1
|
Parak M, Asgari A, Hasani Nourian Y, Ghanei M. A review of poisoning with various types of biotoxins and its common clinical symptoms. Toxicon 2024; 240:107629. [PMID: 38336277 DOI: 10.1016/j.toxicon.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/01/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Biotoxins are toxic substances that originate from living organisms and are harmful to humans. Therefore, we need to know the symptoms of biotoxins poisoning to manage the damage. The purpose of this study is to establish a practical diagnostic protocol for dealing with poisoned patients exposed to biotoxins. MATERIALS AND METHODS The present study is a review study. Our studied community is articles and books matching the title of the project and relevant keywords. First, by searching the key words sign, symptom, biotoxins, relevant articles were extracted and studied from valid databases. By reviewing the studies based on the search strategy, four groups of biotoxins that were studied the most were identified. These four groups are marine biotoxins, bacterial biotoxins, fungal biotoxins and plant biotoxins. In each of these biotoxin groups, important toxins were selected and studied. RESULTS A total of 1864 articles were initially identified from the databases searched in present study. After screening titles and abstracts, 26 articles were included in the systematic review. Specifically, 7 articles were included for bacterial toxins, 9 articles for marine toxins, 5 articles for plant toxins and 5 articles for fungal toxins. CONCLUSION The symptoms of plant biotoxins poisoning may include cardiovascular, hematologic, neurologic, respiratory, renal, and gastrointestinal symptoms, while the symptoms of fungal biotoxins poisoning may include hepatic, renal, gastrointestinal, musculoskeletal, metabolic, respiratory, neurological, and cardiovascular symptoms. marine biotoxins poisoning presents with gastrointestinal and neurological symptoms, with varying incubation periods and recovery times. bacterial biotoxins exposure can lead to a wide range of clinical symptoms, with diarrhea, vomiting, and abdominal pain being the most common, and hemoglobinuria or hematuria being a sensitive and specific clinical manifestation for diagnosing ongoing HUS in children.
Collapse
Affiliation(s)
- Mohammadreza Parak
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Alireza Asgari
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kasprzyk I. Forensic botany: who?, how?, where?, when? Sci Justice 2023; 63:258-275. [PMID: 36870705 DOI: 10.1016/j.scijus.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Plants are a good source of biological forensic evidence; this is due to their ubiquity, their ability to collect reference material, and their sensitivity to environmental changes. However, in many countries, botanical evidence is recognised as being scientifically. Botanical evidence is not mostly used for perpertration, instead it tends to serve as circumstantial evidence. Plant materials constitute the basis, among others, for linking a suspect or object to a crime scene or a victim, confirming or not confirming an alibi, determining the post-mortem interval, and determining the origin of food/object. Forensic botany entails field work, knowledge of plants, understanding ecosystem processes, and a basis understaning of geoscience. In this study, experiments with mammal cadavers were conducted to determine the occurence of an event. The simplest criterion characterising botanical evidence is its size. Therefore, macroremains include whole plants or their larger fragments (e.g. tree bark, leaves, seeds, prickles, and thorns), whereas microscopic evidence includes palynomorphs (spores and pollen grains), diatoms, and tissues. Botanical methods allow for an analysis to be repeated multiple times and the test material is easy to collect in the field. Forensic botany can be supplemented with molecular analyses, which, although specific and sensitive, still require validation.
Collapse
Affiliation(s)
- Idalia Kasprzyk
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszów, Al. Rejtana 16c, 35-959 Rzeszów, Poland.
