1
|
He Q, Wei Y, Qian Y, Zhong M. Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate. JOURNAL OF INTENSIVE MEDICINE 2024; 4:453-467. [PMID: 39310056 PMCID: PMC11411436 DOI: 10.1016/j.jointm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immunosuppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the prognosis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor nafamostat mesilate in the treatment of this condition.
Collapse
Affiliation(s)
- Qiaolan He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilin Wei
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zang X, Li C, Wang Y, Huang X, Wang X, Zhang W, Cao X, Liang C, Dai T, Wang K, Chen Y, Wu J. Protein profile of circulating extracellular vesicles reveals biomarker candidates for diagnosis of post-traumatic deep vein thrombosis. Clin Chim Acta 2024; 561:119721. [PMID: 38796050 DOI: 10.1016/j.cca.2024.119721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Deep vein thrombosis (DVT) is a common complication after trauma and mostly without specific symptoms. Timely diagnosis and early appropriate treatment measures can prevent further development of thrombosis for patients with traumatic lower extremity fractures. Although extracellular vesicles (EVs) are confirmed as promising disease biomarkers, little is known about the role of altered levels and composition in the diagnosis of post-traumatic DVT. METHOD The levels of circulating EVs subgroups were measured using flow cytometry. Isolated EVs were characterized and subjected to proteomics analysis to screen for differentially expressed proteins (DEPs) between DVT and non-DVT patients. Regularized logistic regression analysis based on L2 penalty terms using R's caret package was applied to build a model for DVT diagnosis. RESULTS Compared to non-DVT patients, DVT patients had higher circulating hepatocyte-derived EVs (hEVs) with good predictive value for post-traumatic DVT diagnosis. The results of the proteomic analysis showed that differentially expressed proteins (DEPs) of circulating EVs between the DVT group and non-DVT group were enriched in the complement and coagulation cascade. Finally, an integrated model of five biomarkers including SERPING1, C8G, CFH, FIX, and hEVs level was established for post-traumatic DVT diagnosis with robust identification of the traumatic patients with and without DVT (AUC 0.972). CONCLUSION Post-traumatic DVT patients had changed levels and composition of circulating EVs compared to non-DVT patients and healthy controls. Circulating EVs may acquire pathological protein signatures and become potential biomarkers for identifying subjects' post-traumatic DVT.
Collapse
Affiliation(s)
- Xinwei Zang
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China; Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China & Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Chunyan Li
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049 China.
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049 China.
| | - Xiaorong Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049 China.
| | - Wenjie Zhang
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Xiangyu Cao
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Cuiying Liang
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Tenglong Dai
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Kun Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China.
| | - Yuying Chen
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jun Wu
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| |
Collapse
|
3
|
Rahman M, Ding Z, Rönnow CF, Thorlacius H. Transcriptomic Analysis Reveals Differential Expression of Genes between Lung Capillary and Post Capillary Venules in Abdominal Sepsis. Int J Mol Sci 2021; 22:ijms221910181. [PMID: 34638535 PMCID: PMC8507973 DOI: 10.3390/ijms221910181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
Lung endothelial cell dysfunction plays a central role in septic-induced lung injury. We hypothesized that endothelial cell subsets, capillary endothelial cells (capEC) and post capillary venules (PCV), might play different roles in regulating important pathophysiology in sepsis. In order to reveal global transcriptomic changes in endothelial cell subsets during sepsis, we induced sepsis in C57BL/6 mice by cecal ligation and puncture (CLP). We confirmed that CLP induced systemic and lung inflammation in our model. Endothelial cells (ECs) from lung capillary and PCV were isolated by cell sorting and transcriptomic changes were analyzed by bioinformatic tools. Our analysis revealed that lung capEC are transcriptionally different than PCV. Comparison of top differentially expressed genes (DEGs) of capEC and PCV revealed that capEC responses are different than PCV during sepsis. It was found that capEC are more enriched with genes related to regulation of coagulation, vascular permeability, wound healing and lipid metabolic processes after sepsis. In contrast, PCV are more enriched with genes related to chemotaxis, cell–cell adhesion by integrins, chemokine biosynthesis, regulation of actin filament process and neutrophil homeostasis after sepsis. In addition, we predicted some transcription factor targets that regulate a significant number of DEGs in sepsis. We proposed that targeting certain DEGs or transcriptional factors would be useful in protecting against sepsis-induced lung damage.
