumor growth, and CLK1 may be a sensitivity indicator for cGAS inhibitors. These findings provide a theoretical foundation for optimizing therapeutic strategies for PTCL, especially in patients with relapsed/refractory disease.
Collapse
Affiliation(s)
- Xueying Lu
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Shunan Wang
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Xin Hua
- Department of OncologyAffiliated Hospital of Nantong UniversityNantong226001China
| | - Xiao Chen
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Mengtao Zhan
- Nanjing Aoyin Biotechnology Company LimitedNanjing210043China
| | - Qiaoyun Hu
- Singleron BiotechnologiesNanjing211899China
| | - Lei Cao
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- Nanjing Pukou Central HospitalPuKou Branch Hospital of Jiangsu Province HospitalNanjing211800China
| | - Zijuan Wu
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Wei Zhang
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Xiaoling Zuo
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Renfu Gui
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Lei Fan
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
| | - Jianyong Li
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Wenyu Shi
- Department of OncologyAffiliated Hospital of Nantong UniversityNantong226001China
| | - Hui Jin
- Lymphoma Center, Department of HematologyJiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Key Laboratory of Hematology of Nanjing Medical UniversityNanjing210029China
- Jiangsu Key Lab of Cancer BiomarkersPrevention, and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjing210029China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| |
Collapse
|
4
|
Song Q, Zheng Y, Zhong G, Wang S, He C, Li M. Application of Nanoparticles in the Diagnosis and Treatment of Colorectal Cancer. Anticancer Agents Med Chem 2024; 24:1305-1326. [PMID: 39129164 PMCID: PMC11497148 DOI: 10.2174/0118715206323900240807110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Colorectal cancer is a common malignant tumor with high morbidity and mortality rates, imposing a huge burden on both patients and the healthcare system. Traditional treatments such as surgery, chemotherapy and radiotherapy have limitations, so finding more effective diagnostic and therapeutic tools is critical to improving the survival and quality of life of colorectal cancer patients. While current tumor targeting research mainly focuses on exploring the function and mechanism of molecular targets and screening for excellent drug targets, it is crucial to test the efficacy and mechanism of tumor cell therapy that targets these molecular targets. Selecting the appropriate drug carrier is a key step in effectively targeting tumor cells. In recent years, nanoparticles have gained significant interest as gene carriers in the field of colorectal cancer diagnosis and treatment due to their low toxicity and high protective properties. Nanoparticles, synthesized from natural or polymeric materials, are NM-sized particles that offer advantages such as low toxicity, slow release, and protection of target genes during delivery. By modifying nanoparticles, they can be targeted towards specific cells for efficient and safe targeting of tumor cells. Numerous studies have demonstrated the safety, efficiency, and specificity of nanoparticles in targeting tumor cells, making them a promising gene carrier for experimental and clinical studies. This paper aims to review the current application of nanoparticles in colorectal cancer diagnosis and treatment to provide insights for targeted therapy for colorectal cancer while also highlighting future prospects for nanoparticle development.
Collapse
Affiliation(s)
- Qiuyu Song
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zheng
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoqiang Zhong
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|