1
|
Adnan M, Zafar M, Anwar Z. Screening of Chitinolytic Microfungi and Optimization of Parameters for Hyperproduction of Chitinase Through Solid-State Fermentation Technique. Appl Biochem Biotechnol 2024; 196:1840-1862. [PMID: 37440112 DOI: 10.1007/s12010-023-04663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
This study is intended for the production of chitinase enzyme from locally isolated fungal strains. Out of 10 isolated fungal strains from district Gujrat, Punjab, Pakistan, Aspergillus terreus SB3 (accession number ON738571) was found with maximum chitinolytic potential (80.8 U/mL/min). By applying central composite design (CCD) through response surface methodology (RSM) under solid-state fermentation (SSF), eight nutritional and physical parameters were optimized. Among these, temperature, substrate concentration, and pH were found as significant factors toward chitinase production in the first phase. Moisture and nitrogen source were found as significant factors during second phase of chitinase production. The effect of incubation period, inoculum size, and magnesium source was observed as non-significant. The chitinase activity was successfully enhanced more than 2 folds up to 198.5 U/mL/min at optimized conditions of 35 °C temperature, 4.5 pH, 20 g substrate concentration, 4-day incubation period, 55% moisture content, 4.5 mL inoculum size, 0.25 g ammonium sulfate, and 0.30 g magnesium sulfate using RSM design. It was also found that Ganoderma lucidum (bracket fungus) has more potential to be used for the production of chitinase compared to fish scales. The present study exhibited Aspergillus terreus SB3 (ON738571) as a potential indigenous strain capable for hyperproduction of chitinase through cheap fermentation technology that might be employed for the eradication of chitin-based sea waste to remove the marine pollution.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Punjab, Pakistan
| | - Muddassar Zafar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Punjab, Pakistan.
| | - Zahid Anwar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Punjab, Pakistan
| |
Collapse
|
2
|
Arnold ND, Garbe D, Brück TB. Proteomic and Transcriptomic Analyses to Decipher the Chitinolytic Response of Jeongeupia spp. Mar Drugs 2023; 21:448. [PMID: 37623729 PMCID: PMC10455584 DOI: 10.3390/md21080448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
In nature, chitin, the most abundant marine biopolymer, does not accumulate due to the action of chitinolytic organisms, whose saccharification systems provide instructional blueprints for effective chitin conversion. Therefore, discovery and deconstruction of chitinolytic machineries and associated enzyme systems are essential for the advancement of biotechnological chitin valorization. Through combined investigation of the chitin-induced secretome with differential proteomic and transcriptomic analyses, a holistic system biology approach has been applied to unravel the chitin response mechanisms in the Gram-negative Jeongeupia wiesaeckerbachi. Hereby, the majority of the genome-encoded chitinolytic machinery, consisting of various glycoside hydrolases and a lytic polysaccharide monooxygenase, could be detected extracellularly. Intracellular proteomics revealed a distinct translation pattern with significant upregulation of glucosamine transport, metabolism, and chemotaxis-associated proteins. While the differential transcriptomic results suggested the overall recruitment of more genes during chitin metabolism compared to that of glucose, the detected protein-mRNA correlation was low. As one of the first studies of its kind, the involvement of over 350 unique enzymes and 570 unique genes in the catabolic chitin response of a Gram-negative bacterium could be identified through a three-way systems biology approach. Based on the cumulative data, a holistic model for the chitinolytic machinery of Jeongeupia spp. is proposed.
Collapse
Affiliation(s)
| | | | - Thomas B. Brück
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Werner-Siemens Chair for Synthetic Biotechnology (WSSB), Lichtenbergstr. 4, 85748 Garching, Germany; (N.D.A.); (D.G.)
