1
|
Gomri F, Vischer S, Turzi A, Berndt S. Swiss Medical Devices for Autologous Regenerative Medicine: From Innovation to Clinical Validation. Pharmaceutics 2022; 14:pharmaceutics14081617. [PMID: 36015243 PMCID: PMC9413293 DOI: 10.3390/pharmaceutics14081617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 12/01/2022] Open
Abstract
Regenerative medicine, based on the use of autologous tissues and embryonic, stem or differentiated cells, is gaining growing interest. However, their preparation, in a manner compliant with good practices and health regulations, is a technical challenge. The aim of this manuscript is to present the design of reliable CE marked medical devices for the preparation of standardized platelet-rich plasma (PRP) and other autologous biologics intended for therapeutic uses. There are numerous PRP isolation processes. Depending on the methodology used, PRP composition varies greatly in terms of platelet concentration, platelet quality, and level of contamination with red and white blood cells. This variability in PRP composition might affect the clinical outcomes. The devices presented here are based on a specific technology, patented all over the world, that allows the precise separation of blood components as a function of their density using thixotropic separator gels in closed systems. This allows the preparation, in an automated manner, of leukocyte poor PRP with a standardized composition. Production of different forms of PRP is a clinical asset to suit various therapeutic needs. Therefore, we are offering solutions to prepare PRP either in liquid or gel form, and PRP combined with hyaluronic acid. These biologics have been successfully used in many different therapeutic domains, resulting in more than 150 published clinical studies. We also developed the CuteCell technology platform for cell culture expansion for further autologous cell therapies. This technology enables the safe and rapid in vitro expansion of cells intended for therapeutic use in good manufacturing practices (GMP) and autologous conditions, using blood-derived products as culture media supplementation. We summarize in this article our 20 years’ experience of research and development for the design of PRP devices and, more recently, for PRP combined with hyaluronic acid.
Collapse
Affiliation(s)
- Farid Gomri
- Regen Lab SA, 1052 Le Mont-sur-Lausanne, Switzerland; (F.G.); (S.V.); (A.T.)
| | - Solange Vischer
- Regen Lab SA, 1052 Le Mont-sur-Lausanne, Switzerland; (F.G.); (S.V.); (A.T.)
| | - Antoine Turzi
- Regen Lab SA, 1052 Le Mont-sur-Lausanne, Switzerland; (F.G.); (S.V.); (A.T.)
| | - Sarah Berndt
- Regen Lab SA, 1052 Le Mont-sur-Lausanne, Switzerland; (F.G.); (S.V.); (A.T.)
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
2
|
The use of the chick embryo CAM assay in the study of angiogenic activiy of biomaterials. Microvasc Res 2020; 131:104026. [PMID: 32505611 DOI: 10.1016/j.mvr.2020.104026] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/30/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023]
Abstract
The chick embryo chorioallantoic membrane (CAM) is a highly vascularized extraembryonic membrane, which carries out several functions during embryonic development, including exchange of respiratory gases, calcium transport from the eggshell, acid-base homeostasis in the embryo, and ion and water reabsorption from the allantoic fluid. Due to its easy accessibility, affordability and given that it constitutes an immunodeficient environment, CAM has been used as an experimental model for >50 years and in particular it has been broadly used to study angiogenesis and anti-angiogenesis. This review article describes the use of the CAM assay as a valuable assay to test angiogenic activity of biomaterials in vivo before they are further investigated in animal models. In this context, the use of CAM has become an integral part of the biocompatibility testing process for developing potential biomaterials.
