1
|
Ndenda J, Shaw S, Njagarah J. Shear induced fractionalized dispersion during Magnetic Drug Targeting in a permeable microvessel. Colloids Surf B Biointerfaces 2022; 221:113001. [DOI: 10.1016/j.colsurfb.2022.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
2
|
Biomechanics of Swimming Microbes in Atherosclerotic Region with Infusion of Nanoparticles. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Shaw S, Shit G, Tripathi D. Impact of drug carrier shape, size, porosity and blood rheology on magnetic nanoparticle-based drug delivery in a microvessel. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Mathematical Modeling of Targeted Drug Delivery Using Magnetic Nanoparticles during Intraperitoneal Chemotherapy. Pharmaceutics 2022; 14:pharmaceutics14020324. [PMID: 35214055 PMCID: PMC8875578 DOI: 10.3390/pharmaceutics14020324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Intraperitoneal (IP) chemotherapy has emerged as a promising method for the treatment of peritoneal malignancies (PMs). However, microenvironmental barriers in the tumor limit the delivery of drug particles and their deep penetration into the tumor, leading to reduced efficiency of treatment. Therefore, new drug delivery systems should be developed to overcome these microenvironmental barriers. One promising technique is magnetically controlled drug targeting (MCDT) in which an external magnetic field is utilized to concentrate drug-coated magnetic nanoparticles (MNPs) to the desired area. In this work, a mathematical model is developed to investigate the efficacy of MCDT in IP chemotherapy. In this model, considering the mechanism of drug binding and internalization into cancer cells, the efficacy of drug delivery using MNPs is evaluated and compared with conventional IP chemotherapy. The results indicate that over 60 min of treatment with MNPs, drug penetration depth increased more than 13 times compared to conventional IPC. Moreover, the drug penetration area (DPA) increased more than 1.4 times compared to the conventional IP injection. The fraction of killed cells in the tumor in magnetic drug delivery was 6.5%, which shows an increase of more than 2.5 times compared to that of the conventional method (2.54%). Furthermore, the effects of magnetic strength, the distance of the magnet to the tumor, and the magnetic nanoparticles’ size were evaluated. The results show that MDT can be used as an effective technique to increase the efficiency of IP chemotherapy.
Collapse
|
5
|
Kakavand K, Koosha N, Fathi K, Aminian S. Numerical investigation of capture efficiency of carrier particles in a Y-shaped vessel considering particle-particle interaction and Non-Newtonian behavior. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Maiti S, Shaw S, Shit GC. Fractional order model of thermo-solutal and magnetic nanoparticles transport for drug delivery applications. Colloids Surf B Biointerfaces 2021; 203:111754. [PMID: 33882410 DOI: 10.1016/j.colsurfb.2021.111754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023]
Abstract
We examine the capturing efficiency of magnetic nanoparticles bound with drug molecules infused into the blood stream and monitored them by the application of an external magnetic field. We analyzed the motion of the nanoparticles along with the blood velocity through a porous medium vessel under the effect of periodic vibration. The thermo-solutal transport with Caputo-Fabrizio fractional-order derivative is modeled with non-Newtonian biviscosity fluid, Soret and Dufour effect, thermal radiation, and linear variation of the chemical reaction. The Laplace transform, finite Hankel transform and their inverse techniques are used to find analytical solutions. The study shows that both the velocity of blood and nano-particles increase with the increase of particle mass and the concentration parameter, while the opposite behaviour is observed with increasing the fractional parameter, magnetic field effect, and thermal radiation. The heat and mass transfer rates at the wall are enhanced with an increase in the Peclet number and the metabolic heat source. Thermal radiation effect signifies the higher rate of heat transfer at the vessel wall. The study bears potential applications in drug delivery with magnetic nanoparticles at the targeted region.