Collapse
|
4
|
Karnaukhova E. C1-Inhibitor: Structure, Functional Diversity and Therapeutic Development. Curr Med Chem 2021; 29:467-488. [PMID: 34348603 DOI: 10.2174/0929867328666210804085636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Human C1-Inhibitor (C1INH), also known as C1-esterase inhibitor, is an important multifunctional plasma glycoprotein that is uniquely involved in a regulatory network of complement, contact, coagulation, and fibrinolytic systems. C1INH belongs to a superfamily of serine proteinase inhibitor (serpins) and exhibits its inhibitory activities towards several target proteases of plasmatic cascades, operating as a major anti-inflammatory protein in the circulation. In addition to its inhibitory activities, C1INH is also involved in non-inhibitory interactions with some endogenous proteins, polyanions, cells and infectious agents. While C1INH is essential for multiple physiological processes, it is better known for its deficiency with regards to Hereditary Angioedema (HAE), a rare autosomal dominant disease clinically manifested by recurrent acute attacks of increased vascular permeability and edema. Since the link was first established between functional C1INH deficiency in plasma and HAE in the 1960s, tremendous progress has been made in the biochemical characterization of C1INH and its therapeutic development for replacement therapies in patients with C1INH-dependent HAE. Various C1INH biological activities, recent advances in the HAE-targeted therapies, and availability of C1INH commercial products have prompted intensive investigation of the C1INH potential for treatment of clinical conditions other than HAE. This article provides an updated overview of the structure and biological activities of C1INH, its role in HAE pathogenesis, and recent advances in the research and therapeutic development of C1INH; it also considers some trends for using C1INH therapeutic preparations for applications other than angioedema, from sepsis and endotoxin shock to severe thrombotic complications in COVID-19 patients.
Collapse
Affiliation(s)
- Elena Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993. United States
| |
Collapse
|
5
|
Thorgersen EB, Barratt‐Due A, Haugaa H, Harboe M, Pischke SE, Nilsson PH, Mollnes TE. The Role of Complement in Liver Injury, Regeneration, and Transplantation. Hepatology 2019; 70:725-736. [PMID: 30653682 PMCID: PMC6771474 DOI: 10.1002/hep.30508] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
The liver is both an immunologically complex and a privileged organ. The innate immune system is a central player, in which the complement system emerges as a pivotal part of liver homeostasis, immune responses, and crosstalk with other effector systems in both innate and adaptive immunity. The liver produces the majority of the complement proteins and is the home of important immune cells such as Kupffer cells. Liver immune responses are delicately tuned between tolerance to many antigens flowing in from the alimentary tract, a tolerance that likely makes the liver less prone to rejection than other solid organ transplants, and reaction to local injury, systemic inflammation, and regeneration. Notably, complement is a double-edged sword as activation is detrimental by inducing inflammatory tissue damage in, for example, ischemia-reperfusion injury and transplant rejection yet is beneficial for liver tissue regeneration. Therapeutic complement inhibition is rapidly developing for routine clinical treatment of several diseases. In the liver, targeted inhibition of damaged tissue may be a rational and promising approach to avoid further tissue destruction and simultaneously preserve beneficial effects of complement in areas of proliferation. Here, we argue that complement is a key system to manipulate in the liver in several clinical settings, including liver injury and regeneration after major surgery and preservation of the organ during transplantation.