Collapse
|
3
|
Verboket R, Herrera-Vizcaíno C, Thorwart K, Booms P, Bellen M, Al-Maawi S, Sader R, Marzi I, Henrich D, Ghanaati S. Influence of concentration and preparation of platelet rich fibrin on human bone marrow mononuclear cells (in vitro). Platelets 2018; 30:861-870. [PMID: 30359164 DOI: 10.1080/09537104.2018.1530346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Large bone defects have always been a big challenge. The use of bone marrow mononuclear cells (BMCs) combined with an osteoconductive scaffold has been proved a good alternative for the treatment of large bone defects. Another autologous source for tissue engineering is platelet rich fibrin (PRF). PRF is a blood concentrate system obtained through a one-step centrifugation. The generated 3D matrix of the PRF clot serves as a reservoir of growth factors. Those growth factors might support the regenerative response of BMC, and therefore the effect of PRF, centrifuged with either high medium (208 g) or low (60 g) relative centrifugation force (RCF) on BMCs was evaluated in vitro in the present study. The two PRF matrices obtained were initially characterized and compared to human serum. Significantly increased concentrations of insulin-like growth factor (IGF), soluble intercellular adhesion molecule-1 (sICAM1) and transforming growth factor (TGF)-β were found in PRF compared to human serum whereas VEGF concentration was not significantly altered. A dose-response study revealed no further activation of BMC's metabolic activity, if concentration of both PRF matrices exceeded 10% (v/v). Effect of both PRF preparations [10%] on BMC was analyzed after 2, 7, and 14 days in comparison to human serum [10%]. Metabolic activity of BMC increased significantly in all groups on day 14. Furthermore, gene expression of matrix metalloproteinases (MMP)-2, -7, and -9 was significantly stimulated in BMC cultivated with the respective PRF matrices compared to human serum. Apoptotic activity of BMC incubated with PRF was not altered compared to BMC cultivated with serum. In conclusion, PRF could be used as a growth factor delivery system of autologous or allogeneic source with the capability of stimulating cells such as BMC.
Collapse
Affiliation(s)
- René Verboket
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt , Frankfurt , Germany
| | - Carlos Herrera-Vizcaíno
- Clinic for Maxillofacial and Plastic Surgery, FORM, Frankfurt Oral Regenerative Medicine, Johann Wolfgang Goethe University , Frankfurt Am Main , Germany
| | - Kirsten Thorwart
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt , Frankfurt , Germany
| | - Patrick Booms
- Clinic for Maxillofacial and Plastic Surgery, FORM, Frankfurt Oral Regenerative Medicine, Johann Wolfgang Goethe University , Frankfurt Am Main , Germany
| | - Marlene Bellen
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt , Frankfurt , Germany
| | - Sarah Al-Maawi
- Clinic for Maxillofacial and Plastic Surgery, FORM, Frankfurt Oral Regenerative Medicine, Johann Wolfgang Goethe University , Frankfurt Am Main , Germany
| | - Robert Sader
- Clinic for Maxillofacial and Plastic Surgery, FORM, Frankfurt Oral Regenerative Medicine, Johann Wolfgang Goethe University , Frankfurt Am Main , Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt , Frankfurt , Germany
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt , Frankfurt , Germany
| | - Shahram Ghanaati
- Clinic for Maxillofacial and Plastic Surgery, FORM, Frankfurt Oral Regenerative Medicine, Johann Wolfgang Goethe University , Frankfurt Am Main , Germany
| |
Collapse
|
4
|
Ratajczak J, Vangansewinkel T, Gervois P, Merckx G, Hilkens P, Quirynen M, Lambrichts I, Bronckaers A. Angiogenic Properties of 'Leukocyte- and Platelet-Rich Fibrin'. Sci Rep 2018; 8:14632. [PMID: 30279483 PMCID: PMC6168453 DOI: 10.1038/s41598-018-32936-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/13/2018] [Indexed: 01/07/2023] Open
Abstract
Leukocyte- and Platelet-Rich Fibrin (L-PRF) is an autologous platelet concentrate, consisting of a fibrin matrix enriched with platelets, leukocytes and a plethora of cytokines and growth factors. Since L-PRF is produced bedside from whole blood without the use of an anti-coagulant, it is becoming a popular adjuvant in regenerative medicine. While other types of platelet concentrates have been described to stimulate blood vessel formation, little is known about the angiogenic capacities of L-PRF. Therefore, this study aimed to fully characterize the angiogenic potential of L-PRF. With an antibody array, the growth factors released by L-PRF were determined and high levels of CXC chemokine receptor 2 (CXCR-2) ligands and epidermal growth factor (EGF) were found. L-PRF induced in vitro key steps of the angiogenic process: endothelial proliferation, migration and tube formation. In addition, we could clearly demonstrate that L-PRF is able to induce blood vessel formation in vivo, the chorioallantoic membrane assay. In conclusion, we could demonstrate the angiogenic capacity of L-PRF both in vitro and in vivo, underlying the clinical potential of this easy-to-use platelet concentrate.
