1
|
Hou Y, Liu B. The Role of Vascular Endothelial Dysfunction in Hypertension With Hearing Loss. Angiology 2024:33197241247076. [PMID: 38626404 DOI: 10.1177/00033197241247076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Hypertension can cause hearing loss, but there is no clear definition of the mechanism(s) involved. The study aimed to explore the role of vascular endothelial dysfunction in hypertension with hearing loss. Patients with hypertension were divided into two groups based on hearing loss. Pure tone audiometry (PTA) and endothelial function testing were performed. A total of 216 (432 ears) hypertensive patients were divided into hypertension with hearing loss group (n = 104) and hypertension without hearing loss group (n = 112). The vascular endothelial biomarkers, ET-1 (endothelin-1) and vWF (von Willebrand factor) were significantly higher (P < .05) in the hypertension with hearing loss group. RHI (reactive hyperemia index), ET-1, and vWF were the factors related to hearing loss. The area under the receiver operating characteristic (ROC) curve (AUC) of RHI in the diagnosis of hypertension with hearing loss was .652 (95% CI .552-.751, P = .005), and the Youden index was 26.2%. The AUC of ET-1 was .706 (95% CI .612-.799, P = .001), and the Youden index was 38.9%. The AUC of vWF was .617 (95% CI .512-.721, P = .003), and the Youden index was 28.1%. Vascular endothelial dysfunction may play a role in the pathogenesis of hypertension with hearing loss.
Collapse
Affiliation(s)
- Yinjing Hou
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Lin YK, Chen YJ, Li JY, Chen YL, He D, Zuo R, Xiao MJ, Xu DP, Zheng CY, Wang W, He RR, Chen Y. Salvianolic acid A from Danhong Injection induces vasorelaxation by Regulating L-type calcium channel in isolated mouse arteries. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115431. [PMID: 35700852 DOI: 10.1016/j.jep.2022.115431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhong injection (DHI), which is a Chinese clinical prescription consists of Radix et Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Labiatae, Danshen in Chinese) and Flos Carthami (Carthamus tinctorius L., Compositae, Honghua in Chinese)(Plant names have been checked with http://www.theplantlist.org on March 1st, 2022), has been mainly used in the clinical therapy of cardiovascular diseases, including hypertension in China for many years. AIM OF THE STUDY Cardiovascular diseases (CVDs) are the major causes of death all around the world. Due to the various stimulation, a series of vasoconstrictor substances are secreted to regulate the vasoconstriction function and then change blood pressure. The representative substances leading to abnormal vasoconstriction include renin-angiotensin system, endothelin, vasopressin and adrenaline, which act on the corresponding receptors on vascular smooth muscle to constrict blood vessels. Finally, blood pressure increases, followed by a series of cardiovascular diseases, including hypertension. However, little is known about Danhong injection's specific vasodilating mechanisms and active substances. The aims of the study were to determine the vasodilating substances of Danhong injection and explain its molecular mechanism of vasodilation. MATERIALS AND METHODS The effects of DHI and its active components on vascular tension were measured by myograph system in the aortic or mesenteric rings of mice. Based on this, the pharmacodynamic substances were analyzed and effective molecules were found. Combined with multiple types of vascular myograph experiments and network pharmacological analysis, the molecular pathway was preliminarily determined. With molecular biology experiments, it was verified that the relevant mechanisms were closely related to calcium-mediated vasoconstriction in smooth muscle cells. RESULTS DHI could relax endothelium-removed aortic rings pre-constricted with PE and 3 possible active vasodilator substances, including salvianolic acid A, salvianolic acid B and danshensu, were screened out by network pharmacology and vascular myograph experiments, among which the effects of salvianolic acid A were dominant. Meanwhile, salvianolic acid A could dilate mesenteric artery in a pressure-dependent manner. Interestingly, salvianolic acid A could still relax the vascular rings under the stimulation of KCl and Bayk8644, two agonists of L-type calcium channel. By contrast, inhibitors of Kir, Kv, Katp and BKCa channels did not block the effect of salvianolic acid A on vasodilation. Salvianolic acid A alleviated Ca2+ transient, referring to changes of intracellular calcium, induced by PE, Bayk8644 and high K+ in the VSMCs. Salvianolic acid A could partially restore the vasodilation function of vascular smooth muscle damaged by AngII and ET-1 induced hypertension situation. CONCLUSIONS Our results indicate that salvianolic acid A is the major vasodilator substance in DHI and the vasorelaxation pharmacology mechanism involved in inhibiting the L-type calcium channel signaling in smooth muscle cell. Hence, there are potential therapeutic effects of taking salvianolic acid A preparation which may be beneficial to protect cardiovascular system and reduce blood pressure.