| |
Collapse
|
3
|
Abstract
AbstractThis review addresses ways to prepare for and to mitigate effects of biohazards on primary production of crops and livestock. These biohazards can be natural or intentional introductions of pathogens, and they can cause major economic damage to farmers, the agricultural industry, society, and international trade. Agroterrorism is the intentional introduction of animal or plant pathogens into agricultural production systems with the intention to cause socioeconomic harm and generate public fear. Although few acts of agroterrorism are reported, the threat of agroterrorism in Europe is real. New concerns about threats arise from the rapid advancements in biotechnology and emerging technologies. FORSA, an analytical framework for risk and vulnerability analysis, was used to review how to prepare for and mitigate the possible effects of natural or intentional biohazards in agricultural production. Analyzing the effects of a biohazard event involves multiple scientific disciplines. A comprehensive analysis of biohazards therefore requires a systems approach. The preparedness and ability to manage events are strengthened by bolstered farm biosecurity, increased monitoring and laboratory capacity, improved inter-agency communication and resource allocation. The focus of this review is on Europe, but the insights gained have worldwide applications. The analytical framework used here is compared to other frameworks. With climate change, Covid-19 and the war in Ukraine, the supply chains are challenged, and we foresee increasing food prices associated with social tensions. Our food supply chain becomes more fragile with more unknowns, thereby increasing the needs for risk and vulnerability analyses, of which FORSA is one example.
Collapse
|
4
|
van den Brandhof JG, Wösten HAB. Risk assessment of fungal materials. Fungal Biol Biotechnol 2022; 9:3. [PMID: 35209958 PMCID: PMC8876125 DOI: 10.1186/s40694-022-00134-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Sustainable fungal materials have a high potential to replace non-sustainable materials such as those used for packaging or as an alternative for leather and textile. The properties of fungal materials depend on the type of fungus and substrate, the growth conditions and post-treatment of the material. So far, fungal materials are mainly made with species from the phylum Basidiomycota, selected for the mechanical and physical properties they provide. However, for mycelium materials to be implemented in society on a large scale, selection of fungal species should also be based on a risk assessment of the potential to be pathogenic, form mycotoxins, attract insects, or become an invasive species. Moreover, production processes should be standardized to ensure reproducibility and safety of the product.
Collapse
Affiliation(s)
- Jeroen G van den Brandhof
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Global Catastrophic Threats from the Fungal Kingdom : Fungal Catastrophic Threats. Curr Top Microbiol Immunol 2019; 424:21-32. [PMID: 31119433 DOI: 10.1007/82_2019_161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The fungal kingdom poses major catastrophic threats to humanity but these are often unappreciated and minimized, in biological threat assessments. The causes for this blind spot are complex and include the remarkable natural resistance of humans to pathogenic fungi, the lack of contagiousness of human fungal diseases, and the indirectness of fungal threats, which are more likely to mediate their destructive effects on crops and ecosystems. A review of historical events reveals that the fungal kingdom includes major threats to humanity through their effects on human health, agriculture, and destruction of materiel. A major concern going forward is the likelihood that physiological adaptations by fungal species to global warming will bring new fungal threats. Fungal threats pose significant challenges specific to this group of organisms including the potential for intercontinental spread by air currents, capacity for rapid evolution, a paucity of effective drugs, the absence of vaccines, and increasing drug resistance. Preparedness against bio-catastrophic risks must include consideration of the threats posed by fungi, which in turn requires a greater investment in mycology-related research.
Collapse
|
6
|
Gurban AM, Epure P, Oancea F, Doni M. Achievements and Prospects in Electrochemical-Based Biosensing Platforms for Aflatoxin M₁ Detection in Milk and Dairy Products. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2951. [PMID: 29257102 PMCID: PMC5751533 DOI: 10.3390/s17122951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/03/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023]
Abstract
Aflatoxins, which are mainly produced by Aspergillus flavus and parasiticus growing on plants and products stored under inappropriate conditions, represent the most studied group of mycotoxins. Contamination of human and animal milk with aflatoxin M₁, the hydroxylated metabolite of aflatoxin B₁, is an important health risk factor due to its carcinogenicity and mutagenicity. Due to the low concentration of this aflatoxin in milk and milk products, the analytical methods used for its quantification have to be highly sensitive, specific and simple. This paper presents an overview of the analytical methods, especially of the electrochemical immunosensors and aptasensors, used for determination of aflatoxin M₁.