Collapse
Affiliation(s)
- Jessica Ratajczak
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim Vangansewinkel
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Greet Merckx
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Petra Hilkens
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Marc Quirynen
- Department of Oral Health Sciences, Katholieke Universiteit Leuven (KUL) & Periodontology, University Hospitals Leuven, Leuven, Belgium
| | - Ivo Lambrichts
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
5
|
Moreno-Jiménez I, Kanczler JM, Hulsart-Billstrom G, Inglis S, Oreffo RO. The Chorioallantoic Membrane Assay for Biomaterial Testing in Tissue Engineering: A Short-TermIn VivoPreclinical Model. Tissue Eng Part C Methods 2017; 23:938-952. [DOI: 10.1089/ten.tec.2017.0186] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Inés Moreno-Jiménez
- Bone and Joint Research Group, Faculty of Medicine, Institute of Developmental Sciences, Center for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Janos M. Kanczler
- Bone and Joint Research Group, Faculty of Medicine, Institute of Developmental Sciences, Center for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Gry Hulsart-Billstrom
- Bone and Joint Research Group, Faculty of Medicine, Institute of Developmental Sciences, Center for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Stefanie Inglis
- Bone and Joint Research Group, Faculty of Medicine, Institute of Developmental Sciences, Center for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Richard O.C. Oreffo
- Bone and Joint Research Group, Faculty of Medicine, Institute of Developmental Sciences, Center for Human Development, Stem Cells and Regeneration, Human Development and Health, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Fercana GR, Yerneni S, Billaud M, Hill JC, VanRyzin P, Richards TD, Sicari BM, Johnson SA, Badylak SF, Campbell PG, Gleason TG, Phillippi JA. Perivascular extracellular matrix hydrogels mimic native matrix microarchitecture and promote angiogenesis via basic fibroblast growth factor. Biomaterials 2017; 123:142-154. [PMID: 28167392 DOI: 10.1016/j.biomaterials.2017.01.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/27/2017] [Indexed: 01/12/2023]
Abstract
Extracellular matrix (ECM)-derived bioscaffolds have been shown to elicit tissue repair through retention of bioactive signals. Given that the adventitia of large blood vessels is a richly vascularized microenvironment, we hypothesized that perivascular ECM contains bioactive signals that influence cells of blood vessel lineages. ECM bioscaffolds were derived from decellularized human and porcine aortic adventitia (hAdv and pAdv, respectively) and then shown have minimal DNA content and retain elastin and collagen proteins. Hydrogel formulations of hAdv and pAdv ECM bioscaffolds exhibited gelation kinetics similar to ECM hydrogels derived from porcine small intestinal submucosa (pSIS). hAdv and pAdv ECM hydrogels displayed thinner, less undulated, and fibrous microarchitecture reminiscent of native adventitia, with slight differences in ultrastructure visible in comparison to pSIS ECM hydrogels. Pepsin-digested pAdv and pSIS ECM bioscaffolds increased proliferation of human adventitia-derived endothelial cells and this effect was mediated in part by basic fibroblast growth factor (FGF2). Human endothelial cells cultured on Matrigel substrates formed more numerous and longer tube-like structures when supplemented with pAdv ECM bioscaffolds, and FGF2 mediated this matrix signaling. ECM bioscaffolds derived from pAdv promoted FGF2-dependent in vivo angiogenesis in the chick chorioallantoic membrane model. Using an angiogenesis-focused protein array, we detected 55 angiogenesis-related proteins, including FGF2 in hAdv, pAdv and pSIS ECMs. Interestingly, 19 of these factors were less abundant in ECMs bioscaffolds derived from aneurysmal specimens of human aorta when compared with non-aneurysmal (normal) specimens. This study reveals that Adv ECM hydrogels recapitulate matrix fiber microarchitecture of native adventitia, and retain angiogenesis-related actors and bioactive properties such as FGF2 signaling capable of influencing processes important for angiogenesis. This work supports the use of Adv ECM bioscaffolds for both discovery biology and potential translation towards microvascular regeneration in clinical applications.
