1
|
Faticov M, Abdelfattah A, Hambäck P, Roslin T, Tack AJM. Different spatial structure of plant-associated fungal communities above- and belowground. Ecol Evol 2023; 13:e10065. [PMID: 37223309 PMCID: PMC10200691 DOI: 10.1002/ece3.10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/22/2023] [Indexed: 05/25/2023] Open
Abstract
The distribution and community assembly of above- and belowground microbial communities associated with individual plants remain poorly understood, despite its consequences for plant-microbe interactions and plant health. Depending on how microbial communities are structured, we can expect different effects of the microbial community on the health of individual plants and on ecosystem processes. Importantly, the relative role of different factors will likely differ with the scale examined. Here, we address the driving factors at a landscape level, where each individual unit (oak trees) is accessible to a joint species pool. This allowed to quantify the relative effect of environmental factors and dispersal on the distribution of two types of fungal communities: those associated with the leaves and those associated with the soil of Quercus robur trees in a landscape in southwestern Finland. Within each community type, we compared the role of microclimatic, phenological, and spatial variables, and across community types, we examined the degree of association between the respective communities. Most of the variation in the foliar fungal community was found within trees, whereas soil fungal community composition showed positive spatial autocorrelation up to 50 m. Microclimate, tree phenology, and tree spatial connectivity explained little variation in the foliar and soil fungal communities. Foliar and soil fungal communities differed strongly in community structure, with no significant concordance detected between them. We provide evidence that foliar and soil fungal communities assemble independent of each other and are structured by different ecological processes.
Collapse
Affiliation(s)
- Maria Faticov
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Département de biologieUniversité de SherbrookeSherbrookeQuebecCanada
| | - Ahmed Abdelfattah
- Leibniz Institute of Agricultural Engineering and Bio‐economyPotsdamGermany
| | - Peter Hambäck
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Tomas Roslin
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| |
Collapse
|
2
|
Clarke AR, Leach P, Measham PF. The Fallacy of Year-Round Breeding in Polyphagous Tropical Fruit Flies (Diptera: Tephritidae): Evidence for a Seasonal Reproductive Arrestment in Bactrocera Species. INSECTS 2022; 13:882. [PMID: 36292829 PMCID: PMC9604198 DOI: 10.3390/insects13100882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The genus Bactrocera (Diptera: Tephritidae) is endemic to the monsoonal rainforests of South-east Asia and the western Pacific where the larvae breed in ripe, fleshy fruits. While most Bactrocera remain rainforest restricted, species such as Bactrocera dorsalis, Bactrocera zonata and Bactrocera tryoni are internationally significant pests of horticulture, being both highly invasive and highly polyphagous. Almost universally in the literature it is assumed that Bactrocera breed continuously if temperature and hosts are not limiting. However, despite that, these flies show distinct seasonality. If discussed, seasonality is generally attributed to the fruiting of a particular breeding host (almost invariably mango or guava), but the question appears not to have been asked why flies do not breed at other times of the year despite other hosts being available. Focusing initially on B. tryoni, for which more literature is available, we demonstrate that the seasonality exhibited by that species is closely correlated with the seasons of its endemic rainforest environment as recognised by traditional Aboriginal owners. Evidence suggests the presence of a seasonal reproductive arrest which helps the fly survive the first two-thirds of the dry season, when ripe fruits are scarce, followed by a rapid increase in breeding at the end of the dry season as humidity and the availability of ripe fruit increases. This seasonal phenology continues to be expressed in human-modified landscapes and, while suppressed, it also partially expresses in long-term cultures. We subsequently demonstrate that B. dorsalis, across both its endemic and invasive ranges, shows a very similar seasonality although reversed in the northern hemisphere. While high variability in the timing of B. dorsalis population peaks is exhibited across sites, a four-month period when flies are rare in traps (Dec-Mar) is highly consistent, as is the fact that nearly all sites only have one, generally very sharp, population peak per year. While literature to support or deny a reproductive arrest in B. dorsalis is not available, available data is clear that continuous breeding does not occur in this species and that there are seasonal differences in reproductive investment. Throughout the paper we reinforce the point that our argument for a complex reproductive physiology in Bactrocera is based on inductive reasoning and requires specific, hypothesis-testing experiments to confirm or deny, but we do believe there is ample evidence to prioritise such research. If it is found that species in the genus undergo a true reproductive diapause then there are very significant implications for within-field management, market access, and biosecurity risk planning which are discussed. Arguably the most important of these is that insects in diapause have greater stress resistance and cold tolerance, which could explain how tropical Bactrocera species have managed to successfully invade cool temperate regions.