Collapse
Affiliation(s)
- Ana-Maria Gurban
- Biotechnology Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, Sector 6, 060021 Bucharest, Romania.
| | - Petru Epure
- EPI-SISTEM SRL, Bvd Brasovului 145, Sacele, 505600 Brasov, Romania.
| | - Florin Oancea
- Biotechnology Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, Sector 6, 060021 Bucharest, Romania.
| | - Mihaela Doni
- Biotechnology Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, Sector 6, 060021 Bucharest, Romania.
| |
Collapse
|
7
|
α-Conotoxin Decontamination Protocol Evaluation: What Works and What Doesn't. Toxins (Basel) 2017; 9:toxins9090281. [PMID: 28906461 PMCID: PMC5618214 DOI: 10.3390/toxins9090281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/04/2017] [Accepted: 09/09/2017] [Indexed: 11/30/2022] Open
Abstract
Nine publically available biosafety protocols for safely handling conotoxin peptides were tested to evaluate their decontamination efficacy. Circular dichroism (CD) spectroscopy and mass spectrometry (MS) were used to assess the effect of each chemical treatment on the secondary and primary structure of α-CTx MII (L10V, E11A). Of the nine decontamination methods tested, treatment with 1% (m/v) solution of the enzymatic detergent Contrex™ EZ resulted in a 76.8% decrease in α-helical content as assessed by the mean residue ellipticity at 222 nm, and partial peptide digestion was demonstrated using high performance liquid chromatography mass spectrometry (HPLC-MS). Additionally, treatment with 6% sodium hypochlorite (m/v) resulted in 80.5% decrease in α-helical content and complete digestion of the peptide. The Contrex™ EZ treatment was repeated with three additional α-conotoxins (α-CTxs), α-CTxs LvIA, ImI and PeIA, which verified the decontamination method was reasonably robust. These results support the use of either 1% Contrex™ EZ solution or 6% sodium hypochlorite in biosafety protocols for the decontamination of α-CTxs in research laboratories.
Collapse
|
8
|
Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen. Parasit Vectors 2016; 9:491. [PMID: 27595597 PMCID: PMC5012000 DOI: 10.1186/s13071-016-1763-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/19/2016] [Indexed: 12/24/2022] Open
Abstract
Background Insects are well known vectors of human and animal pathogens and millions of people are killed by mosquito-borne diseases every year. The use of insecticides to target insect vectors has been hampered by the issues of toxicity to the environment and by the selection of resistant insects. Therefore, biocontrol strategies based on naturally occurring microbial pathogens emerged as a promising control alternative. The entomopathogenic fungus Beauveria bassiana is well characterized and have been approved by the United States Environmental Protection Agency as a pest biological control method. However, thousands of other fungi are unexploited and it is important to identify and use different fungi for biocontrol with possibly some vector specific strains. The aim of this study was to identify new fungal entomopathogens that may be used as potential mosquito biocontrol agents. Methods Cadavers of arthropods were collected from pesticide free areas and the fungi associated isolated, cultured and identified. Then the ability of each isolate to kill laboratory insects was assayed and compared to that of B. bassiana. Results In total we have isolated and identified 42 fungal strains from 17 different arthropod cadavers. Twenty four fungal isolates were cultivated in the laboratory and were able to induce sporulation. When fungal spores were microinjected into Drosophila melanogaster, eight isolates proved to be highly pathogenic while the remaining strains showed moderate or no pathogenicity. Then a selection of isolates was tested against Aedes mosquitoes in a model mimicking natural infections. Only one fungus (Aspergillus nomius) was as pathogenic as B. bassiana and able to kill 100 % of the mosquitoes. Conclusion The obtained results are encouraging and demonstrate the feasibility of this simple approach for the identification of new potential mosquito killers. Indeed, it is essential to anticipate and prepare biocontrol methods to fight the expansion of mosquitoes’ habitat predicted in certain geographical areas in association with the occurring climatic changes. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1763-3) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Wong J, Magun BE, Wood LJ. Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis 2016; 11:1391-401. [PMID: 27382275 PMCID: PMC4922809 DOI: 10.2147/copd.s106009] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Exposure of the lungs to airborne toxicants from different sources in the environment may lead to acute and chronic pulmonary or even systemic inflammation. Cigarette smoke is the leading cause of chronic obstructive pulmonary disease, although wood smoke in urban areas of underdeveloped countries is now recognized as a leading cause of respiratory disease. Mycotoxins from fungal spores pose an occupational risk for respiratory illness and also present a health hazard to those living in damp buildings. Microscopic airborne particulates of asbestos and silica (from building materials) and those of heavy metals (from paint) are additional sources of indoor air pollution that contributes to respiratory illness and is known to cause respiratory illness in experimental animals. Ricin in aerosolized form is a potential bioweapon that is extremely toxic yet relatively easy to produce. Although the aforementioned agents belong to different classes of toxic chemicals, their pathogenicity is similar. They induce the recruitment and activation of macrophages, activation of mitogen-activated protein kinases, inhibition of protein synthesis, and production of interleukin-1 beta. Targeting either macrophages (using nanoparticles) or the production of interleukin-1 beta (using inhibitors against protein kinases, NOD-like receptor protein-3, or P2X7) may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections.
