1
|
Taguchi K, Maruyama T, Otagiri M. Use of Hemoglobin for Delivering Exogenous Carbon Monoxide in Medicinal Applications. Curr Med Chem 2020; 27:2949-2963. [PMID: 30421669 DOI: 10.2174/0929867325666181113122340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/25/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023]
Abstract
Carbon Monoxide (CO), at low concentrations, can have a variety of positive effects on the body including anti-apoptosis, anti-inflammatory, anti-oxidative and anti-proliferative effects. Although CO has great potential for use as a potent medical bioactive gas, for it to exist in the body in stable form, it must be associated with a carrier. Hemoglobin (Hb) represents a promising material for use as a CO carrier because most of the total CO in the body is stored associated with Hb in red blood cells (RBC). Attempts have been made to develop an Hb-based CO carrying system using RBC and Hb-based artificial oxygen carriers. Some of these have been reported to be safe and to have therapeutic value as a CO donor in preclinical and clinical studies. In the present review, we overview the potential of RBC and Hb-based artificial oxygen carriers as CO carriers based on the currently available literature evidence for their use in pharmaceutical therapy against intractable disorders.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.,DDS Research Institute, Sojo University, Kumamoto, Japan
| |
Collapse
|
2
|
Huang CC, Chen YY, Fang YT, Chen YC, Hung CM. Generating brain matrices for zebra finch brain sectioning using three-dimensional printing technology. J Neurosci Methods 2019; 327:108399. [PMID: 31425722 DOI: 10.1016/j.jneumeth.2019.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The demand to sample brain regions in non-model species is increasing as more studies are integrating neurological data into behavioural, ecological or evolutionary analysis. However, the sampling operation is difficult for researchers without neuroscience background. It is also a challenge to collect neuroanatomical regions from animals in the field. NEW METHOD Here we developed a new brain matrix for guiding researchers to section zebra finches' (Taeniopygia guttata) brains more steadily than by freehand trimming. Based on the 3D printing technology, we produced the zebra finch brain matrix from scratch. We also provided a step-by-step protocol to make brain matrices for any species with a brain size between that of shrews and dogs. RESULTS The brain matrix could guide us to find the zebra finch's neuroanatomical landmarks, such as the hypothalamus, optic chiasm and occulomotor nerve. The matrix's channels near these landmarks could be used to section brains steadily and rapidly. COMPARISON WITH EXISTING METHODS Standardized brain sectioning often requires expensive machines that may not be available in most laboratories or in the field, such as microtomes. In addition, machine-based trimming is time-consuming. Although commercial brain matrices can overcome these problems, they are only available for rats and mice. The brain matrices we developed are affordable to most laboratories and can be customised for non-model species in both lab and field experiments. CONCLUSIONS The matrix-guided approach requires a relatively short training period and can allow researchers to properly and quickly sample brains, and thus will facilitate neuroscience-based interdisciplinary research.
Collapse
Affiliation(s)
| | - Yi-Ying Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Abutarboush R, Gu M, Kawoos U, Mullah SH, Chen Y, Goodrich SY, Lashof-Sullivan M, McCarron RM, Statz JK, Bell RS, Stone JR, Ahlers ST. Exposure to Blast Overpressure Impairs Cerebral Microvascular Responses and Alters Vascular and Astrocytic Structure. J Neurotrauma 2019; 36:3138-3157. [PMID: 31210096 PMCID: PMC6818492 DOI: 10.1089/neu.2019.6423] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Exposure to blast overpressure may result in cerebrovascular impairment, including cerebral vasospasm. The mechanisms contributing to this vascular response are unclear. The aim of this study was to evaluate the relationship between blast and functional alterations of the cerebral microcirculation and to investigate potential underlying changes in vascular microstructure. Cerebrovascular responses were assessed in sham- and blast-exposed male rats at multiple time points from 2 h through 28 days after a single 130-kPa (18.9-psi) exposure. Pial microcirculation was assessed through a cranial window created in the parietal bone of anesthetized rats. Pial arteriolar reactivity was evaluated in vivo using hypercapnia, barium chloride, and serotonin. We found that exposure to blast leads to impairment of arteriolar reactivity >24 h after blast exposure, suggesting delayed injury mechanisms that are not simply attributed to direct mechanical deformation. Observed vascular impairment included a reduction in hypercapnia-induced vasodilation, increase in barium-induced constriction, and reversal of the serotonin effect from constriction to dilation. A reduction in vascular smooth muscle contractile proteins consistent with vascular wall proliferation was observed, as well as delayed reduction in nitric oxide synthase and increase in endothelin-1 B receptors, mainly in astrocytes. Collectively, the data show that exposure to blast results in delayed and prolonged alterations in cerebrovascular reactivity that are associated with changes in the microarchitecture of the vessel wall and astrocytes. These changes may contribute to long-term pathologies involving dysfunction of the neurovascular unit, including cerebral vasospasm.