Collapse
Affiliation(s)
- Ebbe Billmann Thorgersen
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Department of Gastroenterological SurgeryThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Andreas Barratt‐Due
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Division of Emergencies and Critical CareOslo University Hospital RikshospitaletOsloNorway
| | - Håkon Haugaa
- Division of Emergencies and Critical CareOslo University Hospital RikshospitaletOsloNorway,Lovisenberg Diaconal University CollegeOsloNorway
| | - Morten Harboe
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway
| | - Søren Erik Pischke
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Division of Emergencies and Critical CareOslo University Hospital RikshospitaletOsloNorway
| | - Per H. Nilsson
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Linnaeus Centre for Biomaterials ChemistryLinnaeus UniversityKalmarSweden
| | - Tom Eirik Mollnes
- Department of ImmunologyOslo University Hospital Rikshospitalet and University of OsloOsloNorway,Reserach Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TRECUniversity of TromsøTromsøNorway,Centre of Molecular Inflammation ResearchNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
6
|
Farfara D, Feierman E, Richards A, Revenko AS, MacLeod RA, Norris EH, Strickland S. Knockdown of circulating C1 inhibitor induces neurovascular impairment, glial cell activation, neuroinflammation, and behavioral deficits. Glia 2019; 67:1359-1373. [PMID: 30882931 DOI: 10.1002/glia.23611] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
The cross-talk between blood proteins, immune cells, and brain function involves complex mechanisms. Plasma protein C1 inhibitor (C1INH) is an inhibitor of vascular inflammation that is induced by activation of the kallikrein-kinin system (KKS) and the complement system. Knockout of C1INH was previously correlated with peripheral vascular permeability via the bradykinin pathway, yet there was no evidence of its correlation with blood-brain barrier (BBB) integrity and brain function. In order to understand the effect of plasma C1INH on brain pathology via the vascular system, we knocked down circulating C1INH in wild-type (WT) mice using an antisense oligonucleotide (ASO), without affecting C1INH expression in peripheral immune cells or the brain, and examined brain pathology. Long-term elimination of endogenous C1INH in the plasma induced the activation of the KKS and peritoneal macrophages but did not activate the complement system. Bradykinin pathway proteins were elevated in the periphery and the brain, resulting in hypotension. BBB permeability, extravasation of plasma proteins into the brain parenchyma, activation of glial cells, and elevation of pro-inflammatory response mediators were detected. Furthermore, infiltrating innate immune cells were observed entering the brain through the lateral ventricle walls and the neurovascular unit. Mice showed normal locomotion function, yet cognition was impaired and depressive-like behavior was evident. In conclusion, our results highlight the important role of regulated plasma C1INH as it acts as a gatekeeper to the brain via the neurovascular system. Thus, manipulation of C1INH in neurovascular disorders might be therapeutically beneficial.
Collapse
Affiliation(s)
- Dorit Farfara
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Emily Feierman
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Allison Richards
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Alexey S Revenko
- Department of Antisense Drug Discovery, IONIS Pharmaceuticals Inc., Carlsbad, California
| | - Robert A MacLeod
- Department of Antisense Drug Discovery, IONIS Pharmaceuticals Inc., Carlsbad, California
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| |
Collapse
|
7
|
Effects of C1 inhibitor on endothelial cell activation in a rat hind limb ischemia-reperfusion injury model. J Vasc Surg 2018; 68:209S-221S.e2. [PMID: 29395422 DOI: 10.1016/j.jvs.2017.10.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/11/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Ischemia-reperfusion (I/R) injury is a major clinical problem linked to vascular surgery. Currently, no drugs to prevent or to treat I/R injury are approved for clinical use. C1 inhibitor (C1 INH) is known to reduce activation of the plasma cascade systems that are involved in the pathophysiologic process of I/R injury. The aim of this study was therefore to investigate the effect of C1 INH on complement deposition and endothelial cell activation in a rat model of hind limb I/R injury. METHODS Male Wistar rats (wild type, bred at the central animal facility, University of Bern), weighing 250 to 320 g, were used. The rats underwent 2-hour ischemia and 24-hour reperfusion by unilateral clamping of the femoral artery and additional use of a tourniquet. Five groups were divided according to intravenous treatment 5 minutes before ischemia: 50 IU/kg C1 INH (n = 5); 100 IU/kg C1 INH (n = 7); vehicle control (n = 5); nontreated control (n = 7); and normal, healthy control without intervention (n = 4). At the end, muscle edema, tissue viability, and histologic features were assessed. Deposition of immunoglobulin M, C1r, C4d, and fibrin and expression of plasminogen activator inhibitor 1, heparan sulfate (HS), E-selectin, and vascular cell adhesion molecule 1 were evaluated by fluorescence staining. In addition, high-mobility group box 1 protein was measured in plasma. RESULTS Edema formation was reduced by C1 INH at two dosages, mirrored by improved histologic injury scores and preserved muscle viability. Deposition of immunoglobulin M, C4d, and fibrin was significantly decreased by 100 IU/kg C1 INH compared with nontreated controls. Pretreatment with 100 IU/kg C1 INH also significantly reduced HS shedding and expression of plasminogen activator inhibitor 1 as well as plasma levels of high-mobility group box 1 protein. CONCLUSIONS Pretreatment with both 50 and 100 IU/kg C1 INH attenuated reperfusion injury of rat hind limbs. Pretreatment with 100 IU/kg also preserved the endothelial HS layer as well as the natural, profibrinolytic phenotype of the endothelium. Prevention of endothelial cell activation by C1 INH may therefore be a promising strategy to prevent I/R injury in the clinical setting of peripheral vascular diseases and elective surgery on extremities.