Collapse
Affiliation(s)
- John Wong
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| | - Bruce E Magun
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| | - Lisa J Wood
- School of Nursing, MGH Institute of Health Professions, Boston, MA, USA
| |
Collapse
|
10
|
Abstract
The term biological warfare typically conjures images of medieval warriors tossing dead cattle over city walls or clandestine government agents secretly releasing mysterious microbes into enemy territory. Of course, biological warfare does encompass such activity, but the vast majority of what constitutes biological warfare is far more mundane. Ever since life evolved on earth about 3.8 billion years ago, organisms have constantly devised new ways to kill each other. Any organism that makes use of toxins—from bacteria to snakes—is engaging in a form of biological warfare. Humans who engage in biological warfare do so by taking advantage of these toxin-producing organisms.
Collapse
|
11
|
Luo H, DuBois B, Sgambelluri RM, Angelos ER, Li X, Holmes D, Walton JD. Production of (15)N-labeled α-amanitin in Galerina marginata. Toxicon 2015; 103:60-4. [PMID: 26100667 DOI: 10.1016/j.toxicon.2015.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
α-Amanitin is the major causal constituent of deadly Amanita mushrooms that account for the majority of fatal mushroom poisonings worldwide. It is also an important biochemical tool for the study of its target, RNA polymerase II. The commercial supply of this bicyclic peptide comes from Amanita phalloides, the death cap mushroom, which is collected from the wild. Isotopically labeled amanitin could be useful for clinical and forensic applications, but α-amanitin has not been chemically synthesized and A. phalloides cannot be cultured on artificial medium. Using Galerina marginata, an unrelated saprotrophic mushroom that grows and produces α-amanitin in culture, we describe a method for producing (15)N-labeled α-amanitin using growth media containing (15)N as sole nitrogen source. A key to success was preparing (15)N-enriched yeast extract via a novel method designated "glass bead-assisted maturation." In the presence of the labeled yeast extract and (15)N-NH4Cl, α-amanitin was produced with >97% isotope enrichment. The labeled product was confirmed by HPLC, high-resolution mass spectrometry, and NMR.
Collapse
Affiliation(s)
- Hong Luo
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Brandon DuBois
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - R Michael Sgambelluri
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Evan R Angelos
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Xuan Li
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650091, Yunnan, China
| | - Daniel Holmes
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan D Walton
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
12
|
|
13
|
Zhang X, Kuča K, Dohnal V, Dohnalová L, Wu Q, Wu C. Military potential of biological toxins. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2014.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
14
|
Hushiarian R, Yusof NA, Dutse SW. Detection and control of Ganoderma boninense: strategies and perspectives. SPRINGERPLUS 2013; 2:555. [PMID: 24255849 PMCID: PMC3824713 DOI: 10.1186/2193-1801-2-555] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/17/2013] [Indexed: 01/03/2023]
Abstract
The oil palm, an economically important tree, has been one of the world's major sources of edible oil and a significant precursor of biodiesel fuel. Unfortunately, it now faces the threat of a devastating disease. Many researchers have identified Ganoderma boninense as the major pathogen that affects the oil palm tree and eventually kills it. But identification of the pathogen is just the first step. No single method has yet been able to halt the continuing spread of the disease. This paper discusses the modes of infection and transmission of Ganoderma boninense and suggests techniques for its early detection. Additionally, the paper proposes some possible ways of controlling the disease. Such measures, if implemented, could contribute significantly to the sustainability of the palm oil industry in South East Asia.