| |
Collapse
|
3
|
El-Ganainy SM, Mosa MA, Ismail AM, Khalil AE. Lignin-Loaded Carbon Nanoparticles as a Promising Control Agent against Fusarium verticillioides in Maize: Physiological and Biochemical Analyses. Polymers (Basel) 2023; 15:polym15051193. [PMID: 36904433 PMCID: PMC10007435 DOI: 10.3390/polym15051193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Lignin, a naturally occurring biopolymer, is produced primarily as a waste product by the pulp and paper industries and burned to produce electricity. Lignin-based nano- and microcarriers found in plants are promising biodegradable drug delivery platforms. Here, we highlight a few characteristics of a potential antifungal nanocomposite consisting of carbon nanoparticles (C-NPs) with a defined size and shape containing lignin nanoparticles (L-NPs). Spectroscopic and microscopic studies verified that the lignin-loaded carbon nanoparticles (L-CNPs) were successfully prepared. Under in vitro and in vivo conditions, the antifungal activity of L-CNPs at various doses was effectively tested against a wild strain of F. verticillioides that causes maize stalk rot disease. In comparison to the commercial fungicide, Ridomil Gold SL (2%), L-CNPs introduced beneficial effects in the earliest stages of maize development (seed germination and radicle length). Additionally, L-CNP treatments promoted positive effects on maize seedlings, with a significant increment in the level of carotenoid, anthocyanin, and chlorophyll pigments for particular treatments. Finally, the soluble protein content displayed a favorable trend in response to particular dosages. Most importantly, treatments with L-CNPs at 100 and 500 mg/L significantly reduced stalk rot disease by 86% and 81%, respectively, compared to treatments with the chemical fungicide, which reduced the disease by 79%. These consequences are substantial considering the essential cellular function carried out by these special natural-based compounds. Finally, the intravenous L-CNPs treatments in both male and female mice that affected the clinical applications and toxicological assessments are explained. The results of this study suggest that L-CNPs are of high interest as biodegradable delivery vehicles and can be used to stimulate favorable biological responses in maize when administered in the recommended dosages, contributing to the idea of agro-nanotechnology by demonstrating their unique qualities as a cost-effective alternative compared to conventional commercial fungicides and environmentally benign nanopesticides for long-term plant protection.
Collapse
Affiliation(s)
- Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
- Correspondence: (S.M.E.-G.); (M.A.M.)
| | - Mohamed A. Mosa
- Nanotechnology & Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
- Correspondence: (S.M.E.-G.); (M.A.M.)
| | - Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ashraf E. Khalil
- Nematology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
4
|
Mosa MA, Youssef K, Hamed SF, Hashim AF. Antifungal activity of eco-safe nanoemulsions based on Nigella sativa oil against Penicillium verrucosum infecting maize seeds: Biochemical and physiological traits. Front Microbiol 2023; 13:1108733. [PMID: 36741894 PMCID: PMC9889564 DOI: 10.3389/fmicb.2022.1108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
The main goals of the present investigation were to develop O/W nanoemulsion fungicides based on cold-pressed Nigella sativa (black seed) oil to prevent Penicillium verrucosum infection of maize seeds and to test their antifungal activity against this fungus. Additionally, the effect of these nanoemulsions on plant physiological parameters was also investigated. Two nonionic surfactants namely Tween 20 and Tween 80 were used as emulsifying agents in these formulations. The effect of sonication time and surfactant type on the mean droplet size, polydispersity index (PDI), and zeta potential of the nanoemulsions were determined by dynamic light scattering (DLS). Results indicated that both sonication time and emulsifier type had pronounced effects on the stability of O/W nanoemulsions with a small particle size range (168.6-345.3 nm), acceptable PDI (0.181-0.353), and high zeta potential (-27.24 to -48.82 mV). Tween 20 showed superior stability compared to Tween 80 nanoemulsions. The in vitro results showed that complete inhibition of P. verrucosum-growth was obtained by 10_T80 and 10_T20 nanoemulsions at 100% concentration. All nanoemulsions had increment effects on maize seed germination by 101% in the case of 10_T20 and 10_T80 compared to untreated seeds or the chemical fungicide treatment. Nanoemulsions (10_T20 and 10_T80) were able to stimulate root and shoot length as compared to the fungicide treatment. Seed treatment with 10_T80 nanoemulsion showed the highest AI and protease activity by 75 and 70%, respectively, as compared to the infected control. The produced nanoemulsions might provide an effective protectant coating layer for the stored maize seeds.