Collapse
|
8
|
de Beer FM, Aslami H, Hoeksma J, van Mierlo G, Wouters D, Zeerleder S, Roelofs JJTH, Juffermans NP, Schultz MJ, Lagrand WK. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia. Cell Biochem Biophys 2015; 70:795-803. [PMID: 24760631 DOI: 10.1007/s12013-014-9983-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary complement activation, and as such attenuates lung inflammation and lung injury in a rat model of Streptococcus pneumoniae pneumonia. Forty hours after intratracheal challenge with S. pneumoniae causing pneumonia rats were subjected to ventilation with lower tidal volumes and positive end-expiratory pressure (PEEP) or high tidal volumes without PEEP, after an intravenous bolus of C1-INH (200 U/kg) or placebo (saline). After 4 h of ventilation blood, broncho-alveolar lavage fluid and lung tissue were collected. Non-ventilated rats with S. pneumoniae pneumonia served as controls. While ventilation with lower tidal volumes and PEEP slightly amplified pneumonia-induced complement activation in the lungs, ventilation with higher tidal volumes without PEEP augmented local complement activation more strongly. Systemic pre-treatment with C1-INH, however, failed to alter ventilation-induced complement activation with both ventilation strategies. In accordance, lung inflammation and lung injury were not affected by pre-treatment with C1-INH, neither in rats ventilated with lower tidal volumes and PEEP, nor rats ventilated with high tidal volumes without PEEP. Ventilation augments pulmonary complement activation in a rat model of S. pneumoniae pneumonia. Systemic administration of C1-INH, however, does not attenuate ventilation-induced complement activation, lung inflammation, and lung injury.
Collapse
Affiliation(s)
- F M de Beer
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Emmens RW, Naaijkens BA, Roem D, Kramer K, Wouters D, Zeerleder S, van Ham MS, Niessen HW, Krijnen PA. Evaluating the efficacy of subcutaneous C1-esterase inhibitor administration for use in rat models of inflammatory diseases. Drug Deliv 2013; 21:302-6. [DOI: 10.3109/10717544.2013.853211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
10
|
Abstract
Multiorgan failure (MOF) represents the leading cause of death in patients with sepsis and systemic inflammatory response syndrome (SIRS) following severe trauma. The underlying immune response is highly complex and involves activation of the complement system as a crucial entity of innate immunity. Uncontrolled activation of the complement system during sepsis and SIRS with in excessive generation of complement activation products contributes to an ensuing dysfunction of various organ systems. In the present review, mechanisms of the inflammatory response in the development of MOF in sepsis and SIRS with particular focus on the complement system are discussed.
Collapse
|
11
|
Sun S, Guo Y, Zhao G, Zhou X, Li J, Hu J, Yu H, Chen Y, Song H, Qiao F, Xu G, Yang F, Wu Y, Tomlinson S, Duan Z, Zhou Y. Complement and the alternative pathway play an important role in LPS/D-GalN-induced fulminant hepatic failure. PLoS One 2011; 6:e26838. [PMID: 22069473 PMCID: PMC3206060 DOI: 10.1371/journal.pone.0026838] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/04/2011] [Indexed: 01/18/2023] Open
Abstract
Fulminant hepatic failure (FHF) is a clinically severe type of liver injury with an extremely high mortality rate. Although the pathological mechanisms of FHF are not well understood, evidence suggests that the complement system is involved in the pathogenesis of a variety of liver disorders. In the present study, to investigate the role of complement in FHF, we examined groups of mice following intraperitoneal injection of LPS/D-GalN: wild-type C57BL/6 mice, wild-type mice treated with a C3aR antagonist, C5aR monoclonal antibody (C5aRmAb) or CR2-Factor H (CR2-fH, an inhibitor of the alternative pathway), and C3 deficient mice (C3⁻/⁻ mice). The animals were euthanized and samples analyzed at specific times after LPS/D-GalN injection. The results show that intraperitoneal administration of LPS/D-GalN activated the complement pathway, as evidenced by the hepatic deposition of C3 and C5b-9 and elevated serum levels of the complement activation product C3a, the level of which was associated with the severity of the liver damage. C3a receptor (C3aR) and C5a receptor (C5aR) expression was also upregulated. Compared with wild-type mice, C3⁻/⁻ mice survived significantly longer and displayed reduced liver inflammation and attenuated pathological damage following LPS/D-GalN injection. Similar levels of protection were seen in mice treated with C3aR antagonist,C5aRmAb or CR2-fH. These data indicate an important role for the C3a and C5a generated by the alternative pathway in LPS/D-GalN-induced FHF. The data further suggest that complement inhibition may be an effective strategy for the adjunctive treatment of fulminant hepatic failure.
