1
|
Czekaj P, Król M, Kolanko E, Wieczorek P, Bogunia E, Hermyt M, Grajoszek A, Prusek A. Optimization of methods for intrasplenic administration of human amniotic epithelial cells in order to perform safe and effective cell-based therapy for liver diseases. Stem Cell Rev Rep 2024; 20:1599-1617. [PMID: 38769232 PMCID: PMC11319411 DOI: 10.1007/s12015-024-10735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
In animal experimental models the administration of stem cells into the spleen should ensure high effectiveness of their implantation in the liver due to a direct vascular connection between the two organs. The aim of this study was to update the methods of experimental intrasplenic cell transplantation using human amniotic epithelial cells (hAECs) which are promising cells in the treatment of liver diseases. BALB/c mice were administered intrasplenically with 0.5, 1, and 2 million hAECs by direct bolus injection (400 µl/min) and via a subcutaneous splenic port by fast (20 μl/min) and slow (10 μl/min) infusion. The port was prepared by translocating the spleen to the skin pocket. The spleen, liver, and lungs were collected at 3 h, 6 h, and 24 h after the administration of cells. The distribution of hAECs, histopathological changes in the organs, complete blood count, and biochemical markers of liver damage were assessed. It has been shown that the method of intrasplenic cell administration affects the degree of liver damage. The largest number of mice showing significant liver damage was observed after direct administration and the lowest after slow administration through a port. Liver damage increased with the number of administered cells, which, paradoxically, resulted in increased liver colonization efficiency. It was concluded that the administration of 1 × 106 hAECs by slow infusion via a subcutaneous splenic port reduces the incidence of complications at the expense of a slight decrease in the effectiveness of implantation of the transplanted cells in the liver.
Collapse
Affiliation(s)
- Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.
| | - Mateusz Król
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Emanuel Kolanko
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Patrycja Wieczorek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Edyta Bogunia
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Mateusz Hermyt
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Aniela Grajoszek
- Department of Experimental Medicine, Medical University of Silesia in Katowice, Medyków 4, Katowice, 40-752, Poland
| | - Agnieszka Prusek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| |
Collapse
|
2
|
Guyon PW, Karamlou T, Ratnayaka K, El-Said HG, Moore JW, Rao RP. An Elusive Prize: Transcutaneous Near InfraRed Spectroscopy (NIRS) Monitoring of the Liver. Front Pediatr 2020; 8:563483. [PMID: 33330267 PMCID: PMC7711108 DOI: 10.3389/fped.2020.563483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/26/2020] [Indexed: 01/20/2023] Open
Abstract
Introduction: We postulate a relationship between a transcutaneous hepatic NIRS measurement and a directly obtained hepatic vein saturation. If true, hepatic NIRS monitoring (in conjunction with the current dual-site cerebral-renal NIRS paradigm) might increase the sensitivity for detecting shock since regional oxygen delivery changes in the splanchnic circulation before the kidney or brain. We explored a reliable technique for hepatic NIRS monitoring as a prelude to rigorously testing this hypothesis. This proof-of-concept study aimed to validate hepatic NIRS monitoring by comparing hepatic NIRS measurements to direct hepatic vein samples obtained during cardiac catheterization. Method: IRB-approved prospective pilot study of hepatic NIRS monitoring involving 10 patients without liver disease who were already undergoing elective cardiac catheterization. We placed a NIRS monitor on the skin overlying liver during catheterization. Direct measurement of hepatic vein oxygen saturation during the case compared with simultaneous hepatic NIRS measurement. Results: There was no correlation between the Hepatic NIRS values and the directly measured hepatic vein saturation (R = -0.035; P = 0.9238). However, the Hepatic NIRS values correlated with the cardiac output (R = 0.808; P = 0.0047), the systolic arterial blood pressure (R = 0.739; P = 0.0146), and the diastolic arterial blood pressure (R = 0.7548; P = 0.0116). Conclusions: Using the technique described, hepatic NIRS does not correlate well with the hepatic vein saturation. Further optimization of the technique might provide a better measurement. Hepatic NIRS does correlate with cardiac output and thus may still provide a valuable additional piece of hemodynamic information when combined with other non-invasive monitoring.
