1
|
Thai Tran BL, Van Vo T, Chu TP, Bach DT, Nguyen TQ, Bao Luu PH, Thuy Tran VT, Duong HH, Nguyen NH, Le GT, Tran TT, Tuong Tran KN, Cam Tuyen LT, Dinh TN, Uyen NN, Thu Nguyen TT, Thi Nguyen NV, Nguyen KT, Nhu Tran LT, Le PH. Antibacterial efficacy of low-dosage silver nanoparticle-sodium alginate-chitosan nanocomposite films against pure and clinical acne strains. RSC Adv 2024; 14:33267-33280. [PMID: 39434988 PMCID: PMC11492429 DOI: 10.1039/d4ra05180g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The silver nanoparticles-sodium alginate-chitosan (AgNPs-Alg-Chi) nanocomposite film is a compelling material with demonstrated antibacterial efficacy against various pure bacterial strains. However, its potential cytotoxicity at elevated Ag doses warrants investigation. There is a notable dearth of studies assessing its antibacterial effectiveness against clinically relevant bacterial strains, notably Cutibacterium acnes. This study aims to assess the antibacterial efficacy of the low-dose AgNPs-Alg-Chi nanocomposite films on both pure bacterial strains and strains isolated from clinical samples obtained from 65 acne patients. The films were synthesized using green methods, incorporating kumquat (Citrus japonica) extract as a silver ion-reducing agent. The material characterization methods include UV-Vis and FTIR spectroscopies, SEM-EDS, XPS, cell culture, and MTT assay. We successfully fabricated the AgNPs-Alg-Chi nanocomposite films with a low-loading dose of Ag NPs (≤11 μg mL-1, and 37.8 ± 11.5 nm in size). The AgNPs-Alg-Chi nanocomposite film demonstrated comparable antibacterial efficacy to the AgNPs-Chi solution, with MIC values ranging from 3.67 to 5.50 μg mL-1 (p > 0.05) across all strains. Importantly, the AgNPs-Alg-Chi films demonstrated excellent biocompatibility with human keratinocytes (HaCaT cells), maintaining cell viability above 70%. The present AgNPs-Alg-Chi nanocomposite films synthesized by a green approach demonstrated potent antibacterial activity, making them promising for further development into suitable products for human use.
Collapse
Affiliation(s)
- Bao Lam Thai Tran
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Thanh Van Vo
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Teng-Ping Chu
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology New Taipei City 243303 Taiwan
- International PhD Program in Plasma and Thin Film Technology, Ming Chi University of Technology New Taipei City 243303 Taiwan
| | - Duong Thai Bach
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Thai Quang Nguyen
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Phuong Hong Bao Luu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 41-43 Dinh Tien Hoang Street Ho Chi Minh City Vietnam
| | - Vy Thi Thuy Tran
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Hieu Hoang Duong
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Nhi Hoang Nguyen
- Faculty of Public Health, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Gai Thi Le
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Thu Thi Tran
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | | | - Le Thi Cam Tuyen
- Faculty of Chemical Engineering, Can Tho University 3/2 Street Can Tho City Vietnam
| | - Truong Ngoc Dinh
- Department of Physics and Biophysics, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
- Department of Biomedical Engineering, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Ngo Ngoc Uyen
- Department of Biomedical Engineering, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Tram Thi Thu Nguyen
- Department of Biomedical Engineering, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
- Department of Chemistry, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Ngoc-Van Thi Nguyen
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Kien Trung Nguyen
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Le Thi Nhu Tran
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Phuoc Huu Le
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology New Taipei City 243303 Taiwan
- International PhD Program in Plasma and Thin Film Technology, Ming Chi University of Technology New Taipei City 243303 Taiwan
| |
Collapse
|
2
|
Zhu J, Cheng H, Zhang Z, Chen K, Zhang Q, Zhang C, Gao W, Zheng Y. Antibacterial Hydrogels for Wound Dressing Applications: Current Status, Progress, Challenges, and Trends. Gels 2024; 10:495. [PMID: 39195024 DOI: 10.3390/gels10080495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Bacterial infection treatment for chronic wounds has posed a major medical threat and challenge. Bacteria at the wounded sites can compete with the immune system and subsequently invade live tissues, leading to more severe tissue damage. Therefore, there is an urgent demand for wound dressings with antibacterial and anti-inflammatory properties. Considering the concept of moist healing, hydrogels with a three-dimensional (3D) network structure are widely used as wound dressings due to their excellent hydrophilicity, water retention properties, and biocompatibility. Developing antibacterial hydrogels for the treatment of infected wounds has been receiving extensive attention recently. This article categorizes antibacterial hydrogels according to their materials and antibacterial modes, and introduces the recent findings and progress regarding their status. More importantly, with the development of emerging technologies, new therapies are utilized to prepare antibacterial hydrogels such as nanoenzymes, photothermal therapy (PTT), photodynamic therapy (PDT), metal-organic frameworks (MOFs), and other external stimuli-responsive methods. Therefore, this review also examines their progress, challenges, and future trends as wound dressings. In the following studies, there will still be a focus on antibacterial hydrogels that have a high performance, multi-functions, and intelligence, especially biocompatibility, a high and long-lasting antibacterial property, responsiveness, and on-demand therapeutic ability.