Collapse
Affiliation(s)
- Rania Abutarboush
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Ming Gu
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Usmah Kawoos
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Saad H Mullah
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Ye Chen
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Samantha Y Goodrich
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Margaret Lashof-Sullivan
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Richard M McCarron
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jonathan K Statz
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Randy S Bell
- Neurosurgery Department, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia Medical Center, Charlottesville, Virginia
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland
| |
Collapse
|
4
|
Abutarboush R, Mullah SH, Saha BK, Haque A, Walker PB, Aligbe C, Pappas G, Tran Ho LTV, Arnaud FG, Auker CR, McCarron RM, Scultetus AH, Moon-Massat P. Brain oxygenation with a non-vasoactive perfluorocarbon emulsion in a rat model of traumatic brain injury. Microcirculation 2018; 25:e12441. [DOI: 10.1111/micc.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Rania Abutarboush
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Saad H. Mullah
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Biswajit K. Saha
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Ashraful Haque
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Peter B. Walker
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Chioma Aligbe
- Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda MD USA
| | - Georgina Pappas
- Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda MD USA
| | | | - Francoise G. Arnaud
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
- Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda MD USA
| | - Charles R. Auker
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Richard M. McCarron
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
- Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda MD USA
| | - Anke H. Scultetus
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
- Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda MD USA
| | - Paula Moon-Massat
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| |
Collapse
|
5
|
Abuchowski A. SANGUINATE (PEGylated Carboxyhemoglobin Bovine): Mechanism of Action and Clinical Update. Artif Organs 2017; 41:346-350. [DOI: 10.1111/aor.12934] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
|
6
|
Comparison of the Pharmacokinetic Properties of Hemoglobin-Based Oxygen Carriers. J Funct Biomater 2017; 8:jfb8010011. [PMID: 28335469 PMCID: PMC5371884 DOI: 10.3390/jfb8010011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
Hemoglobin (Hb) is an ideal material for use in the development of an oxygen carrier in view of its innate biological properties. However, the vascular retention of free Hb is too short to permit a full therapeutic effect because Hb is rapidly cleared from the kidney via glomerular filtration or from the liver via the haptogloblin-CD 163 pathway when free Hb is administered in the blood circulation. Attempts have been made to develop alternate acellular and cellular types of Hb based oxygen carriers (HBOCs), in which Hb is processed via various routes in order to regulate its pharmacokinetic properties. These HBOCs have been demonstrated to have superior pharmacokinetic properties including a longer half-life than the Hb molecule in preclinical and clinical trials. The present review summarizes and compares the pharmacokinetic properties of acellular and cellular type HBOCs that have been developed through different approaches, such as polymerization, PEGylation, cross-linking, and encapsulation.
Collapse
|
7
|
Abutarboush R, Saha BK, Mullah SH, Arnaud FG, Haque A, Aligbe C, Pappas G, Auker CR, McCarron RM, Moon-Massat PF, Scultetus AH. Cerebral Microvascular and Systemic Effects Following Intravenous Administration of the Perfluorocarbon Emulsion Perftoran. J Funct Biomater 2016; 7:jfb7040029. [PMID: 27869709 PMCID: PMC5197988 DOI: 10.3390/jfb7040029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 12/02/2022] Open
Abstract
Oxygen-carrying perfluorocarbon (PFC) fluids have the potential to increase tissue oxygenation during hypoxic states and to reduce ischemic cell death. Regulatory approval of oxygen therapeutics was halted due to concerns over vasoconstrictive side effects. The goal of this study was to assess the potential vasoactive properties of Perftoran by measuring brain pial arteriolar diameters in a healthy rat model. Perftoran, crystalloid (saline) or colloid (Hextend) solutions were administered as four sequential 30 min intravenous (IV) infusions, thus allowing an evaluation of cumulative dose-dependent effects. There were no overall changes in diameters of small-sized (<50 μm) pial arterioles within the Perftoran group, while both saline and Hextend groups exhibited vasoconstriction. Medium-sized arterioles (50–100 μm) showed minor (~8–9%) vasoconstriction within saline and Hextend groups and only ~5% vasoconstriction within the Perftoran group. For small- and medium-sized pial arterioles, the mean percent change in vessel diameters was not different among the groups. Although there was a tendency for arterial blood pressures to increase with Perftoran, pressures were not different from the other two groups. These data show that Perftoran, when administered to healthy anesthetized rats, does not cause additional vasoconstriction in cerebral pial arterioles or increase systemic blood pressure compared with saline or Hextend.
Collapse
Affiliation(s)
- Rania Abutarboush
- NeuroTrauma Department, Naval Medical Research Center (NMRC), Silver Spring, MD 20910, USA.
| | - Biswajit K Saha
- NeuroTrauma Department, Naval Medical Research Center (NMRC), Silver Spring, MD 20910, USA.
| | - Saad H Mullah
- NeuroTrauma Department, Naval Medical Research Center (NMRC), Silver Spring, MD 20910, USA.
| | - Francoise G Arnaud
- NeuroTrauma Department, Naval Medical Research Center (NMRC), Silver Spring, MD 20910, USA.
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20895, USA.
| | - Ashraful Haque
- NeuroTrauma Department, Naval Medical Research Center (NMRC), Silver Spring, MD 20910, USA.
| | - Chioma Aligbe
- NeuroTrauma Department, Naval Medical Research Center (NMRC), Silver Spring, MD 20910, USA.
| | - Georgina Pappas
- NeuroTrauma Department, Naval Medical Research Center (NMRC), Silver Spring, MD 20910, USA.
| | - Charles R Auker
- NeuroTrauma Department, Naval Medical Research Center (NMRC), Silver Spring, MD 20910, USA.
| | - Richard M McCarron
- NeuroTrauma Department, Naval Medical Research Center (NMRC), Silver Spring, MD 20910, USA.
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20895, USA.
| | - Paula F Moon-Massat
- NeuroTrauma Department, Naval Medical Research Center (NMRC), Silver Spring, MD 20910, USA.
| | - Anke H Scultetus
- NeuroTrauma Department, Naval Medical Research Center (NMRC), Silver Spring, MD 20910, USA.
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20895, USA.
| |
Collapse
|