Collapse
Affiliation(s)
- Subrata Maiti
- Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Sachin Shaw
- Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - G C Shit
- Department of Mathematics, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
7
|
Zhou J, Hou J, Liu Y, Rao J. Targeted delivery of β-glucosidase-loaded magnetic nanoparticles: effect of external magnetic field duration and intensity. Nanomedicine (Lond) 2020; 15:2029-2040. [PMID: 32885735 DOI: 10.2217/nnm-2020-0186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The effect of applied magnetic field duration and intensity on the delivery of β-glucosidase-loaded magnetic nanoparticles was evaluated. Materials & methods: The prepared β-glucosidase-loaded magnetic nanoparticles were targeted to subcutaneous tumors with an external magnetic field. Iron concentration and enzyme activity in tumor tissue were analyzed via electron spin resonance detection, Prussian blue staining and enzyme activity measurement. Results: The increase in magnetic nanoparticles quantity and enzyme activity in tumor tissue was not synchronous with the magnetic targeting duration. In addition, accumulation of magnetic nanoparticles and the increase in enzyme activity were not synchronous with the magnetic field intensity. Conclusion: The results suggested that appropriate magnetic field conditions should be considered for targeted delivery of bioactivity proteins based on magnetic nanoparticles.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, PR China.,Department of Urology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| | - Jing Hou
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, PR China.,Department of Urology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| | - Yunlong Liu
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jun Rao
- Department of Urology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, PR China.,Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| |
Collapse
|
8
|
Tiwari A, Chauhan SS. Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study. Microvasc Res 2019; 123:99-110. [PMID: 30639139 DOI: 10.1016/j.mvr.2019.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Abstract
Present work concerns the pulsatile blood flow of two-fluid model through porous blood vessels under the effect of radially varying viscosity. Blood is modeled as two-phase fluid model consisting a core region by non-Newtonian (Herschel-Bulkley) fluid and a plasma region modeled as Newtonian fluid. No slip condition has been used on wall and pressure gradient is taken as periodic function of time. Up to first order approximate solutions of governing equations are obtained using perturbation approach. A comparative analysis for relative change in flow resistance between our model and previously studied single and two-fluid models without porous layer near wall has also been done. The wall of the blood vessel is composed by a thin Brinkman (porous) layer. The stress jump condition has been imposed on fluid-porous interface. Analytical expressions for the velocity profile, flow rate, wall shear stress and flow resistance have been obtained for different regions and the effect of plasma layer thickness, varying viscosity, yield stress, permeability and viscosity ratio parameter on the flow variables are pictorially discussed. It is perceived that values of flow rate for two-fluid model with porous region near wall is higher in comparison to two-fluid model without porous region near wall. Present study reveals a significant impact of glycocalyx layer on blood flow through blood vessels with a porous layer near wall.
Collapse
Affiliation(s)
- Ashish Tiwari
- Department of Mathematics, Birla Institute of Technology & Science Pilani, Rajasthan 333 031, India
| | - Satyendra Singh Chauhan
- Department of Mathematics, Birla Institute of Technology & Science Pilani, Rajasthan 333 031, India.
| |
Collapse
|
9
|
Shamsi M, Sedaghatkish A, Dejam M, Saghafian M, Mohammadi M, Sanati-Nezhad A. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv 2018; 25:846-861. [PMID: 29589479 PMCID: PMC7011950 DOI: 10.1080/10717544.2018.1455764] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intraperitoneal (IP) chemotherapy has revived hopes during the past few years for the management of peritoneal disseminations of digestive and gynecological cancers. Nevertheless, a poor drug penetration is one key drawback of IP chemotherapy since peritoneal neoplasms are notoriously resistant to drug penetration. Recent preclinical studies have focused on targeting the aberrant tumor microenvironment to improve intratumoral drug transport. However, tumor stroma targeting therapies have limited therapeutic windows and show variable outcomes across different cohort of patients. Therefore, the development of new strategies for improving the efficacy of IP chemotherapy is a certain need. In this work, we propose a new magnetically assisted strategy to elevate drug penetration into peritoneal tumor nodules and improve IP chemotherapy. A computational model was developed to assess the feasibility and predictability of the proposed active drug delivery method. The key tumor pathophysiology, including a spatially heterogeneous construct of leaky vasculature, nonfunctional lymphatics, and dense extracellular matrix (ECM), was reconstructed in silico. The transport of intraperitoneally injected magnetic nanoparticles (MNPs) inside tumors was simulated and compared with the transport of free cytotoxic agents. Our results on magnetically assisted delivery showed an order of magnitude increase in the final intratumoral concentration of drug-coated MNPs with respect to free cytotoxic agents. The intermediate MNPs with the radius range of 200-300 nm yield optimal magnetic drug targeting (MDT) performance in 5-10 mm tumors while the MDT performance remains essentially the same over a large particle radius range of 100-500 nm for a 1 mm radius small tumor. The success of MDT in larger tumors (5-10 mm in radius) was found to be markedly dependent on the choice of magnet strength and tumor-magnet distance while these two parameters were less of a concern in small tumors. We also validated in silico results against experimental results related to tumor interstitial hypertension, conventional IP chemoperfusion, and magnetically actuated movement of MNPs in excised tissue.