Collapse
Affiliation(s)
- George R Fercana
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Saigopalakrishna Yerneni
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Marie Billaud
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jennifer C Hill
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paul VanRyzin
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tara D Richards
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Brian M Sicari
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Scott A Johnson
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Stephen F Badylak
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Phil G Campbell
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Thomas G Gleason
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
7
|
Griffin KS, Davis KM, McKinley TO, Anglen JO, Chu TMG, Boerckel JD, Kacena MA. Evolution of Bone Grafting: Bone Grafts and Tissue Engineering Strategies for Vascularized Bone Regeneration. Clin Rev Bone Miner Metab 2015. [DOI: 10.1007/s12018-015-9194-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Brady AC, Martino MM, Pedraza E, Sukert S, Pileggi A, Ricordi C, Hubbell JA, Stabler CL. Proangiogenic hydrogels within macroporous scaffolds enhance islet engraftment in an extrahepatic site. Tissue Eng Part A 2013; 19:2544-52. [PMID: 23790218 DOI: 10.1089/ten.tea.2012.0686] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transplantation of allogeneic islets in recent clinical trials has shown substantial promise as a therapy for type 1 diabetes; however, long-term insulin independence remains inadequate. This has been largely attributed to the current intravascular, hepatic transplant site, which exposes islets to mechanical and inflammatory stresses. A highly macroporous scaffold, housed within an alternative transplant site, can support an ideal environment for islet transplantation by providing three-dimensional distribution of islets, while permitting the infiltration of host vasculature. In the present study, we sought to evaluate the synergistic effect of a proangiogenic hydrogel loaded within the void space of a macroporous poly(dimethylsiloxane) (PDMS) scaffold on islet engraftment. The fibrin-based proangiogenic hydrogel tested presents platelet derived growth factor (PDGF-BB), via a fibronectin (FN) fragment containing growth factor and major integrin binding sites in close proximity. The combination of the proangiogenic hydrogel with PDMS scaffolds resulted in a significant decrease in the time to normoglycemia for syngeneic mouse islet transplants. This benefit was associated with an observed increase in competent vessel branching, as well as mature intraislet vessels. Overall, the addition of the proangiogenic factor PDGF-BB, delivered via the FN fragment-functionalized hydrogel, positively influenced the efficiency of engraftment. These characteristics, along with its ease of retrieval, make this combination of a biostable macroporous scaffold and a degradable proangiogenic hydrogel a supportive structure for insulin-producing cells implanted in extrahepatic sites.