Collapse
Affiliation(s)
- Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaojun Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Junfeng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingya Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hong Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu Chen
- Beijing You-An Hospital, Artificial Liver Center, Capital University of Medical Sciences, Beijing, China
| | - Hongbin Song
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Fei Qiao
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Guilian Xu
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Fei Yang
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Zhongping Duan
- Beijing You-An Hospital, Artificial Liver Center, Capital University of Medical Sciences, Beijing, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
12
|
Singer M, Jones AM. Bench-to-bedside review: the role of C1-esterase inhibitor in sepsis and other critical illnesses. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:203. [PMID: 21345278 PMCID: PMC3222011 DOI: 10.1186/cc9304] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this bench-to-bedside review is to summarize the literature relating to complement activation in sepsis and other critical illnesses and the role of C1-esterase inhibitor (C1 INH) as a potential therapy.
Collapse
Affiliation(s)
- Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
13
|
Abstract
OBJECTIVE Besides its role in regulation of the complement and contact system, C1-esterase inhibitor has other immunomodulating effects that could prove beneficial in patients with acute inflammation such as during sepsis or after trauma. We examined the immunomodulating properties of C1-esterase inhibitor during human experimental endotoxemia, in which the innate immune system is activated in the absence of activation of the classic complement pathway. DESIGN Double-blind placebo-controlled study. SETTING Research intensive care unit of the Radboud University Nijmegen Medical Centre. SUBJECTS Twenty healthy volunteers. INTERVENTIONS Intravenous injection of 2 ng/kg Escherichia coli lipopolysaccharide. Thirty minutes thereafter (to prevent binding of lipopolysaccharide), C1-esterase inhibitor concentrate (100 U/kg, n = 10) or placebo (n = 10) was infused. MEASUREMENTS AND MAIN RESULTS Pro- and anti-inflammatory mediators, markers of endothelial and complement activation, hemodynamics, body temperature, and symptoms were measured. C1-esterase inhibitor reduced the release of proinflammatory cytokines as well as C-reactive protein (peak levels of: interleukin-6 1521 ± 209 vs. 932 ± 174 pg/mL [p = .04], tumor necrosis factor-α 1213 ± 187 vs. 827 ± 167 pg/mL [p = .10], monocyte chemotactic protein-1 6161 ± 1302 vs. 3373 ± 228 pg/mL [p = .03], interleukin-1β 34 ± 5 vs. 23 ± 2 pg/mL [p < .01], C-reactive protein 39 ± 4 vs. 29 ± 2 mg/L [p = .02]). In contrast, release of the anti-inflammatory cytokine interleukin-10 was increased by C1-esterase inhibitor (peak level 73 ± 11 vs. 121 ± 18 pg/mL, p = .02). The increase in interleukin-1 receptor antagonist tended to be smaller in the C1-esterase inhibitor group, but this effect did not reach statistical significance (p = .07). Markers for endothelial activation were increased after lipopolysaccharide infusion, but no significant differences between groups were observed. The lipopolysaccharide-induced changes in heart rate, blood pressure, body temperature, and symptoms (all p < .001 over time) were not influenced by C1-esterase inhibitor. Complement fragment C4 was not increased after lipopolysaccharide challenge. CONCLUSIONS This study is the first to demonstrate that C1-esterase inhibitor exerts anti-inflammatory effects in the absence of classic complement activation in humans.