Collapse
Affiliation(s)
- Roozbeh Hushiarian
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM Malaysia
| | | | | |
Collapse
|
15
|
Kamenidou S, Jain R, Hari K, Robertson JM, Fletcher J. The Microbial Rosetta Stone Central Agricultural Database: An Information Resource on High-Consequence Plant Pathogens. PLANT DISEASE 2013; 97:1097-1102. [PMID: 30722483 DOI: 10.1094/pdis-03-12-0263-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbial pathogens of humans, animals, and plants can serve as potential agents of biowarfare, bioterrorism, and biocrime. Previously, the Microbial Rosetta Stone (MRS) Central database, an easily accessible informational resource tool, was developed to assist law enforcement personnel in the event of a disease investigation by providing key information on pathogens of concern. Although the database already contained information on a few high-profile plant pathogens, the coverage was insufficient considering the large number of plant pathogens that pose a threat, not only to agricultural production but also to natural plant resources such as forests and rangelands. In this project, 100 plant pathogens of high consequence were selected for study, existing literature on these agents was reviewed, and both the sources and key pathogen information provided therein were curated in the new Agricultural Database (AgDB), an accessory to the existing MRS Central Database. Chosen for inclusion in the MRS Central AgDB were plant pathogens having significant potential for damage to U.S. agricultural and natural ecosystems. The selection process included review of several previously developed plant-pathogen threat lists and recommendations from experts within the U.S. plant biosecurity community. Pathogen information was collected by searching a number of relevant literature databases, sites on the World Wide Web, and other resources. For inclusion in the MRS, the information was curated into categories: pathogen taxonomy, nomenclature synonyms, disease symptoms and geographic distribution, plant hosts, insect vectors, detection and diagnostic methods, laboratory and field protocols, sample collection, and epidemiology. The resulting AgDB enhances the MRS Central Database by summarizing and linking key information on high-threat plant diseases and their causal agents to relevant scientific literature and internet resources. The AgDB contains critical, key information on high-consequence plant pathogens, curated in a format that is readily accessible and easily searched. The resource enhances the existing MRS Central Database and provides law enforcement, forensic, and investigative personnel with an additional tool with which to respond to microbial emergencies, particularly those affecting the agricultural and environmental sectors.
Collapse
Affiliation(s)
- Sophia Kamenidou
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Oklahoma State University, Stillwater 74078
| | | | | | | | - Jacqueline Fletcher
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Oklahoma State University
| |
Collapse
|
16
|
Balali-Mood M, Moshiri M, Etemad L. Medical aspects of bio-terrorism. Toxicon 2013; 69:131-42. [PMID: 23339855 DOI: 10.1016/j.toxicon.2013.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/02/2013] [Accepted: 01/09/2013] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Bioterrorism is a terrorist action involving the intentional release or dissemination of a biological warfare agent (BWA), which includes some bacteria, viruses, rickettsiae, fungi or biological toxins. BWA is a naturally occurring or human-modified form that may kill or incapacitate humans, animals or plants as an act of war or terrorism. BWA is a weapon of choice for mass destruction and terrorism, because of the incubation period, less effective amount than chemical warfare agents, easily distribution, odorless, colorless, difficult to detect, no need of specialized equipment for production and naturally distribution which can easily be obtained. BWA may be disseminating as an aerosol, spray, explosive device, and by food or water. CLASSIFICATION Based on the risk for human health, BWAs have been prioritized into three categories of A, B and C. Category A includes microorganisms or toxins that easily spread, leading to intoxication with high death rates such as Anthrax, Botulism, Plague, Smallpox, Tularemia and Viral hemorrhagic fevers. Category B has lower toxicity with wider range, including Staphylococcal Entrotoxin type B (SEB), Epsilon toxin of Clostridium perfringens, Ricin, Saxotoxins, Abrin and Trichothecene mycotoxins. The C category includes emerging pathogens that could also be engineered for mass spread such as Hanta viruses, multidrug-resistant tuberculosis, Nipah virus, the tick-borne encephalitis viruses, hemorrhagic fever viruses and yellow fever. CLINICAL MANIFESTATIONS OF BIOTOXINS IN HUMAN: Clinical features and severity of intoxication depend on the agent and exposed dose, route of entry, individual variation and environmental factors. Onset of symptoms varies from 2-24 h in Ricin to 24-96 h in Botulism. Clinical manifestations also vary from irritation of the eyes, skin and mucus membranes in T2 toxin to an acute flaccid paralysis of bilateral cranial nerve impairment of descending manner in botulism. Most of the pyrogenic toxins such as SEB produce the same signs and symptoms as toxic shock syndrome including a rapid drop in blood pressure, elevated temperature, and multiple organ failure. MANAGEMENT There is no specific antidote or effective treatment for most of the biotoxins. The clinical management is thus more supportive and symptomatic. Fortunately vaccines are now available for most of BWA. Therefore, immunization of personnel at risk of exposure is recommended. CONCLUSION Biotoxins are very wide and bioterrorism is a heath and security threat that may induce national and international problems. Therefore, the security authorities, health professional and even public should be aware of bioterrorism.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91735-348, Islamic Republic of Iran.