Collapse
Affiliation(s)
- Yi-Ke Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Yi-Jun Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Jie-Yi Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Yu-Lin Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Dong He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Rui Zuo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Min-Jun Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Dan-Ping Xu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.
| | - Chao-Yang Zheng
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.
| | - Wei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Rong-Rong He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Yang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Rho kinase inhibition ameliorates vascular remodeling and blood pressure elevations in a rat model of apatinib-induced hypertension. J Hypertens 2022; 40:675-684. [PMID: 34862331 PMCID: PMC8901036 DOI: 10.1097/hjh.0000000000003060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Hypertension is one of the major adverse effects of tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factors. However, the mechanism underlying TKIs-induced hypertension remains unclear. Here, we explored the role of the RhoA/Rho kinase (ROCK) signaling pathway in elevation of blood pressure (BP) induced by apatinib, a selective TKI approved in China for treatment of advanced or metastatic gastric cancer. A nonspecific ROCK inhibitor, Y27632, was then combined with apatinib and its efficacy in alleviating apatinib-induced hypertension was evaluated. METHODS Normotensive female Wistar-Kyoto rats were exposed to two different doses of apatinib, or apatinib combined with Y27632, or vehicle for 2 weeks. BP was monitored by a tail-cuff plethysmography system. The mRNA levels and protein expression in the RhoA/ROCK pathway were determined, and vascular remodeling assessed. RESULTS Administration of either a high or low dose of apatinib was associated with a rapid rise in BP, reaching a plateau after 12 days. Apatinib treatment mediated upregulation of RhoA and ROCK II in the mid-aorta, more significant in the high-dose group. However, ROCK I expression showed no statistically significant differences. Furthermore, the mRNA level of GRAF3 decreased dose-dependently. Apatinib administration was also associated with decreased levels of MLCP, and elevated endothelin-1 (ET-1) and collagen I, which were accompanied with increased mid-aortic media. However, treatment with Y27632 attenuated the above changes. CONCLUSION These findings suggest that activation of the RhoA/ROCK signaling pathway could be the underlying mechanism of apatinib-induced hypertension, while ROCK inhibitor have potential therapeutic value.
Collapse
|
4
|
Cooperation of augmented calcium sensitization and increased calcium entry contributes to high blood pressure in salt-sensitive Dahl rats. Hypertens Res 2021; 44:1067-1078. [PMID: 33875859 DOI: 10.1038/s41440-021-00659-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 03/14/2021] [Indexed: 11/09/2022]
Abstract
Salt hypertensive Dahl rats are characterized by sympathoexcitation and relative NO deficiency. We tested the hypothesis that the increased blood pressure (BP) response to fasudil in salt hypertensive Dahl rats is due to augmented calcium sensitization in the salt-sensitive strain and/or due to their decreased baroreflex efficiency. BP reduction after acute administration of nifedipine (an L-type voltage-dependent calcium channel blocker) or fasudil (a Rho kinase inhibitor) was studied in conscious intact rats and in rats subjected to acute NO synthase inhibition or combined blockade of the renin-angiotensin system (captopril), sympathetic nervous system (pentolinium), and NO synthase (L-NAME). Intact salt-sensitive (SS) Dahl rats fed a low-salt diet had greater BP responses to nifedipine (-31 ± 6 mmHg) or fasudil (-34 ± 7 mmHg) than salt-resistant (SR) Dahl rats (-16 ± 4 and -17 ± 2 mmHg, respectively), and a high-salt intake augmented the BP response only in SS rats. These BP responses were doubled after acute NO synthase inhibition, indicating that endogenous NO attenuates both calcium entry and calcium sensitization. Additional pentolinium administration, which minimized sympathetic compensation for the drug-induced BP reduction, magnified the BP responses to nifedipine or fasudil in all groups except for salt hypertensive SS rats due to their lower baroreflex efficiency. The BP response to the calcium channel blocker nifedipine can distinguish SS and SR rats even after calcium sensitization inhibition by fasudil, which was not seen when fasudil was administered to nifedipine-pretreated rats. Thus, enhanced calcium entry (potentiated by sympathoexcitation) in salt hypertensive Dahl rats is the abnormality that is essential for their BP increase, which was further augmented by increased calcium sensitization in salt-sensitive Dahl rats.