Collapse
|
9
|
Lee F, Kurisawa M. Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering. Acta Biomater 2013; 9:5143-52. [PMID: 22943886 DOI: 10.1016/j.actbio.2012.08.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/31/2012] [Accepted: 08/26/2012] [Indexed: 02/08/2023]
Abstract
Fibrin gel is widely used as a tissue engineering scaffold. However, it has poor mechanical properties, which often result in rapid contraction and degradation of the scaffold. An interpenetrating polymer network (IPN) hydrogel composed of fibrin and hyaluronic acid-tyramine (HA-Tyr) was developed to improve the mechanical properties. The fibrin network was formed by cleaving fibrinogen with thrombin, producing fibrin monomers that rapidly polymerize. The HA network was formed through the coupling of tyramine moieties using horseradish peroxidase (HRP) and hydrogen peroxide (H₂O₂). The degree of crosslinking of the HA-Tyr network can be tuned by varying the H₂O₂ concentration, producing IPN hydrogels with different storage moduli (G'). While fibrin gels were completely degraded in the presence of plasmin and contracted when embedded with cells, the shape of the IPN hydrogels was maintained due to structural support by the HA-Tyr networks. Cell proliferation and capillary formation occurred in IPN hydrogels and were found to decrease with increasing G' of the hydrogels. The results suggest that fibrin-HA-Tyr IPN hydrogels are a potential alternative to fibrin gels as scaffolds for tissue engineering applications that require shape stability.
Collapse
Affiliation(s)
- Fan Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore
| | | |
Collapse
|
10
|
Baiguera S, Macchiarini P, Ribatti D. Chorioallantoic membrane for in vivo investigation of tissue-engineered construct biocompatibility. J Biomed Mater Res B Appl Biomater 2012; 100:1425-34. [DOI: 10.1002/jbm.b.32653] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/14/2011] [Accepted: 12/01/2011] [Indexed: 01/15/2023]
|
11
|
Kim J, Rubin N, Huang Y, Tuan TL, Lien CL. In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix. Nat Protoc 2012; 7:247-55. [PMID: 22262006 DOI: 10.1038/nprot.2011.440] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe here a protocol for culturing epicardial cells from adult zebrafish hearts, which have a unique regenerative capacity after injury. Briefly, zebrafish hearts first undergo ventricular amputation or sham operation. Next, the hearts are excised and explanted onto fibrin gels prepared in advance in a multiwell tissue culture plate. The procedure allows the epicardial cells to outgrow from the ventricle onto a fibrin matrix in vitro. This protocol differs from those used in other organisms by using a fibrin gel to mimic blood clots that normally form after injury and that are essential for proper cell migration. The culture procedure can be accomplished within 5 h; epicardial cells can be obtained within 24-48 h and can be maintained in culture for 5-6 d. This protocol can be used to investigate the mechanisms underlying epicardial cell migration, proliferation and epithelial-to-mesenchymal transition during heart regeneration, homeostatic cardiac growth or other physiological processes.
Collapse
Affiliation(s)
- Jieun Kim
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
12
|
Sun H, Wang X, Hu X, Yu W, You C, Hu H, Han C. Promotion of angiogenesis by sustained release of rhGM-CSF from heparinized collagen/chitosan scaffolds. J Biomed Mater Res B Appl Biomater 2011; 100:788-98. [PMID: 22190418 DOI: 10.1002/jbm.b.32512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/19/2011] [Accepted: 10/31/2011] [Indexed: 11/09/2022]
Abstract
A novel dermal substitute of combining recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) with a porous heparinized collagen/chitosan scaffolds was developed, considering the inadequate angiogenesis during repair of full-thickness skin defects. The physicochemical properties of heparinized collagen/chitosan scaffolds were examined and in vitro release pattern of rhGM-CSF from scaffolds was measured by ELISA. Four groups of composite scaffolds (heparinized or unheparinized scaffolds loaded with or without rhGM-CSF) were fabricated for subcutaneous implantation in young adult male Sprague-Dawley (SD) rats. Tissue specimens were harvested at different time points after implantation for histopathological, immunohistochemical observation, and Western blotting analysis. The heparinized scaffolds (H(1)E) showed slower biodegradation and sustained release of rhGM-CSF in vitro, although no significantly different release pattern was observed between the H(1)E and unheparinized scaffolds (H(0)E). In vivo investigation revealed that the heparinized scaffolds loaded with rhGM-CSF (H(1)E/rhGM-CSF) had the best cellular adhesion and migration, new vessel formation, and highest expression of VEGF and TGF-β1, indicating promoted angiogenesis. This study demonstrated that composite dermal substitute of combining rhGM-CSF with a porous heparinized collagen/chitosan scaffolds could be a potential therapeutic agent for full-thickness skin defects because of its sustained delivery of rhGM-CSF.