Collapse
Affiliation(s)
- Peter W Guyon
- Division of Pediatric Cardiology, University of California San Diego School of Medicine, Rady Children's Hospital, San Diego, CA, United States
| | - Tara Karamlou
- Division of Pediatric Cardiothoracic Surgery, Cleveland Clinic Children's and the Heart Vascular and Thoracic Institute, Cleveland, OH, United States
| | - Kanishka Ratnayaka
- Division of Pediatric Cardiology, University of California San Diego School of Medicine, Rady Children's Hospital, San Diego, CA, United States
| | - Howaida G El-Said
- Division of Pediatric Cardiology, University of California San Diego School of Medicine, Rady Children's Hospital, San Diego, CA, United States
| | - John W Moore
- Division of Pediatric Cardiology, University of California San Diego School of Medicine, Rady Children's Hospital, San Diego, CA, United States
| | - Rohit P Rao
- Division of Pediatric Cardiology, University of California San Diego School of Medicine, Rady Children's Hospital, San Diego, CA, United States
| |
Collapse
|
3
|
Miki T, Takano C, Garcia IM, Grubbs BH. Construction and Evaluation of a Subcutaneous Splenic Injection Port for Serial Intraportal Vein Cell Delivery in Murine Disease Models. Stem Cells Int 2019; 2019:5419501. [PMID: 31191676 PMCID: PMC6525820 DOI: 10.1155/2019/5419501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/22/2019] [Accepted: 03/13/2019] [Indexed: 11/24/2022] Open
Abstract
The liver is the largest internal organ and the center of homeostatic metabolism. Liver-directed cell transplantation is, therefore, an attractive therapeutic option to treat various metabolic disorders as well as liver diseases. Although clinical liver-directed cell transplantation requires multiple cell injections into the portal venous system, a mouse model is lacking which allows us to perform repetitive cell injections into the portal venous system. Here, we propose a surgical model that utilizes the spleen as a subcutaneous injection port. Mouse spleens were translocated under the skin with intact vascular pedicles. Human placental stem cell transplantations were performed one week following this port construction and repeated three times. Cell distribution was analyzed by quantifying human DNA using human Alu-specific primers. About 50% of the transplanted cells were located homogeneously in the liver one hour after the splenic port injection. Fluorescent-labeled cell tracking and antihuman mitochondrion immunohistochemistry studies demonstrated that the cells localized predominantly in small distal portal branches. A similar cell distribution was observed after multiple cell injections. These data confirm that the subcutaneous splenic injection port is suitable for performing repetitive cell transplantation into the portal venous system of mouse models.
Collapse
Affiliation(s)
- Toshio Miki
- Department of Surgery, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 509A, Los Angeles, CA 90033-9141, USA
| | - Chika Takano
- Department of Surgery, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 509A, Los Angeles, CA 90033-9141, USA
| | - Irving M. Garcia
- Department of Surgery, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 509A, Los Angeles, CA 90033-9141, USA
| | - Brendan H. Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, 1200 N. State Street, IRD 220, Los Angeles, CA 90033, USA
| |
Collapse
|
4
|
Nicolas CT, Hickey RD, Allen KL, Du Z, Guthman RM, Kaiser RA, Amiot B, Bansal A, Pandey MK, Suksanpaisan L, DeGrado TR, Nyberg SL, Lillegard JB. Hepatocyte spheroids as an alternative to single cells for transplantation after ex vivo gene therapy in mice and pig models. Surgery 2018; 164:473-481. [PMID: 29884476 PMCID: PMC6573031 DOI: 10.1016/j.surg.