Collapse
Affiliation(s)
- Anthony R. Clarke
- School of Biology and Environmental Science, Queensland University of Technology (QUT), P.O. Box 2434, Brisbane, QLD 4001, Australia
| | - Peter Leach
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, P.O. Box 652, Cairns, QLD 4870, Australia
| | - Penelope F. Measham
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, Ecosciences Precinct Dutton Park, P.O. Box 267, Dutton Park, QLD 4102, Australia
| |
Collapse
|
3
|
Adnan M, Islam W, Gang L, Chen HYH. Advanced research tools for fungal diversity and its impact on forest ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45044-45062. [PMID: 35460003 DOI: 10.1007/s11356-022-20317-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Fungi are dominant ecological participants in the forest ecosystems, which play a major role in recycling organic matter and channeling nutrients across trophic levels. Fungal populations are shaped by plant communities and environmental parameters, and in turn, fungal communities also impact the forest ecosystem through intrinsic participation of different fungal guilds. Mycorrhizal fungi result in conservation and stability of forest ecosystem, while pathogenic fungi can bring change in forest ecosystem, by replacing the dominant plant species with new or exotic plant species. Saprotrophic fungi, being ecological regulators in the forest ecosystem, convert dead tree logs into reusable constituents and complete the ecological cycles of nitrogen and carbon. However, fungal communities have not been studied in-depth with respect to functional, spatiotemporal, or environmental parameters. Previously, fungal diversity and its role in shaping the forest ecosystem were studied by traditional and laborious cultural methods, which were unable to achieve real-time results and draw a conclusive picture of fungal communities. This review highlights the latest advances in biological methods such as next-generation sequencing and meta'omics for observing fungal diversity in the forest ecosystem, the role of different fungal groups in shaping forest ecosystem, forest productivity, and nutrient cycling at global scales.
Collapse
Affiliation(s)
- Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Gang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Han Y H Chen
- Faculty of Forestry and the Forest Environment, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
4
|
Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D'Alò F, Human ZR, Jomura M, Kolařík M, Kvasničková J, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Meszárošová L, Michalčíková L, Michalová T, Mundra S, Navrátilová D, Odriozola I, Piché-Choquette S, Štursová M, Švec K, Tláskal V, Urbanová M, Vlk L, Voříšková J, Žifčáková L, Baldrian P. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data 2020; 7:228. [PMID: 32661237 PMCID: PMC7359306 DOI: 10.1038/s41597-020-0567-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023] Open
Abstract
Fungi are key players in vital ecosystem services, spanning carbon cycling, decomposition, symbiotic associations with cultivated and wild plants and pathogenicity. The high importance of fungi in ecosystem processes contrasts with the incompleteness of our understanding of the patterns of fungal biogeography and the environmental factors that drive those patterns. To reduce this gap of knowledge, we collected and validated data published on the composition of soil fungal communities in terrestrial environments including soil and plant-associated habitats and made them publicly accessible through a user interface at https://globalfungi.com . The GlobalFungi database contains over 600 million observations of fungal sequences across > 17 000 samples with geographical locations and additional metadata contained in 178 original studies with millions of unique nucleotide sequences (sequence variants) of the fungal internal transcribed spacers (ITS) 1 and 2 representing fungal species and genera. The study represents the most comprehensive atlas of global fungal distribution, and it is framed in such a way that third-party data addition is possible.