Collapse
|
14
|
Wouters D, Wagenaar-Bos I, van Ham M, Zeerleder S. C1 inhibitor: just a serine protease inhibitor? New and old considerations on therapeutic applications of C1 inhibitor. Expert Opin Biol Ther 2008; 8:1225-40. [PMID: 18613773 DOI: 10.1517/14712598.8.8.1225] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C1 inhibitor is a potent anti-inflammatory protein as it is the major inhibitor of proteases of the contact and the complement systems. C1-inhibitor administration is an effective therapy in the treatment of patients with hereditary angioedema (HAE) who are genetically deficient in C1 inhibitor. Owing to its ability to modulate the contact and complement systems and the convincing safety profile, plasma-derived C1 inhibitor is an attractive therapeutic protein to treat inflammatory diseases other than HAE. In the present review we give an overview of the biology of C1 inhibitor and its use in HAE. Furthermore, we discuss C1 inhibitor as an experimental therapy in diseases such as sepsis and myocardial infarction.
Collapse
Affiliation(s)
- Diana Wouters
- Department of Immunopathology, Sanquin Research at CLB and Landsteiner Laboratory, University of Amsterdam, Academic Medical Center, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
Abstract
Broadly speaking, C1 inhibitor plays important roles in the regulation of vascular permeability and in the suppression of inflammation. Vascular permeability control is exerted largely through inhibition of two of the proteases involved in the generation of bradykinin, factor XIIa and plasma kallikrein (the plasma kallikrein-kinin system). Anti-inflammatory functions, however, are exerted via several activities including inhibition of complement system proteases (C1r, C1s, MASP2) and the plasma kallikrein-kinin system proteases, in addition to interactions with a number of different proteins, cells and infectious agents. These more recently described, as yet incompletely characterized, activities serve several potential functions, including concentration of C1 inhibitor at sites of inflammation, inhibition of alternative complement pathway activation, inhibition of the biologic activities of gram negative endotoxin, enhancement of bacterial phagocytosis and killing, and suppression of the influx of leukocytes into a site of inflammation. C1 inhibitor has been shown to be therapeutically useful in a variety of animal models of inflammatory diseases, including gram negative bacterial sepsis and endotoxin shock, suppression of hyperacute transplant rejection, and treatment of a variety of ischemia-reperfusion injuries (heart, intestine, skeletal muscle, liver, brain). In humans, early data appear particularly promising in myocardial reperfusion injury. The mechanism (or mechanisms) of the effect of C1 inhibitor in these conditions is (are) not completely clear, but involve inhibition of complement and contact system activation, in addition to variable contributions from other C1 inhibitor activities that do not involve protease inhibition.
Collapse
|
16
|
Birnbaum J, Klotz E, Spies CD, Mueller J, Vargas Hein O, Feller J, Lehmann C. Impact of combined C1 esterase inhibitor/coagulation factor XIII or N-acetylcysteine/tirilazad mesylate administration on leucocyte adherence and cytokine release in experimental endotoxaemia. J Int Med Res 2008; 36:748-59. [PMID: 18652771 DOI: 10.1177/147323000803600417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We determined the effects of combinations of C1 esterase inhibitor (C1-INH) with factor XIII and of N-acetylcysteine (NAC) with tirilazad mesylate (TM) during lipo-polysaccharide (LPS)-induced endotoxaemia in rats. Forty Wistar rats were divided into four groups: the control (CON) group received no LPS; the LPS, C1-INH + factor XIII and NAC + TM groups received endotoxin infusions (5 mg/kg per h). After 30 min of endotoxaemia, 100 U/kg C1-INH + 50 U/kg factor XIII was administered to the C1-INH + factor XIII group, and 150 mg/kg NAC + 10 mg/kg TM was administered in the NAC + TM group. Administration of C1-INH + factor XIII and NAC + TM both resulted in reduced leucocyte adherence and reduced levels of interleukin-1beta (IL-1beta). The LPS-induced increase in IL-6 levels was amplified by both drug combinations. There was no significant effect on mesenteric plasma extravasation. In conclusion, the administration of C1-INH + factor XIII and NAC + TM reduced endothelial leucocyte adherence and IL-1beta plasma levels, but increased IL-6 levels.