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/31/2018] [Accepted: 04/12/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Autologous hepatocyte transplantation after ex vivo gene therapy is an alternative to liver transplantation for metabolic liver disease. Here we evaluate ex vivo gene therapy followed by transplantation of single-cell or spheroid hepatocytes. METHODS Pig and mouse hepatocytes were isolated, labeled with zirconium-89 and returned to the liver as single cells or spheroids. Biodistribution was evaluated through positron emission tomography-computed tomography. Fumarylacetoacetate hydrolase-deficient pig hepatocytes were isolated and transduced with a lentiviral vector containing the Fah gene. Animals received portal vein infusion of single-cell or spheroid autologous hepatocytes after ex vivo gene delivery. Portal pressures were measured and ultrasound was used to evaluate for thrombus. Differences in engraftment and expansion of ex vivo corrected single-cell or spheroid hepatocytes were followed through histologic analysis and animals' ability to thrive off 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione. RESULTS Positron emission tomography-computed tomography imaging showed spheroid hepatocytes with increased heterogeneity in biodistribution as compared with single cells, which spread more uniformly throughout the liver. Animals receiving spheroids experienced higher mean changes in portal pressure than animals receiving single cells (P < .01). Additionally, two animals from the spheroid group developed portal vein thrombi that required systemic anticoagulation. Immunohistochemical analysis of spheroid- and single-cell-transplanted animals showed similar engraftment and expansion rates of fumarylacetoacetate hydrolase-positive hepatocytes in the liver, correlating with similar weight stabilization curves. CONCLUSION Ex vivo gene correction of autologous hepatocytes in fumarylacetoacetate hydrolase-deficient pigs can be performed using hepatocyte spheroids or single-cell hepatocytes, with spheroids showing a more heterogeneous distribution within the liver and higher risks for portal vein thrombosis and increased portal pressures.
Collapse
Affiliation(s)
- Clara T Nicolas
- Department of Surgery, Mayo Clinic, Rochester, MN; Faculty of Medicine, University of Barcelona, Spain
| | - Raymond D Hickey
- Department of Surgery, Mayo Clinic, Rochester, MN; Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Kari L Allen
- Department of Surgery, Mayo Clinic, Rochester, MN
| | - Zeji Du
- Department of Surgery, Mayo Clinic, Rochester, MN
| | | | - Robert A Kaiser
- Department of Surgery, Mayo Clinic, Rochester, MN; Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN
| | - Aditya Bansal
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | | | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN; Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN; Pediatric Surgical Associates, Minneapolis, MN.
| |
Collapse
|
5
|
Stock P, Bielohuby M, Staege MS, Hsu MJ, Bidlingmaier M, Christ B. Impairment of Host Liver Repopulation by Transplanted Hepatocytes in Aged Rats and the Release by Short-Term Growth Hormone Treatment. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:553-569. [PMID: 28088007 DOI: 10.1016/j.ajpath.2016.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/21/2016] [Accepted: 11/28/2016] [Indexed: 12/28/2022]
Abstract
Hepatocyte transplantation is an alternative to whole liver transplantation. Yet, efficient liver repopulation by transplanted hepatocytes is low in livers of old animals. This restraint might be because of the poor proliferative capacity of aged donor hepatocytes or the regenerative impairment of the recipient livers. The age-dependent liver repopulation by transplanted wild-type hepatocytes was investigated in juvenile and senescent rats deficient in dipeptidyl-peptidase IV. Repopulation was quantified by flow cytometry and histochemical estimation of dipeptidyl-peptidase IV enzyme activity of donor cells in the negative host liver. As a potential pathway involved, expression of cell cycle proteins was assessed. Irrespective of the age of the donor hepatocytes, large cell clusters appeared in juvenile, but only small clusters in senescent host livers. Because juvenile and senescent donor hepatocytes were likewise functional, host-derived factor(s) impaired senescent host liver repopulation. Growth hormone levels were significantly higher in juvenile than in senescent rats, suggesting that growth hormone might promote host liver repopulation. Indeed, short-term treatment with growth hormone augmented senescent host liver repopulation involving the growth hormone-mediated release of the transcriptional blockade of genes associated with cell cycle progression. Short-term growth hormone substitution might improve liver repopulation by transplanted hepatocytes, thus augmenting the therapeutic benefit of clinical hepatocyte transplantation in older patients.
