1
|
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials 2025; 314:122856. [PMID: 39366184 DOI: 10.1016/j.biomaterials.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Vaccine science, nanotechnology, and immunotherapy are at the forefront of cancer treatment strategies, each offering significant potential for enhancing tumor-specific immunity and establishing long-lasting immune memory to prevent tumor recurrence. Despite the promise of these personalized and precision-based anti-cancer approaches, challenges such as immunosuppression, suboptimal immune activation, and T-cell exhaustion continue to hinder their effectiveness. The limited clinical success of cancer vaccines often stems from difficulties in identifying effective antigens, efficiently targeting immune cells, lymphoid organs, and the tumor microenvironment, overcoming immune evasion, enhancing immunogenicity, and avoiding lysosomal degradation. However, numerous studies have demonstrated that integrating nanotechnology with immunotherapeutic strategies in vaccine development can overcome these challenges, leading to potent antitumor immune responses and significant progress in the field. This review highlights the critical components of cancer vaccine and nanovaccine strategies for immunomodulatory antitumor therapy. It covers general vaccine strategies, types of vaccines, antigen forms, nanovaccine platforms, challenges faced, potential solutions, and key findings from preclinical and clinical studies, along with future perspectives. To fully unlock the potential of cancer vaccines and nanovaccines, precise immunological monitoring during early-phase trials is essential. This approach will help identify and address obstacles, ultimately expanding the available options for patients who are resistant to conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tulasi Vithiananthan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Xu M, Wei S, Duan L, Ji Y, Han X, Sun Q, Weng L. The recent advancements in protein nanoparticles for immunotherapy. NANOSCALE 2024; 16:11825-11848. [PMID: 38814163 DOI: 10.1039/d4nr00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In recent years, the advancement of nanoparticle-based immunotherapy has introduced an innovative strategy for combatting diseases. Compared with other types of nanoparticles, protein nanoparticles have obtained substantial attention owing to their remarkable biocompatibility, biodegradability, ease of modification, and finely designed spatial structures. Nature provides several protein nanoparticle platforms, including viral capsids, ferritin, and albumin, which hold significant potential for disease treatment. These naturally occurring protein nanoparticles not only serve as effective drug delivery platforms but also augment antigen delivery and targeting capabilities through techniques like genetic modification and covalent conjugation. Motivated by nature's originality and driven by progress in computational methodologies, scientists have crafted numerous protein nanoparticles with intricate assembly structures, showing significant potential in the development of multivalent vaccines. Consequently, both naturally occurring and de novo designed protein nanoparticles are anticipated to enhance the effectiveness of immunotherapy. This review consolidates the advancements in protein nanoparticles for immunotherapy across diseases including cancer and other diseases like influenza, pneumonia, and hepatitis.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Siyuan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lifan Duan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yifan Ji
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaofan Han
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Sun
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
3
|
Souto EB, Blanco-Llamero C, Krambeck K, Kiran NS, Yashaswini C, Postwala H, Severino P, Priefer R, Prajapati BG, Maheshwari R. Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives. Acta Biomater 2024; 180:1-17. [PMID: 38604468 DOI: 10.1016/j.actbio.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
This analysis explores the principal regulatory concerns linked to nanomedicines and gene vaccines, including the complexities involved and the perspectives on how to navigate them. In the realm of nanomedicines, ensuring the safety of nanomaterials is paramount due to their unique characteristics and potential interactions with biological systems. Regulatory bodies are actively formulating guidelines and standards to assess the safety and risks associated with nanomedicine products, emphasizing the need for standardized characterization techniques to accurately gauge their safety and effectiveness. Regarding gene vaccines, regulatory frameworks must be tailored to address the distinct challenges posed by genetic interventions, necessitating special considerations in safety and efficacy evaluations, particularly concerning vector design, target specificity, and long-term patient monitoring. Ethical concerns such as patient autonomy, informed consent, and privacy also demand careful attention, alongside the intricate matter of intellectual property rights, which must be balanced against the imperative of ensuring widespread access to these life-saving treatments. Collaborative efforts among regulatory bodies, researchers, patent offices, and the private sector are essential to tackle these challenges effectively, with international cooperation being especially crucial given the global scope of nanomedicine and genetic vaccine development. Striking the right balance between safeguarding intellectual properties and promoting public health is vital for fostering innovation and ensuring equitable access to these ground-breaking technologies, underscoring the significance of addressing these regulatory hurdles to fully harness the potential benefits of nanomedicine and gene vaccines for enhancing healthcare outcomes on a global scale. STATEMENT OF SIGNIFICANCE: Several biomaterials are being proposed for the development of nanovaccines, from polymeric micelles, PLGA-/PEI-/PLL-nanoparticles, solid lipid nananoparticles, cationic lipoplexes, liposomes, hybrid materials, dendrimers, carbon nanotubes, hydrogels, to quantum dots. Lipid nanoparticles (LNPs) have gained tremendous attention since the US Food and Drug Administration (FDA) approval of Pfizer and Moderna's COVID-19 vaccines, raising public awareness to the regulatory challenges associated with nanomedicines and genetic vaccines. This review provides insights into the current perspectives and potential strategies for addressing these issues, including clinical trials. By navigating these regulatory landscapes effectively, we can unlock the full potential of nanomedicine and genetic vaccines using a range of promising biomaterials towards improving healthcare outcomes worldwide.