Collapse
Affiliation(s)
- Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zixian Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Kaikai Chen
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qinchen Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chen Zhang
- Shanghai Science and Technology Exchange Center, Shanghai 200030, China
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
3
|
Mohandoss S, Velu KS, Manoharadas S, Ahmad N, Palanisamy S, You S, Akhtar MS, Lee YR. Synthesis, Characterization, and Evaluation of Silver Nanoparticle-Loaded Carboxymethyl Chitosan with Sulfobetaine Methacrylate Hydrogel Nanocomposites for Biomedical Applications. Polymers (Basel) 2024; 16:1513. [PMID: 38891459 PMCID: PMC11174863 DOI: 10.3390/polym16111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, nanocomposites of AgNPs encapsulated in carboxymethyl chitosan (CMCS) with sulfobetaine methacrylate (SB) hydrogel (AgNPs/CMCS-SB) were synthesized. The UV-Vis spectra indicated the presence of AgNPs, with a broad peak at around 424 nm, while the AgNPs-loaded CMCS-SB nanocomposite exhibited absorption peaks at 445 nm. The size and dispersion of AgNPs varied with the concentration of the AgNO3 solution, affecting swelling rates: 148.37 ± 15.63%, 172.26 ± 18.14%, and 159.17 ± 16.59% for 1.0 mM, 3.0 mM, and 5.0 mM AgNPs/CMCS-SB, respectively. Additionally, water absorption capacity increased with AgNPs content, peaking at 11.04 ± 0.54% for the 3.0 mM AgNPs/CMCS-SB nanocomposite. Silver release from the nanocomposite was influenced by AgNO3 concentration, showing rapid initial release followed by a slower rate over time for the 3.0 mM AgNPs/CMCS-SB. XRD patterns affirmed the presence of AgNPs, showcasing characteristic peaks indicative of a face-centered cubic (fcc) structure. The FTIR spectra highlighted interactions between AgNPs and CMCS-SB, with noticeable shifts in characteristic bands. In addition, SEM and TEM images validated spherical AgNPs within the CMCS-SB hydrogel network, averaging approximately 70 and 30 nm in diameter, respectively. The nanocomposite exhibited significant antibacterial activity against S. aureus and E. coli, with inhibition rates of 98.9 ± 0.21% and 99.2 ± 0.14%, respectively, for the 3.0 mM AgNPs/CMCS-SB nanocomposite. Moreover, cytotoxicity assays showcased the efficacy of AgNPs/CMCS-SB against human colorectal cancer cells (HCT-116 cells), with the strongest cytotoxicity (61.7 ± 4.3%) at 100 μg/mL. These results suggest the synthesized AgNPs/CMCS-SB nanocomposites possess promising attributes for various biomedical applications, including antimicrobial and anticancer activities, positioning them as compelling candidates for further advancement in biomedicine.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (K.S.V.); (M.S.A.)
| | - Kuppu Sakthi Velu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (K.S.V.); (M.S.A.)
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Subramanian Palanisamy
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (S.P.); (S.Y.)
| | - SangGuan You
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (S.P.); (S.Y.)
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (K.S.V.); (M.S.A.)
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (K.S.V.); (M.S.A.)
| |
Collapse
|
4
|
Bîrcă AC, Gherasim O, Niculescu AG, Grumezescu AM, Vasile BȘ, Mihaiescu DE, Neacșu IA, Andronescu E, Trușcă R, Holban AM, Hudiță A, Croitoru GA. Infection-Free and Enhanced Wound Healing Potential of Alginate Gels Incorporating Silver and Tannylated Calcium Peroxide Nanoparticles. Int J Mol Sci 2024; 25:5196. [PMID: 38791232 PMCID: PMC11120750 DOI: 10.3390/ijms25105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization. In this study, silver (S) and tannylated calcium peroxide (CaO2@TA) nanoparticles were obtained by adapted microfluidic and precipitation synthesis methods, respectively. After complementary physicochemical evaluation, both types of nanoparticles were loaded in (Alg) alginate-based gels that were further evaluated as possible dressings for wound healing. The obtained composites showed a porous structure and uniform distribution of nanoparticles through the polymeric matrix (evidenced by spectrophotometric analysis and electron microscopy studies), together with a good swelling capacity. The as-proposed gel dressings exhibited a constant and suitable concentration of released oxygen, as shown for up to eight hours (UV-Vis investigation). The biofilm modulation data indicated a synergistic antimicrobial effect between silver and tannylated calcium peroxide nanoparticles, with a prominent inhibitory action against the Gram-positive bacterial biofilm after 48 h. Beneficial effects in the human keratinocytes cultured in contact with the obtained materials were demonstrated by the performed tests, such as MTT, LDH, and NO.
Collapse
Affiliation(s)
- Alexandra Catalina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Center for Advanced Research on New Materials, Products and Innovative Processes—CAMPUS Research Institute, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania;
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Microbiology and Immunology, University of Bucharest, 077206 Bucharest, Romania
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - George-Alexandru Croitoru
- Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania;
| |
Collapse
|