Collapse
Affiliation(s)
- Peggy Stock
- Division of Applied Molecular Hepatology, Clinics and Policlinics of Visceral, Transplantation, Thoracic, and Vascular Surgery, University of Leipzig, Leipzig, Germany.
| | - Maximilian Bielohuby
- Endocrine Research Unit, Department of Internal Medicine IV, Ludwig Maximilian University, Munich, Germany
| | - Martin S Staege
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mei-Ju Hsu
- Division of Applied Molecular Hepatology, Clinics and Policlinics of Visceral, Transplantation, Thoracic, and Vascular Surgery, University of Leipzig, Leipzig, Germany
| | - Martin Bidlingmaier
- Endocrine Research Unit, Department of Internal Medicine IV, Ludwig Maximilian University, Munich, Germany
| | - Bruno Christ
- Division of Applied Molecular Hepatology, Clinics and Policlinics of Visceral, Transplantation, Thoracic, and Vascular Surgery, University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Rohn S, Schroeder J, Riedel H, Polenz D, Stanko K, Reutzel-Selke A, Tang P, Brusendorf L, Raschzok N, Neuhaus P, Pratschke J, Sawitzki B, Sauer IM, Mogl MT. Allogeneic Liver Transplantation and Subsequent Syngeneic Hepatocyte Transplantation in a Rat Model: Proof of Concept for in vivo Tissue Engineering. Cells Tissues Organs 2016; 201:399-411. [DOI: 10.1159/000445792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2016] [Indexed: 11/19/2022] Open
Abstract
Objectives: Stable long-term functioning of liver cells after transplantation in humans is still not achieved successfully. A new approach for successful engraftment of liver cells may be the transplantation of syngeneic cells into an allogeneic liver graft. We therefore developed a new rat model for combined liver and liver cell transplantation (cLCTx) under stable immunosuppression. Materials and Methods: After inducing a mitotic block, liver grafts from female donor rats (Dark Agouti) were transplanted into female recipients (Lewis). In male Lewis rats, liver cell proliferation was induced with subsequent cell isolation and transplantation into female recipients after organ transplantation. Y-chromosome detection of the transplanted male cells was performed by quantitative polymerase chain reaction (qPCR) and fluorescence in situ hybridization (FisH) with localization of transplanted cells by immunohistochemistry. Results: Immunohistochemistry demonstrated the engraftment of transplanted cells, as confirmed by FisH, showing repopulation of the liver graft with 15.6% male cells (± 1.8 SEM) at day 90. qPCR revealed 14.15% (± 5.09 SEM) male DNA at day 90. Conclusion: Engraftment of transplanted syngeneic cells after cLCTx was achieved for up to 90 days under immunosuppression. Immunohistochemistry indicated cell proliferation, and the FisH results were partly confirmed by qPCR. This new protocol in rats appears feasible for addressing long-term functioning and eventually the induction of operational tolerance in the future.
Collapse
|
7
|
Prigent J, Herrero A, Ambroise J, Smets F, Deblandre GA, Sokal EM. Human Progenitor Cell Quantification after Xenotransplantation in Rat and Mouse Models by a Sensitive qPCR Assay. Cell Transplant 2015; 24:1639-52. [DOI: 10.3727/096368914x681955] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Xenotransplantation of human cells in animal models is an essential tool for evaluation of safety and efficacy of cell-based products for therapeutic use. Sensitive and reproducible methods are needed to detect and quantify human cells engrafted into the host tissue either in the targeted organ or in undesired locations. We developed a robust quantitative polymerase chain reaction (qPCR) assay based on amplification of human AluYb8 repeats, to assess the number of human cells present in rat or mouse tissues after transplantation. Standard curves of mixed human/rodent DNA and mixed human/rodent cells have been performed to determine the limit of detection and linear range of the assay. Standard curves from DNA mixing differed significantly from standard curves from cell mixing. We show here that the AluYb8 qPCR assay is highly reproducible and is able to quantify human cells in a rodent cell matrix over a large linear range that extends from 50% to 0.01% human cells. Short-term in vivo studies showed that human cells could be quantified in mouse liver up to 7 days after intrasplenic transplantation and in rat liver 4 h after intrahepatic transplantation.