Collapse
Affiliation(s)
- Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Cristina Blanco-Llamero
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria (UFV), Ctra. Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Karolline Krambeck
- Health Sciences School, Guarda Polytechnic Institute, Rua da Cadeia, 6300-035 Guarda, Portugal
| | | | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Humzah Postwala
- L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Patricia Severino
- Institute of Research and Technology, University Tiradentes, Av. Murilo Dantas 300, Aracaju 49032-490, Sergipe, Brazil; Massachusetts College of Pharmacy and Health Sciences University, Boston, MA 02115, USA
| | - Ronny Priefer
- Institute of Research and Technology, University Tiradentes, Av. Murilo Dantas 300, Aracaju 49032-490, Sergipe, Brazil
| | - Bhupendra Gopalbhai Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Jadcherla, Hyderabad 509301, India
| |
Collapse
|
4
|
Jose J, M N V, R G B, Jose AS, Jubin J. The Intellectual Landscape of Nanovaccines: A Bibliometric Perspective on Scientific Progress and Future Directions. Cureus 2024; 16:e60131. [PMID: 38868255 PMCID: PMC11167401 DOI: 10.7759/cureus.60131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/14/2024] Open
Abstract
This bibliometric study provides a comprehensive analysis of the burgeoning field of nanovaccine research, leveraging data sourced from Scopus and employing the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flowchart for the meticulous screening, inclusion, and exclusion of relevant studies. Utilizing sophisticated bibliometric tools, such as Biblioshiny and CiteSpace, we dissected the expansive literature to unearth critical insights into the annual scientific output, identifying key contributors and pivotal publications that have shaped the domain. The analysis delineates the most influential authors, sources, and globally cited documents, offering a macroscopic view of the field's intellectual structure and growth trajectory. Trend topics and thematic mapping underscored the evolution of research foci, from fundamental immunological mechanisms to cutting-edge nanomaterial applications. Factorial analysis and keyword co-occurrence networks revealed the intricate associations and thematic concentrations within the literature. The study's robust methodology also pinpointed the keywords exhibiting the strongest citation bursts, signifying emergent areas of intense academic interest. Networks of cited authors illuminated collaborative patterns among scholars, while timeline network visualizations of country collaborations depicted the global interplay in nanovaccine development. Crucially, this study identified notable research gaps and practical implications, suggesting directions for future investigation and highlighting the translational potential of nanovaccines in public health and personalized medicine. This bibliometric investigation not only maps the current landscape but also charts a course for the trajectory of nanovaccine research, emphasizing its role as a cornerstone of innovative immunotherapeutic strategies.
Collapse
Affiliation(s)
- Jobin Jose
- Library, Marian College Kuttikkanam (Autonomous), Kuttikkanam, IND
| | - Vinoj M N
- Physics, St. Peter's College, Kolenchery, Kolenchery, IND
| | - Bindu R G
- Physics, Nair Service Society (NSS) College, Nilamel, Kollam, IND
| | | | - Jacob Jubin
- Library, St. Thomas College, Palai (Autonomous), Palai, IND
| |
Collapse
|