Collapse
|
5
|
Wu CM, Zheng L, Wang Q, Hu YW. The emerging role of cell senescence in atherosclerosis. Clin Chem Lab Med 2020; 59:27-38. [PMID: 32692694 DOI: 10.1515/cclm-2020-0601] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Cell senescence is a fundamental mechanism of aging and appears to play vital roles in the onset and prognosis of cardiovascular disease, fibrotic pulmonary disease, liver disease and tumor. Moreover, an increasing body of evidence shows that cell senescence plays an indispensable role in the formation and development of atherosclerosis. Multiple senescent cell types are associated with atherosclerosis, senescent human vascular endothelial cells participated in atherosclerosis via regulating the level of endothelin-1 (ET-1), nitric oxide (NO), angiotensin II and monocyte chemoattractant protein-1 (MCP-1), senescent human vascular smooth muscle cells-mediated plaque instability and vascular calcification via regulating the expression level of BMP-2, OPN, Runx-2 and inflammatory molecules, and senescent macrophages impaired cholesterol efflux and promoted the development of senescent-related cardiovascular diseases. This review summarizes the characteristics of cell senescence and updates the molecular mechanisms underlying cell senescence. Moreover, we also discuss the recent advances on the molecular mechanisms that can potentially regulate the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Chang-Meng Wu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Qian Wang
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yan-Wei Hu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.,Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| |
Collapse
|
6
|
Liraglutide Protects Against Brain Amyloid-β 1-42 Accumulation in Female Mice with Early Alzheimer's Disease-Like Pathology by Partially Rescuing Oxidative/Nitrosative Stress and Inflammation. Int J Mol Sci 2020; 21:ijms21051746. [PMID: 32143329 PMCID: PMC7084254 DOI: 10.3390/ijms21051746] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia worldwide, being characterized by the deposition of senile plaques, neurofibrillary tangles (enriched in the amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau), respectively) and memory loss. Aging, type 2 diabetes (T2D) and female sex (especially after menopause) are risk factors for AD, but their crosslinking mechanisms remain unclear. Most clinical trials targeting AD neuropathology failed and it remains incurable. However, evidence suggests that effective anti-T2D drugs, such as the GLP-1 mimetic and neuroprotector liraglutide, can be also efficient against AD. Thus, we aimed to study the benefits of a peripheral liraglutide treatment in AD female mice. We used blood and brain cortical lysates from 10-month-old 3xTg-AD female mice, treated for 28 days with liraglutide (0.2 mg/kg, once/day) to evaluate parameters affected in AD (e.g., Aβ and p-tau, motor and cognitive function, glucose metabolism, inflammation and oxidative/nitrosative stress). Despite the limited signs of cognitive changes in mature female mice, liraglutide only reduced their cortical Aβ1–42 levels. Liraglutide partially attenuated brain estradiol and GLP-1 and activated PKA levels, oxidative/nitrosative stress and inflammation in these AD female mice. Our results support the earlier use of liraglutide as a potential preventive/therapeutic agent against the accumulation of the first neuropathological features of AD in females.