Collapse
Affiliation(s)
- Julie Prigent
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Astrid Herrero
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Jérôme Ambroise
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Center for Applied Molecular Technologies (CTMA), Brussels, Belgium
| | - Françoise Smets
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Gisèle A. Deblandre
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Etienne M. Sokal
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Brussels, Belgium
| |
Collapse
|
8
|
Ho CM, Chen YH, Chien CS, Ho YT, Ho SL, Hu RH, Chen HL, Lee PH. Transplantation speed offers early hepatocyte engraftment in acute liver injured rats: A translational study with clinical implications. Liver Transpl 2015; 21:652-61. [PMID: 25821041 DOI: 10.1002/lt.24106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/31/2014] [Accepted: 02/08/2015] [Indexed: 01/10/2023]
Abstract
The impact of the rate of intraportal hepatocyte transplantation on early engraftment and repopulation is unclear. The aim of this study was to address this and to improve the engraftment and repopulation efficiencies of hepatocyte transplantation for the treatment of a rat model of acute liver failure in a clinically useful way without preconditioning. Acute hepatic injury was induced into Sprague-Dawley rats with D-galactosamine. Hepatocytes were infused intraportally over a period of 30, 70, or 100 seconds to study early engraftment (2 days) and repopulation (7 days). Three groups had significant differences in hepatocyte engraftment (P = 0.018) and repopulation efficiencies (P = 0.037), and an infusion over a period of 70 seconds produced superior outcomes. After the 70-second infusion, the transplanted cells immediately transmigrated the sinusoidal endothelial layer and rarely accumulated in the portal venules, with liver function improving significantly. The mean first peak pressures, without significant differences, were 14.8 ± 6.5, 17.7 ± 3.7, and 13.6 ± 3.0 mm Hg in the 30-, 70-, and 100-second groups, respectively. Differential hepatocyte transfusion rates contributed to accelerated early engraftment and repopulation in rats with acute liver injury. These proof-of-concept findings are of clinical significance because they are easy to translate into practice.
Collapse
Affiliation(s)
- Cheng-Maw Ho
- Department of Surgery; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Best J, Manka P, Syn WK, Dollé L, van Grunsven LA, Canbay A. Role of liver progenitors in liver regeneration. Hepatobiliary Surg Nutr 2015; 4:48-58. [PMID: 25713804 DOI: 10.3978/j.issn.2304-3881.2015.01.16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022]
Abstract
During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.
Collapse
Affiliation(s)
- Jan Best
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Paul Manka
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Wing-Kin Syn
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Laurent Dollé
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Leo A van Grunsven
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Ali Canbay
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| |
Collapse
|
10
|
Kendal WS. Oligometastasis as a predictor for occult disease. Math Biosci 2014; 251:1-10. [PMID: 24560886 DOI: 10.1016/j.mbs.2014.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/25/2013] [Accepted: 02/12/2014] [Indexed: 12/25/2022]
Abstract
Oligometastasis can be defined as a state of limited metastases that is potentially amenable to ablative local therapy; the success of such therapy depends on whether or not additional occult metastases exist. A model is presented here to predict occult metastases given detectable oligometastases. Predictions were based on Bayes' theorem, in conjunction with descriptions of the statistical distributions for the sizes and numbers of hematogenous metastases. The background probability for occult metastases in individuals with oligometastases increased markedly with relatively minor increases in metastatic potential. With each additional metastasis detected the chance of further occult metastases increased. These latter increases were incremental and proportionately smaller with the more metastatic tumors. Long disease free intervals had a major effect to decrease in the probability of further occult disease. Demonstration of oligometastases depends heavily upon the sensitivity of radiological imaging techniques, where the proportion of detectable metastases relates to the position of the distribution of metastasis growth times with respect to the detection threshold. Given the limitations of radiological methods, and the possibility that the oligometastases detected may be the only disease, an aggressive approach appears indicated.
Collapse
Affiliation(s)
- Wayne S Kendal
- Division of Radiation Oncology, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|