Collapse
Affiliation(s)
- J Birnbaum
- Klinik für Anaesthesiologie und Operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Charité Mitte and Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Croner RS, Hohenberger W, Jeschke MG. Hepatic gene expression during endotoxemia. J Surg Res 2008; 154:126-34. [PMID: 18952238 DOI: 10.1016/j.jss.2008.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/09/2008] [Accepted: 04/17/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE During the course of sepsis, endotoxins and cytokines activate Kupffer cells, induce the liberation and synthesis of adhesion molecules, and damage hepatocytes, which leads to septic liver failure. The interaction of the different hepatic cell types during these processes is not completely understood and may be clarified by microarray technology. MATERIALS AND METHODS Seven Sprague Dawley rats received either an intraperitoneal injection of lipopolysaccharides (LPS) of 3 mg/kg body weight (n = 4) or sodium chloride (SC) 0.9% (n = 3). Animals were sacrificed 24 h after LPS or SC injection. RNA from liver tissue was isolated and hybridized on GeneChips (RAE 230A; Affymetrix, Santa Clara, CA). Expression of interleukin-1beta, tumor necrosis factor-alpha, and signal transducer and activator of transcription 3 was controlled by reverse transcription-polymerase chain reaction analysis. Immunohistochemical staining for intercellular adhesion molecule-1 of liver tissue was performed. RESULTS We detected 508 differentially expressed genes between LPS and SC. Two hundred forty-eight genes were up-regulated and 260 genes were down-regulated in the LPS versus the SC group. Mainly genes involved in immune response and receptor activity were up-regulated in the LPS group. Genes enrolled in catalytic, transferase activity, and metabolisms were down-regulated in the LPS group. The microarray findings could be verified by reverse transcription-polymerase chain reaction analysis and immunohistochemical staining. CONCLUSIONS The contemporaneous differential regulation of genes involved in metabolism, hepatocellular synthesis, and immune response reflect the liver's central role as immune organ during the course of sepsis. A switch from metabolic to immunological activity is obvious, which aggravates the hepatic damage. The functional interaction of the single genes identified during this process must be further clarified.
Collapse
Affiliation(s)
- Roland S Croner
- Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | |
Collapse
|
18
|
MICROCIRCULATORY ALTERATIONS OF HEPATIC AND MESENTERIC MICROCIRCULATION IN ENDOTOXIN TOLERANCE. Shock 2008; 29:223-31. [DOI: 10.1097/shk.0b013e3180ca9ef3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Identification of lipopolysaccharide binding site on high molecular weight kininogen. Biochem Biophys Res Commun 2007; 366:938-43. [PMID: 18083112 DOI: 10.1016/j.bbrc.2007.12.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 12/06/2007] [Indexed: 11/23/2022]
Abstract
Plasma kallikrein kinin system (KKS) activation along with its cellular receptors expression are increased after injury and in patients with septic shock, hypotensive bacteremia and rhesus monkey infected with Salmonella typhimurium. KKS signaling cascade is activated by activated factor XII (FXIIa, Hageman factor)- and prolylcarboxypeptidase (PRCP)-dependent pathways on endothelial cells. Among the many entities that comprise the KKS, high molecular weight kininogen (HK), a bradykinin precursor, is critical in the assembly and activation of this system. HK is primarily expressed in the liver and secreted into the bloodstream. The activation of the KKS influences the permeability of the endothelium by liberating bradykinin (BK) from HK. BK is a potent inflammatory peptide which stimulates constitutive bradykinin B2 and inducible B1 receptors to release nitric oxide and prostacyclin. Regardless of the triggers, PK can only be activated on HK bound to the artificial negatively charged or to cell membrane surfaces. Since LPS has a negatively charged moiety and the ability to induce inflammatory responses in human, we determined the interaction between LPS and HK. HKH19 (HK cell binding site) and heparin inhibited LPS binding to HK with IC(50)s of 15nM and 20 microg/ml, respectively. C1-inhibitor and N-acetylglucosamine glycan inhibited LPS binding to HK with IC(50)s of about 10 microg/ml and 10mM, respectively. This novel study underscores the implication of HK in infection. We propose that HKH19, heparin, and C1-inhibitor present therapeutic potential for the treatment of sepsis and hypotensive bacteremia.