Collapse
|
7
|
Resveratrol's Impact on Vascular Smooth Muscle Cells Hyporeactivity: The Role of Rho-Kinase Inhibition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9012071. [PMID: 32076619 PMCID: PMC6996688 DOI: 10.1155/2020/9012071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023]
Abstract
Resveratrol (3,5,4′-trihydroxystilbene) is a chemical compound belonging to the group of polyphenols and flavonoids. The aim of the present study was to determine the influence of resveratrol application along with certain modulating factors, such as 8Br-cGMP-activator of cGMP-dependent protein kinases, HA-1077-Rho-kinase inhibitor, and Bay K8644-calcium channel agonist, on VMSCs constriction triggered by phenylephrine. Resveratrol at a dose of 10 mg/kg/24 h administered for 4 weeks reduced the reactivity of the arteries to the pressure action of catecholamines. Tests performed after four weeks of resveratrol administration showed that 8Br-cGMP at the concentrations of 0.01 mM/l and 0.1 mM/l intensifies this effect. Simultaneous resveratrol and Bay K8644 administration led to a significant decrease in contractility compared to the vessels collected from animals (Res−). This effect was dependent on the concentration of Bay K8644. Resveratrol seems to be counteractive against Bay K8644 by blocking L-type calcium channels. As the concentration of HA-1077 increased, there was a marked hyporeactivity of the vessels to the pressure effects of phenylephrine. The results indicate synergy between resveratrol and Rho-kinase inhibition.
Collapse
|
8
|
Liraglutide and its Neuroprotective Properties-Focus on Possible Biochemical Mechanisms in Alzheimer's Disease and Cerebral Ischemic Events. Int J Mol Sci 2019; 20:ijms20051050. [PMID: 30823403 PMCID: PMC6429395 DOI: 10.3390/ijms20051050] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Liraglutide is a GLP-1 analog (glucagon like peptide-1) used primarily in the treatment of diabetes mellitus type 2 (DM2) and obesity. The literature starts to suggest that liraglutide may reduce the effects of ischemic stroke by activating anti-apoptotic pathways, as well as limiting the harmful effects of free radicals. The GLP-1R expression has been reported in the cerebral cortex, especially occipital and frontal lobes, the hypothalamus, and the thalamus. Liraglutide reduced the area of ischemia caused by MCAO (middle cerebral artery occlusion), limited neurological deficits, decreased hyperglycemia caused by stress, and presented anti-apoptotic effects by increasing the expression of Bcl-2 and Bcl-xl proteins and reduction of Bax and Bad protein expression. The pharmaceutical managed to decrease concentrations of proapoptotic factors, such as NF-κB (Nuclear Factor-kappa β), ICAM-1 (Intercellular Adhesion Molecule 1), caspase-3, and reduced the level of TUNEL-positive cells. Liraglutide was able to reduce the level of free radicals by decreasing the level of malondialdehyde (MDA), and increasing the superoxide dismutase level (SOD), glutathione (GSH), and catalase. Liraglutide may affect the neurovascular unit causing its remodeling, which seems to be crucial for recovery after stroke. Liraglutide may stabilize atherosclerotic plaque, as well as counteract its early formation and further development. Liraglutide, through its binding to GLP-1R (glucagon like peptide-1 receptor) and consequent activation of PI3K/MAPK (Phosphoinositide 3-kinase/mitogen associated protein kinase) dependent pathways, may have a positive impact on Aβ (amyloid beta) trafficking and clearance by increasing the presence of Aβ transporters in cerebrospinal fluid. Liraglutide seems to affect tau pathology. It is possible that liraglutide may have some stem cell stimulating properties. The effects may be connected with PKA (phosphorylase kinase A) activation. This paper presents potential mechanisms of liraglutide activity in conditions connected with neuronal damage, with special emphasis on Alzheimer's disease and cerebral ischemia.
Collapse
|