| | | | | |
Collapse
|
17
|
Abstract
The potential for biological weapons to be used in terrorism is a real possibility. Biological weapons include infectious agents and toxins. Toxins are poisons produced by living organisms. Toxins relevant to bioterrorism include ricin, botulinum, Clostridium perfrigens epsilson toxin, conotoxins, shigatoxins, saxitoxins, tetrodotoxins, mycotoxins, and nicotine. Toxins have properties of biological and chemical weapons. Unlike pathogens, toxins do not produce an infection. Ricin causes multiorgan toxicity by blocking protein synthesis. Botulinum blocks acetylcholine in the peripheral nervous system leading to muscle paralysis. Epsilon toxin damages cell membranes. Conotoxins block potassium and sodium channels in neurons. Shigatoxins inhibit protein synthesis and induce apoptosis. Saxitoxin and tetrodotoxin inhibit sodium channels in neurons. Mycotoxins include aflatoxins and trichothecenes. Aflatoxins are carcinogens. Trichothecenes inhibit protein and nucleic acid synthesis. Nicotine produces numerous nicotinic effects in the nervous system.
Collapse
Affiliation(s)
- Peter D. Anderson
- Forensic Pharmacologist, Private Practice, Adjunct Associate Professor of Pharmacy Practice, University of Rhode Island, Randolph, MA, USA
| |
Collapse
|
18
|
Kim JS, Skinner M, Gouli S, Parker BL. Generating thermotolerant colonies by pairing Beauveria bassiana isolates. FEMS Microbiol Lett 2011; 324:165-72. [DOI: 10.1111/j.1574-6968.2011.02400.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022] Open
Affiliation(s)
- Jae Su Kim
- Entomology Research Laboratory; University of Vermont; Burlington; VT; USA
| | - Margaret Skinner
- Entomology Research Laboratory; University of Vermont; Burlington; VT; USA
| | - Svetlana Gouli
- Entomology Research Laboratory; University of Vermont; Burlington; VT; USA
| | - Bruce L. Parker
- Entomology Research Laboratory; University of Vermont; Burlington; VT; USA
| |
Collapse
|
19
|
Kattke MD, Gao EJ, Sapsford KE, Stephenson LD, Kumar A. FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami. SENSORS 2011; 11:6396-410. [PMID: 22163961 PMCID: PMC3231422 DOI: 10.3390/s110606396] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 11/16/2022]
Abstract
In this study, a fluorescence resonance energy transfer (FRET)-based quantum dot (QD) immunoassay for detection and identification of Aspergillus amstelodami was developed. Biosensors were formed by conjugating QDs to IgG antibodies and incubating with quencher-labeled analytes; QD energy was transferred to the quencher species through FRET, resulting in diminished fluorescence from the QD donor. During a detection event, quencher-labeled analytes are displaced by higher affinity target analytes, creating a detectable fluorescence signal increase from the QD donor. Conjugation and the resulting antibody:QD ratios were characterized with UV-Vis spectroscopy and QuantiT protein assay. The sensitivity of initial fluorescence experiments was compromised by inherent autofluorescence of mold spores, which produced low signal-to-noise and inconsistent readings. Therefore, excitation wavelength, QD, and quencher were adjusted to provide optimal signal-to-noise over spore background. Affinities of anti-Aspergillus antibody for different mold species were estimated with sandwich immunoassays, which identified A. fumigatus and A. amstelodami for use as quencher-labeled- and target-analytes, respectively. The optimized displacement immunoassay detected A. amstelodami concentrations as low as 103 spores/mL in five minutes or less. Additionally, baseline fluorescence was produced in the presence of 105 CFU/mL heat-killed E. coli O157:H7, demonstrating high specificity. This sensing modality may be useful for identification and detection of other biological threat agents, pending identification of suitable antibodies. Overall, these FRET-based QD-antibody biosensors represent a significant advancement in detection capabilities, offering sensitive and reliable detection of targets with applications in areas from biological terrorism defense to clinical analysis.