Collapse
|
20
|
Liu D, Lu F, Qin G, Fernandes SM, Li J, Davis AE. C1 Inhibitor-Mediated Protection from Sepsis. THE JOURNAL OF IMMUNOLOGY 2007; 179:3966-72. [PMID: 17785834 DOI: 10.4049/jimmunol.179.6.3966] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C1 inhibitor (C1INH) protects mice from lethal Gram-negative bacterial LPS-induced endotoxin shock and blocks the binding of LPS to the murine macrophage cell line, RAW 264.7, via an interaction with lipid A. Using the cecal ligation and puncture (CLP) model for sepsis in mice, treatment with C1INH improved survival in comparison with untreated controls. The effect was not solely the result of inhibition of complement and contact system activation because reactive center-cleaved, inactive C1INH (iC1INH) also was effective. In vivo, C1INH and iC1INH both reduced the number of viable bacteria in the blood and peritoneal fluid and accelerated killing of bacteria by blood neutrophils and peritoneal macrophages. In vitro, C1INH bound to bacteria cultured from blood or peritoneal fluid of mice with CLP-induced sepsis, but had no direct effect on bacterial growth. However, both C1INH and iC1INH enhanced the bactericidal activity of blood neutrophils and peritoneal exudate leukocytes. C1INH-deficient mice (C1INH-/- mice) subjected to CLP had a higher mortality than did wild-type littermate mice. Survival of C1INH-/- mice was significantly increased with two doses of C1INH, one given immediately following CLP, and the second at 6 h post-CLP. C1INH may be important in protection from sepsis through enhancement of bacterial uptake by, and/or bactericidal capacity of, phagocytes. Treatment with C1INH may provide a useful additional therapeutic approach in some patients with peritonitis and/or sepsis.
Collapse
Affiliation(s)
- Dongxu Liu
- CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Zhang H, Qin G, Liang G, Li J, Chiu I, Barrington RA, Liu D. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action. Biochem Biophys Res Commun 2007; 358:1120-7. [PMID: 17521609 DOI: 10.1016/j.bbrc.2007.05.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 05/10/2007] [Indexed: 11/30/2022]
Abstract
Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-kappaB activation and nuclear translocation in an IkappaBalpha-dependent manner. The inhibitory effects were associated with reduction of inhibitor IkappaB kinase activity and stabilization of the NF-kappaB inhibitor IkappaB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.
Collapse
Affiliation(s)
- Haimou Zhang
- Center for Infection and Immunity Research, School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Sung MJ, Kim W, Ahn SY, Cho CH, Koh GY, Moon SO, Kim DH, Lee S, Kang KP, Jang KY, Park SK. Protective effect of alpha-lipoic acid in lipopolysaccharide-induced endothelial fractalkine expression. Circ Res 2005; 97:880-90. [PMID: 16166554 DOI: 10.1161/01.res.0000186522.89544.4d] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fractalkine is a unique chemokine that functions as a chemoattractant as well as an adhesion molecule on endothelial cells activated by proinflammatory cytokines. Alpha-lipoic acid (LA), a naturally occurring dithiol compound, is an essential cofactor for mitochondrial bioenergetic enzymes. LA improves glycemic control, reduces diabetic polyneuropathies, and mitigates toxicity associated with heavy metal poisoning. The effects of LA on processes associated with sepsis, however, are unknown. We evaluated the antiinflammatory effect of LA on fractalkine expression in a lipopolysaccharide-induced endotoxemia model. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) significantly induced fractalkine mRNA and protein expression in endothelial cells. LA strongly suppressed TNF-alpha- or IL-1beta-induced fractalkine expression in endothelial cells by suppressing the activities of nuclear factor-kappaB and specificity protein-1. LA also decreased TNF-alpha- or IL-1beta-stimulated monocyte adhesion to human umbilical vein endothelial cells. As shown by immunohistochemistry, fractalkine protein expression was markedly increased by treatment with lipopolysaccharide in arterial endothelial cells, endocardium, and endothelium of intestinal villi. LA suppressed lipopolysaccharide-induced fractalkine protein expression and infiltration of endothelin 1-positive cells into the heart and intestine in vivo. LA protected against lipopolysaccharide-induced myocardial dysfunction and improved survival in lipopolysaccharide-induced endotoxemia. These results suggest that LA could be an effective agent to reduce fractalkine-mediated inflammatory processes in endotoxemia.
Collapse
Affiliation(s)
- Mi Jeong Sung
- Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School, Jeonju, 560-180, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|