Collapse
Affiliation(s)
- Tomáš Větrovský
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Daniel Morais
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Clémentine Lepinay
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Camelia Algora
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sandra Awokunle Hollá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Barbara Doreen Bahnmann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Květa Bílohnědá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vendula Brabcová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Federica D'Alò
- Laboratory of Systematic Botany and Mycology, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Zander Rainier Human
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Mayuko Jomura
- Department of Forest Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Miroslav Kolařík
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Kvasničková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Salvador Lladó
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Rubén López-Mondéjar
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tijana Martinović
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Mašínová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Meszárošová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lenka Michalčíková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tereza Michalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sunil Mundra
- Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Diana Navrátilová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Iñaki Odriozola
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Sarah Piché-Choquette
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Martina Štursová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Karel Švec
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vojtěch Tláskal
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Michaela Urbanová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lukáš Vlk
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jana Voříšková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Lucia Žifčáková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic.
| |
Collapse
|
5
|
Jia Q, Qu J, Mu H, Sun H, Wu C. Foliar endophytic fungi: diversity in species and functions in forest ecosystems. Symbiosis 2020. [DOI: 10.1007/s13199-019-00663-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Mainland and island populations of Mussaenda kwangtungensis differ in their phyllosphere fungal community composition and network structure. Sci Rep 2020; 10:952. [PMID: 31969602 PMCID: PMC6976661 DOI: 10.1038/s41598-020-57622-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/03/2020] [Indexed: 01/12/2023] Open
Abstract
We compared community composition and co-occurrence patterns of phyllosphere fungi between island and mainland populations within a single plant species (Mussaenda kwangtungensis) using high-throughput sequencing technology. We then used 11 microsatellite loci for host genotyping. The island populations differed significantly from their mainland counterparts in phyllosphere fungal community structure. Topological features of co-occurrence network showed geographic patterns wherein fungal assemblages were less complex, but more modular in island regions than mainland ones. Moreover, fungal interactions and community composition were strongly influenced by the genetic differentiation of host plants. This study may advance our understanding of assembly principles and ecological interactions of phyllosphere fungal communities, as well as improve our ability to optimize fungal utilization for the benefit of people.
Collapse
|
7
|
Qian X, Li H, Wang Y, Wu B, Wu M, Chen L, Li X, Zhang Y, Wang X, Shi M, Zheng Y, Guo L, Zhang D. Leaf and Root Endospheres Harbor Lower Fungal Diversity and Less Complex Fungal Co-occurrence Patterns Than Rhizosphere. Front Microbiol 2019; 10:1015. [PMID: 31143169 PMCID: PMC6521803 DOI: 10.3389/fmicb.2019.01015] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Plant-associated microbiomes are key determinants of host-plant fitness, productivity, and function. However, compared to bacterial community, we still lack fundamental knowledge concerning the variation in the fungal microbiome at the plant niche level. In this study, we quantified the fungal communities in the rhizosphere soil, as well as leaf and root endosphere compartments of a subtropical island shrub, Mussaenda kwangtungensis, using high-throughput DNA sequencing. We found that fungal microbiomes varied significantly across different plant compartments. Rhizosphere soil exhibited the highest level of fungal diversity, whereas the lowest level was found in the leaf endosphere. Further, the fungal communities inhabiting the root endosphere shared a greater proportion of fungal operational taxonomic units (OTUs) with rhizosphere communities than with leaf fungal endophyte communities, despite significant separation in community structure between the two belowground compartments. The fungal co-occurrence networks in the three compartments of M. kwangtungensis showed scale-free features and non-random co-occurrence patterns and matched the topological properties of small-world and evidently modular structure. Additionally, the rhizosphere network was more complex and showed higher centrality and connectedness than the leaf and root endosphere networks. Overall, our findings provide comprehensive insights into the structural variability, niche differentiation, and co-occurrence patterns in the plant associated fungal microbiome.
Collapse
Affiliation(s)
- Xin Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hanzhou Li
- Biomarker Technologies Corporation, Beijing, China
| | - Yonglong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Binwei Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Mingsong Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xingchun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangping Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yong Zheng
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Liangdong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
|