Collapse
Affiliation(s)
- Michele D. Kattke
- U.S. Corps of Engineers ERDC-CERL, 2902 Newmark Drive, Champaign, IL 61826, USA; E-Mails: (E.J.G.); (L.D.S.); (A.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-217-373-6758; Fax: +1-217-373-7222
| | - Elizabeth J. Gao
- U.S. Corps of Engineers ERDC-CERL, 2902 Newmark Drive, Champaign, IL 61826, USA; E-Mails: (E.J.G.); (L.D.S.); (A.K.)
| | - Kim E. Sapsford
- U.S. Food and Drug Administration CDRH-OSEL-DB, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA; E-Mail:
| | - Larry D. Stephenson
- U.S. Corps of Engineers ERDC-CERL, 2902 Newmark Drive, Champaign, IL 61826, USA; E-Mails: (E.J.G.); (L.D.S.); (A.K.)
| | - Ashok Kumar
- U.S. Corps of Engineers ERDC-CERL, 2902 Newmark Drive, Champaign, IL 61826, USA; E-Mails: (E.J.G.); (L.D.S.); (A.K.)
| |
Collapse
|
20
|
|
21
|
Hawksworth DL, Wiltshire PEJ. Forensic mycology: the use of fungi in criminal investigations. Forensic Sci Int 2010; 206:1-11. [PMID: 20634009 DOI: 10.1016/j.forsciint.2010.06.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/07/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
This is the first overview to be published of the whole field of forensic mycology. It is based on all available information located in the literature, together with 13 examples from recent casework. Background information on fungi is given, and this is followed by an outline of the value, and potentially wide application, of mycology in criminal investigation. Applications include roles in: providing trace evidence; estimating time since death (post-mortem interval); ascertaining time of deposition; investigating cause of death, hallucinations, or poisonings; locating buried corpses; and biological warfare. Previous work has been critically evaluated, with particular attention to its evidential value, and suitability for presentation in a court of law. The situations where mycology might assist an investigation are summarised, and issues relating to the further development of the subject are presented. A comprehensive bibliography with 120 citations is provided.
Collapse
Affiliation(s)
- David L Hawksworth
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, Madrid 28040, Spain.
| | | |
Collapse
|
22
|
Antonyuk V, Yu Klyuchivska O, Stoika R. Cytotoxic proteins of Amanita virosa Secr. mushroom: Purification, characteristics and action towards mammalian cells. Toxicon 2010; 55:1297-305. [DOI: 10.1016/j.toxicon.2010.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/12/2010] [Accepted: 01/27/2010] [Indexed: 11/17/2022]
|
23
|
Abstract
Humans are exposed to mycotoxins via ingestion, contact and inhalation. This must have occurred throughout human history and led to severe outbreaks. Potential diseases range from akakabio-byo to stachybotryotoxicosis and cancer. The known molecular bases of toxicology run the gamut of 23 compounds, from aflatoxins (AFs) to zearalenone, ochratoxin A and deoxynivalenol. Ergotism is one of the oldest recognized mycotoxicosis, although mycotoxin science only commenced in the 1960s with the discovery of AFs in turkey feed. AFs are carcinogenic. Some others are suspected carcinogens. The effects of mycotoxins are acute or chronic in nature. Mycotoxins are well known in the scientific community, although they have a low profile in the general population. An incongruous situation occurs in United States where mycotoxins from "moldy homes" are considered to be a significant problem, although there is a general debate about seriousness. This contrasts with the thousands of deaths from mycotoxins that occur, even now, in the technologically less developed countries (e.g., Indonesia, China, and Africa). Mycotoxins are more toxic than pesticides. Studies are moving from whole animal work to investigating the biochemical mechanisms in isolated cells, and the mechanisms of toxicity at the molecular level are being elucidated. The stereochemical nature of AFs has been shown to be important. In addition, the effect of multiple mycotoxins is being increasingly investigated, which will more accurately represent the situation in nature. It is anticipated that more fungal metabolites will be recognized as dangerous toxins and permitted statutory levels will decrease in the future.