Collapse
Affiliation(s)
- Huafeng Sun
- Department of Burns, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Karuparthi P, Nickelson K, Baklanov D. Effects of endothelial growth media on proepicardial cell gene expression and morphogenesis in 3D collagen matrices. In Vitro Cell Dev Biol Anim 2011; 45:633-41. [PMID: 19690924 DOI: 10.1007/s11626-009-9233-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
Abstract
Proepicardial cells (PE) contribute to embryonic coronary vessel and epicardial development. Cells from the PE region can differentiate into coronary vascular smooth muscle cells and fibroblasts in vitro, but the endothelial specification capability of these cells is controversial. We sought to examine the effects of endothelial cell growth media on gene expression and the morphogenic properties of proepicardial cells in three-dimensional (3D) matrices. A primary culture of avian PE cells was subjected to molecular characterization with selected endothelial specific markers. Morphogenic properties of PE cells were assessed by in vitro assays of coronary vasculogenesis and invasion, which utilized highly defined, serum free, three-dimensional matrix conditions. PE cells maintained mixed cell population properties in the culture based on morphogenic features, immunohistochemistry, and the gene expression data. When suspended in a 3D vasculogenesis in vitro assay, PE cells formed intracellular vacuoles and assembled into multicellular tubes. Further, ultrastructural analysis revealed the presence of pinocytic vacuoles, intercellular junctions, and endothelial specific Weibel Palade bodies. In the invasion assay, PE cells spontaneously invaded control matrices. This invasion was markedly enhanced by lysophosphatidic acid (94±9.6 vs. 285.6±54.9, p<0.05) and was completely blocked with synthetic broad-spectrum metalloproteinase inhibitor GM6001. Isolated PE cells grown in endothelial cell media represent mixed-cell population, characterized by both smooth muscle and endothelial gene expression. When placed in 3D in vitro assays, PE cells manifest morphogenic properties, including multicellular tube assembly and invasion.
Collapse
Affiliation(s)
- Poorna Karuparthi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, USA.
| | | | | |
Collapse
|
14
|
Pankajakshan D, Agrawal DK. Scaffolds in tissue engineering of blood vessels. Can J Physiol Pharmacol 2011; 88:855-73. [PMID: 20921972 DOI: 10.1139/y10-073] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue engineering of small diameter (<5 mm) blood vessels is a promising approach for developing viable alternatives to autologous vascular grafts. It involves in vitro seeding of cells onto a scaffold on which the cells attach, proliferate, and differentiate while secreting the components of extracellular matrix that are required for creating the tissue. The scaffold should provide the initial requisite mechanical strength to withstand in vivo hemodynamic forces until vascular smooth muscle cells and fibroblasts reinforce the extracellular matrix of the vessel wall. Hence, the choice of scaffold is crucial for providing guidance cues to the cells to behave in the required manner to produce tissues and organs of the desired shape and size. Several types of scaffolds have been used for the reconstruction of blood vessels. They can be broadly classified as biological scaffolds, decellularized matrices, and polymeric biodegradable scaffolds. This review focuses on the different types of scaffolds that have been designed, developed, and tested for tissue engineering of blood vessels, including use of stem cells in vascular tissue engineering.
Collapse
Affiliation(s)
- Divya Pankajakshan
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | |
Collapse
|
15
|
Abstract
Angiogenesis, or the formation of new blood vessels from the preexisting vasculature, is a key component in numerous physiologic and pathologic responses and has broad impact in many medical and surgical specialties. In this review, we discuss the key cellular steps that lead to the neovascularization of tissues and highlight the main molecular mechanisms and mediators in this process. We include discussions on proteolytic enzymes, cell-matrix interactions, and pertinent cell signaling pathways and end with a survey of the mechanisms that lead to the stabilization and maturation of neovasculatures.
