1
|
Khaliduzzaman A, Fujitani S, Kondo N, Ogawa Y, Fujiura T, Suzuki T, Kashimori A, Syduzzaman M, Rahman A. Non-invasive characterization of chick embryo body and cardiac movements using near infrared light. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.eaef.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Fauzia E, Barbhuyan TK, Shrivastava AK, Kumar M, Garg P, Khan MA, Robertson AAB, Raza SS. Chick Embryo: A Preclinical Model for Understanding Ischemia-Reperfusion Mechanism. Front Pharmacol 2018; 9:1034. [PMID: 30298003 PMCID: PMC6160536 DOI: 10.3389/fphar.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion (I/R)-related disorders, such as stroke, myocardial infarction, and peripheral vascular disease, are among the most frequent causes of disease and death. Tissue injury or death may result from the initial ischemic insult, primarily determined by the magnitude and duration of the interruption in blood supply and then by the subsequent reperfusion-induced damage. Various in vitro and in vivo models are currently available to study I/R mechanism in the brain and other tissues. However, thus far, no in ovo I/R model has been reported for understanding the I/R mechanisms and for faster drug screening. Here, we developed an in ovo Hook model of I/R by occluding and releasing the right vitelline artery of a chick embryo at 72 h of development. To validate the model and elucidate various underlying survival and death mechanisms, we employed imaging (Doppler blood flow imaging), biochemical, and blotting techniques and evaluated the cell death mechanism: autophagy and inflammation caused by I/R. In conclusion, the present model is useful in parallel with established in vitro and in vivo I/R models to understand the mechanisms of I/R development and its treatment.
Collapse
Affiliation(s)
- Eram Fauzia
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Tarun Kumar Barbhuyan
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Amit Kumar Shrivastava
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Manish Kumar
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Paarth Garg
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Mohsin Ali Khan
- Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India.,Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India
| |
Collapse
|
3
|
Goktas S, Uslu FE, Kowalski WJ, Ermek E, Keller BB, Pekkan K. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development. PLoS One 2016; 11:e0161611. [PMID: 27552150 PMCID: PMC4994943 DOI: 10.1371/journal.pone.0161611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022] Open
Abstract
The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis.
Collapse
Affiliation(s)
- Selda Goktas
- Mechanical Engineering Department, Koc University, Istanbul, Turkey
| | - Fazil E. Uslu
- Mechanical Engineering Department, Koc University, Istanbul, Turkey
| | - William J. Kowalski
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States of America
| | - Erhan Ermek
- Mechanical Engineering Department, Koc University, Istanbul, Turkey
| | - Bradley B. Keller
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States of America
| | - Kerem Pekkan
- Mechanical Engineering Department, Koc University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
4
|
Vostarek F, Svatunkova J, Sedmera D. Acute temperature effects on function of the chick embryonic heart. Acta Physiol (Oxf) 2016; 217:276-86. [PMID: 27083765 DOI: 10.1111/apha.12691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/22/2016] [Accepted: 04/12/2016] [Indexed: 12/01/2022]
Abstract
AIM We analysed the effects of acute temperature change on the beating rate, conduction properties and calcium transients in the chick embryonic heart in vitro and in ovo. METHODS The effects of temperature change (34, 37 and 40 °C) on calcium dynamics in isolated ED4 chick hearts in vitro were investigated by high-speed calcium optical imaging. For comparison and validation of in vitro measurements, experiments were also performed in ovo using videomicroscopy. Artificial stimulation experiments were performed in vitro and in ovo to uncover conduction limits of heart segments. RESULTS Decrease in temperature from 37 to 34 °C in vitro led to a 22% drop in heart rate and unchanged amplitude of Ca(2+) transients, compared to a 25% heart rate decrease in ovo. Increase in temperature from 37 to 40 °C in vitro and in ovo led to 20 and 23% increases in heart rate, respectively, and a significant decrease in amplitude of Ca(2+) transients (atrium -35%, ventricle -38%). We observed a wide spectrum of arrhythmias in vitro, of which the most common was atrioventricular (AV) block (57%). There was variability of AV block locations. Pacing experiments in vitro and in ovo suggested that the AV blocks were likely caused by relative tissue hypoxia and not by the tachycardia itself. CONCLUSION The pacemaker and AV canal are the most temperature-sensitive segments of the embryonic heart. We suggest that the critical point for conduction is the connection of the ventricular trabecular network to the AV canal.
