Bayan MF, Chandrasekaran B, Alyami MH. Development and Characterization of Econazole Topical Gel.
Gels 2023;
9:929. [PMID:
38131915 PMCID:
PMC10743284 DOI:
10.3390/gels9120929]
[Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The purpose of this work was to develop a novel topical formulation of econazole nitrate based on gel that can be easily scaled up in one pot for the potential treatment of fungal and yeast infections. Econazole nitrate, a topical antifungal, is used to treat tinea versicolor, tinea pedis, and tinea cruris. Compared to applying cream or ointment, topical gels offer numerous advantages, one of which is that the drug is released more quickly to the intended site of action. A viscous mixture of propylene glycol, Capmul® MCM C8, methyl and propyl paraben, and econazole nitrate were mixed together before being formulated into the optimized Carbopol® gel bases. The gel's color, appearance, and homogeneity were assessed visually. For every formulation, the drug content, pH, viscosity, spreadability, and gel strength were characterized. The cup plate diffusion method was used to evaluate the anti-fungal activity of the prepared formulations. To assess the behavior of the developed system, studies on in vitro release and mechanism were conducted. The manufactured formulations were transparent, pale yellow, and exhibited excellent homogeneity. The pH of each formulation was roughly 6.0, making them suitable for topical use. The concentration of Carbopol® 940 resulted in a significant increase in viscosity and gel strength but a significant decrease in spreadability. It was demonstrated that the prepared formulations inhibited the growth of Candida albicans and Aspergillus fumigatus. In contrast, the standard blank gel showed no signs of antifungal action. By increasing the concentration of Carbopol® 940, the in vitro release profile of econazole nitrate significantly decreased. Following the Korsmeyer-Peppas model fitting, all formulations exhibited n values greater than 0.5 and less than 1, indicating that diffusion and gel swelling control econazole nitrate release.
Collapse