Collapse
Affiliation(s)
- Milad Shamsi
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada.,c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Amir Sedaghatkish
- c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Morteza Dejam
- d Department of Petroleum Engineering, College of Engineering and Applied Science , University of Wyoming , Laramie , WY , USA
| | - Mohsen Saghafian
- c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Mehdi Mohammadi
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada
| | - Amir Sanati-Nezhad
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada
| |
Collapse
|
10
|
Rana J, Murthy PVSN. Unsteady solute dispersion in small blood vessels using a two-phase Casson model. Proc Math Phys Eng Sci 2017. [DOI: 10.1098/rspa.2017.0427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study explores the transport of a solute in an unsteady blood flow in small arteries with and without absorption at the wall. The Casson fluid model is suitable for blood flow in small vessels. Owing to the aggregation of red cells in the central region of the small vessels, a two-phase model is considered in this investigation. Using the generalized dispersion model (Sankarasubramanian & Gill 1973
Proc. R. Soc. Lond. A
333
, 115–132. (doi:10.1098/rspa.1973.0051)), the convection, dispersion and mean concentration of the solute are analysed at all times in small arteries of different radii. The effects of the yield stress, wall absorption, the amplitude of the fluctuating pressure gradient component, the peripheral layer thickness, the Womersley frequency parameter, the Schmidt number and the Peclet number on the dispersion process are discussed. A comparative study of solute dispersion among single- and two-phase fluid models is presented. For small vessels, a significant difference between these models is observed during the solute dispersion; however, this difference becomes insignificant for large vessels. The mean concentration of solute reduces with increasing radius of the vessels. The present investigation is more realistic for understanding the transportation process of drugs in blood flow in small arteries using the non-Newtonian fluid model.
Collapse
|
11
|
|
12
|
Lin X, Zhang C, Li K. Statistical Mechanics Transport Model of Magnetic Drug Targeting in Permeable Microvessel. J Nanotechnol Eng Med 2015. [DOI: 10.1115/1.4030787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A transport model of magnetic drug carrier particles (MDCPs) in permeable microvessel based on statistical mechanics has been developed to investigate capture efficiency (CE) of MDCPs at the tumor position. Casson-Newton two-fluid model is used to describe the flow of blood in permeable microvessel and the Darcy model is used to characterize the permeable nature of the microvessel. Coupling effect between the interstitial fluid flow and blood flow is considered by using the Starling assumptions in the model. The Boltzmann equation is used to depict the transport of MDCPs in microvessel. The elastic collision effect between MDCPs and red blood cell is incorporated. The distribution of blood flow velocity, blood pressure, interstitial fluid pressure, and MDCPs has been obtained through the coupling solutions of the model. Based on these, the CE of the MDCPs is obtained. Present results show that the CE of the MDCPs will increase with the enhancement of the size of the MDCPs and the external magnetic field intensity. In addition, when the permeability of the inner wall is better and the inlet blood flow velocity is slow, the CE of the MDCPs will increase as well. Close agreements between the predictions and experimental results demonstrate the capability of the model in modeling transport of MDCPs in permeable microvessel.
Collapse
Affiliation(s)
- Xiaohui Lin
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China e-mail:
| | - Chibin Zhang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China e-mail:
| | - Kai Li
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China e-mail:
| |
Collapse
|
13
|
Shaw S, Ganguly S, Sibanda P, Chakraborty S. Dispersion characteristics of blood during nanoparticle assisted drug delivery process through a permeable microvessel. Microvasc Res 2014; 92:25-33. [PMID: 24406843 DOI: 10.1016/j.mvr.2013.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/17/2013] [Accepted: 12/26/2013] [Indexed: 12/19/2022]
Abstract
Nanoparticle assisted drug delivery holds considerable promise as a means of next generation of medicine that allows for the intravascular delivery of drugs and contrast agents. We analyze the dispersion characteristics of blood during a nanoparticle-assisted drug delivery process through a permeable microvessel. The contribution of molecular and convective diffusion is based on Taylor's theory of shear dispersion. The aggregation of red blood cells in blood flowing through small tubes (less than 40 μm) leads to the two-phase flow with a core of rouleaux surrounded by a cell-depleted peripheral layer. The core region models as a non-Newtonian Casson fluid and the peripheral region acts as a Newtonian fluid. We investigate the influence of the nanoparticle volume fraction, the permeability of the blood vessel, pressure distribution, yield stress and the radius of the nanoparticle on the effective dispersion. We show that the effective diffusion of the nanoparticles reduces with an increase in nanoparticle volume fraction. The permeability of the blood vessels increases the effective dispersion at the inlet. The present study contributes to the fundamental understanding on how the particulate nature of blood influences nanoparticle delivery, and is of particular significance in nanomedicine design for targeted drug delivery applications.
Collapse
Affiliation(s)
- Sachin Shaw
- Department of Mathematics, Statistics and Computer Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| | | | - Precious Sibanda
- Department of Mathematics, Statistics and Computer Sciences, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India.
| |
Collapse
|