Collapse
Affiliation(s)
- F. Vostarek
- Czech Academy of Sciences; Institute of Physiology; Prague Czech Republic
- Faculty of Science; Charles University; Prague Czech Republic
| | - J. Svatunkova
- Czech Academy of Sciences; Institute of Physiology; Prague Czech Republic
| | - D. Sedmera
- Czech Academy of Sciences; Institute of Physiology; Prague Czech Republic
- First Faculty of Medicine; Institute of Anatomy; Charles University; Prague Czech Republic
| |
Collapse
|
5
|
Nam KH, Kim J, Ra G, Lee CH, Paeng DG. Feasibility Study of Ex Ovo Chick Chorioallantoic Artery Model for Investigating Pulsatile Variation of Arterial Geometry. PLoS One 2015; 10:e0145969. [PMID: 26717244 PMCID: PMC4696805 DOI: 10.1371/journal.pone.0145969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/10/2015] [Indexed: 11/19/2022] Open
Abstract
Despite considerable research efforts on the relationship between arterial geometry and cardiovascular pathology, information is lacking on the pulsatile geometrical variation caused by arterial distensibility and cardiomotility because of the lack of suitable in vivo experimental models and the methodological difficulties in examining the arterial dynamics. We aimed to investigate the feasibility of using a chick embryo system as an experimental model for basic research on the pulsatile variation of arterial geometry. Optical microscope video images of various arterial shapes in chick chorioallantoic circulation were recorded from different locations and different embryo samples. The high optical transparency of the chorioallantoic membrane (CAM) allowed clear observation of tiny vessels and their movements. Systolic and diastolic changes in arterial geometry were visualized by detecting the wall boundaries from binary images. Several to hundreds of microns of wall displacement variations were recognized during a pulsatile cycle. The spatial maps of the wall motion harmonics and magnitude ratio of harmonic components were obtained by analyzing the temporal brightness variation at each pixel in sequential grayscale images using spectral analysis techniques. The local variations in the spectral characteristics of the arterial wall motion were reflected well in the analysis results. In addition, mapping the phase angle of the fundamental frequency identified the regional variations in the wall motion directivity and phase shift. Regional variations in wall motion phase angle and fundamental-to-second harmonic ratio were remarkable near the bifurcation area. In summary, wall motion in various arterial geometry including straight, curved and bifurcated shapes was well observed in the CAM artery model, and their local and cyclic variations could be characterized by Fourier and wavelet transforms of the acquired video images. The CAM artery model with the spectral analysis method is a useful in vivo experimental model for studying pulsatile variation in arterial geometry.
Collapse
Affiliation(s)
- Kweon-Ho Nam
- Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, Jeju, South Korea
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | - Juho Kim
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | - Gicheol Ra
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | - Chong Hyun Lee
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | - Dong-Guk Paeng
- Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, Jeju, South Korea
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
- * E-mail:
| |
Collapse
|
6
|
Lee SJ, Choi W, Seo E, Yeom E. Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish. PLoS One 2015; 10:e0142945. [PMID: 26561854 PMCID: PMC4643039 DOI: 10.1371/journal.pone.0142945] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/28/2015] [Indexed: 11/18/2022] Open
Abstract
Although atherosclerosis is a multifactorial disease, the role of hemodynamic information has become more important. Low and oscillating wall shear stress (WSS) that changes its direction is associated with the early stage of atherosclerosis. Several in vitro and in vivo models were proposed to reveal the relation between the WSS and the early atherosclerosis. However, these models possess technical limitations in mimicking real physiological conditions and monitoring the developmental course of the early atherosclerosis. In this study, a hypercholesterolaemic zebrafish model is proposed as a novel experimental model to resolve these limitations. Zebrafish larvae are optically transparent, which enables temporal observation of pathological variations under in vivo condition. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro particle image velocimetry (PIV) technique, and spatial distribution of lipid deposition inside the model was quantitatively investigated after feeding high cholesterol diet for 10 days. Lipids were mainly deposited in blood vessel of low WSS. The oscillating WSS was not induced by the blood flows in zebrafish models. The present hypercholesterolaemic zebrafish would be used as a potentially useful model for in vivo study about the effects of low WSS in the early atherosclerosis.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790–784, Republic of Korea
- * E-mail:
| | - Woorak Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790–784, Republic of Korea
| | - Eunseok Seo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong, Daegu 711–873, Republic of Korea
| | - Eunseop Yeom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790–784, Republic of Korea
| |
Collapse
|
7
|
Park H, Yeom E, Seo SJ, Lim JH, Lee SJ. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles. Sci Rep 2015; 5:8840. [PMID: 25744850 DOI: 10.1038/srep08840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/06/2015] [Indexed: 11/09/2022] Open
Abstract
Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Hanwook Park
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Eunseop Yeom
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Seung-Jun Seo
- Industrial Technology Convergence Center, Pohang Accelerator Laboratory, POSTECH, Pohang, 790-784, South Korea
| | - Jae-Hong Lim
- Industrial Technology Convergence Center, Pohang Accelerator Laboratory, POSTECH, Pohang, 790-784, South Korea
| | - Sang-Joon Lee
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
8
|
Poelma C, Kloosterman A, Hierck BP, Westerweel J. Accurate blood flow measurements: are artificial tracers necessary? PLoS One 2012; 7:e45247. [PMID: 23028878 PMCID: PMC3447936 DOI: 10.1371/journal.pone.0045247] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/16/2012] [Indexed: 11/29/2022] Open
Abstract
Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.
Collapse
Affiliation(s)
- Christian Poelma
- Laboratory for Aero & Hydrodynamics, Delft University of Technology, Delft, The Netherlands.
| | | | | | | |
Collapse
|