Collapse
Affiliation(s)
- Robert R M Paterson
- IBB-Institute for Biotechnology and Bioengineering, Universidade do Minho, Portugal.
| | | |
Collapse
|
24
|
Suffert F, Latxague É, Sache I. Plant pathogens as agroterrorist weapons: assessment of the threat for European agriculture and forestry. Food Secur 2009. [DOI: 10.1007/s12571-009-0014-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Feofilova EP, Kuznetsova LS, Sergeeva YE, Galanina LA. Species composition of food-spoiling mycelial fungi. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709010147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Hageskal G, Lima N, Skaar I. The study of fungi in drinking water. ACTA ACUST UNITED AC 2008; 113:165-72. [PMID: 19010414 DOI: 10.1016/j.mycres.2008.10.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 10/10/2008] [Indexed: 12/23/2022]
Abstract
The occurrence of fungi in drinking water has received increased attention in the last decades, and fungi are now generally accepted as drinking water contaminants. The knowledge about the occurrence and diversity of fungi in water has increased considerably from a low knowledge base. However, the relevance of waterborne fungi for water quality and human health is poorly understood and still conflicting. Scientific reports on effective treatment against fungi in water are also few. This article presents a review of the literature on fungal water studies, including some general results, and considerations of significance, limits, contradictions, precautions, and practical consequences.
Collapse
Affiliation(s)
- Gunhild Hageskal
- National Veterinary Institute, Section of Mycology, P.O. Box 750 Centrum, 0106 Oslo, Norway.
| | | | | |
Collapse
|
27
|
Abstract
Toxic fungal metabolites - mycotoxins - cause poisonings after consumption of contaminated food commodities. The most probable intoxications are connected with eating poorly stored food or inhaling of moldy dust. One of the effective ways to protect people against mycotoxins is timely detection. Several methods such as affinity chromatography and enzyme-linked immunosorbent assay are commercially available for this purpose. Nevertheless, fast, sensitive, simple, portable, and low-cost devices are difficult to find. Application of biosensors appears to be a possible method to meet this need for mycotoxins assay.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Centre of Biological Defense, Techonín, Central Military Institute of Health, Techonin, Czech Republic
| | | | | |
Collapse
|
28
|
Holstege CP, Bechtel LK, Reilly TH, Wispelwey BP, Dobmeier SG. Unusual But Potential Agents of Terrorists. Emerg Med Clin North Am 2007; 25:549-66; abstract xi. [PMID: 17482032 DOI: 10.1016/j.emc.2007.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Emergency personnel are tasked with the daunting job of being the first to evaluate and manage victims of a terrorist attack. Numerous potential chemical agents could be used by terrorists. The challenge for first responders and local hospital emergency personnel is to prepare for a terrorist event that might use one or more of these agents. As part of that preparation, emergency physicians should have a basic understanding of potential chemical terrorist agents. It is beyond the scope of this article to review all potential terrorist agents. Rather, four potential agents have been chosen for review: sodium monofluoroacetate, trichothecene mycotoxins, vomiting agents, and saxitoxin.
Collapse
Affiliation(s)
- Christopher P Holstege
- Division of Medical Toxicology, Department of Emergency Medicine, University of Virginia, Charlottesville, VA 22908-0774, USA.
| | | | | | | | | |
Collapse
|
29
|
Russell R, Paterson M. Zearalenone production and growth in drinking water inoculated with Fusarium graminearum. Mycol Prog 2007. [DOI: 10.1007/s11557-007-0529-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|