Collapse
|
16
|
Jung SN, Rhie JW, Kwon H, Jun YJ, Seo JW, Yoo G, Oh DY, Ahn ST, Woo J, Oh J. In Vivo Cartilage Formation Using Chondrogenic-Differentiated Human Adipose-Derived Mesenchymal Stem Cells Mixed With Fibrin Glue. J Craniofac Surg 2010; 21:468-72. [DOI: 10.1097/scs.0b013e3181cfea50] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Sun B, Chen B, Zhao Y, Sun W, Chen K, Zhang J, Wei Z, Xiao Z, Dai J. Crosslinking heparin to collagen scaffolds for the delivery of human platelet-derived growth factor. J Biomed Mater Res B Appl Biomater 2009; 91:366-72. [PMID: 19484776 DOI: 10.1002/jbm.b.31411] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Platelet-derived growth factor (PDGF) plays an important role in tissue regeneration and wound repair. However, the lack of effective delivery and the efficient targeting specificity limits its clinical applications. Here, heparin possessing PDGF binding domain was crosslinked to the collagen-based demineralized bone matrix (DBM) for the delivery of human PDGF(HC-PDGF). In in vitro experiments, heparin improves the binding of PDGF to collagen. In vitro activity assay indicates that collagen-heparin-PDGF (CH-PDGF) promotes human fibroblasts to proliferate on collagen gel. In addition, HC-PDGF stimulates cells to migrate into DBM scaffolds after implantation. The histological analysis shows that HC-PDGF promotes vascularization of the implants. In summary, heparin-DBM/PDGF could prevent the diffusion of PDGF, prolong its activity, and promote the cellularization and vascularization of the scaffold.
Collapse
Affiliation(s)
- Bo Sun
- College of Life Sciences, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98:1317-75. [PMID: 18729202 DOI: 10.1002/jps.21528] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dip. Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| |
Collapse
|
19
|
Shirai K, Ishisaki A, Kaku T, Tamura M, Furuichi Y. Multipotency of clonal cells derived from swine periodontal ligament and differential regulation by fibroblast growth factor and bone morphogenetic protein. J Periodontal Res 2009; 44:238-47. [DOI: 10.1111/j.1600-0765.2008.01140.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2008; 2:81-96. [DOI: 10.1002/term.74] [Citation(s) in RCA: 417] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Polykandriotis E, Tjiawi J, Euler S, Arkudas A, Hess A, Brune K, Greil P, Lametschwandtner A, Horch RE, Kneser U. The venous graft as an effector of early angiogenesis in a fibrin matrix. Microvasc Res 2007; 75:25-33. [PMID: 17544455 DOI: 10.1016/j.mvr.2007.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 04/01/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
The arteriovenous loop (AV loop) model is gaining importance as a means of initiating and sustaining perfusion in tissue engineering constructs in vivo. This study represents an attempt to dissect the morphology of early arterialization and angiogenesis in the AV loop in a fibrin matrix with special focus on the interpositional venous graft (IVG) segment. An AV loop was constructed in 30 rats using the femoral vessels and an IVG. The AV loop was encased in an isolation chamber filled with a fibrin matrix. Evaluation methods included scanning electron microscopy (SEM) of corrosion casts, immune histology and micro magnetic resonance angiography (MRA). Direct luminal neovascular sprouting was evident between day 10 and day 14 from the vein and the IVG but not from the arterial segment. Arterialization of the IVG manifested itself on the corrosion casts as a gradual reduction in luminal caliber with onset after day 7. Microdissection of the microvascular replicas could demonstrate for the first time the presence of direct luminal sprouts from the IVG. MRA was used to display the shunt pattern of perfusion in the patent AV loop. From the three segments of the vascular axis in the AV loop the IVG is the most versatile for applications in the clinical as well as the experimental setting. Kinetics of angiogenesis warrant further investigation in the IVG.
Collapse
Affiliation(s)
- E Polykandriotis
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Krankenhausstrasse 12, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|