Collapse
Affiliation(s)
- Mohamed A. Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Khamis Youssef
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt,Agricultural and Food Research Council, Academy of Scientific Research and Technology, Cairo, Egypt,*Correspondence: Khamis Youssef, ✉
| | - Said F. Hamed
- Department of Fats and Oils, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | - Ayat F. Hashim
- Department of Fats and Oils, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
5
|
Alonso-Díaz MA, Jiménez-Ruíz M, Fernández-Salas A. First Evidence of the Tickicide Effect of Entomopathogenic Fungi Isolated from Mexican Cattle Farms Against Amblyomma mixtum. J Parasitol 2022; 108:539-544. [DOI: 10.1645/21-116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- M. A. Alonso-Díaz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de la Torre, C.P. 93600, Martínez de la Torre,
| | - M. Jiménez-Ruíz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de la Torre, C.P. 93600, Martínez de la Torre,
| | - A. Fernández-Salas
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de la Torre, C.P. 93600, Martínez de la Torre,
| |
Collapse
|
6
|
Santos Gomes D, de Andrade Silva EM, de Andrade Rosa EC, Silva Gualberto NG, de Jesus Souza MÁ, Santos G, Pirovani CP, Micheli F. Identification of a key protein set involved in Moniliophthora perniciosa necrotrophic mycelium and basidiocarp development. Fungal Genet Biol 2021; 157:103635. [PMID: 34700000 DOI: 10.1016/j.fgb.2021.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches' broom disease in cacao (Theobroma cacao L.). The biotrophic fungal phase initiates the disease and is characterized by a monokaryotic mycelium, while the necrotrophic phase is characterized by a dikaryotic mycelium and leads to necrosis of infected tissues. A study of the necrotrophic phase was conducted on bran-based solid medium, which is the only medium that enables basidiocarp and basidiospore production. Six different fungal developmental phases were observed according to the mycelium colour or the organ produced: white, yellow, pink, dark pink, primordium and basidiocarp. In this study, we identified notable proteins in each phase, particularly those accumulated prior to basidiocarp formation. Proteins were analysed by proteomics; 2-D gels showed 300-550 spots. Statistically differentially accumulated spots were sequenced by mass spectrometry and 259 proteins were identified and categorized into nine functional classes. Proteins related to energy metabolism, protein folding and morphogenesis that were potentially involved in primordium and basidiocarp formation were identified; these proteins may represent useful candidates for further analysis related to the spread and pathogenesis of this fungus. To the best of our knowledge, this report describes the first proteomic analysis of the developmental phases of Moniliophthora perniciosa.
Collapse
Affiliation(s)
- Dayane Santos Gomes
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Edson Mario de Andrade Silva
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Emilly Caroline de Andrade Rosa
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Nina Gabriela Silva Gualberto
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Monaliza Átila de Jesus Souza
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gesivaldo Santos
- Universidade Estadual do Sudoeste da Bahia (UESB), Av. José Moreira Sobrinho, Jequié, Bahia 45206-190, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Rodovia Ilhéus-Itabuna, Km 16, Ilhéus, Bahia 45662-900, Brazil; CIRAD, UMR AGAP, F-34398 Montpellier, France.
| |
Collapse
|
7
|
Induction of defense-related enzymes and enhanced disease resistance in maize against Fusarium verticillioides by seed treatment with Jacaranda mimosifolia formulations. Sci Rep 2021; 11:59. [PMID: 33420158 PMCID: PMC7794358 DOI: 10.1038/s41598-020-79306-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Fusarium verticillioides is an important fungal pathogen of maize, causing stalk rot and severely affecting crop production. The aim of this study was to characterize the protective effects of formulations based on Jacaranda mimosifolia leaf extracts against F. verticillioides in maize. We compared different seed treatments comprising J. mimosifolia extracts, chemical fungicide (mefenoxam) and salicylic acid to modulate the defense system of maize host plants. Both aqueous and methanolic leaf extracts of J. mimosifolia (1.2% w/v) resulted in 96-97% inhibition of mycelial growth of F. verticillioides. While a full-dose (1.2%) extract of J. mimosifolia provided significant protective effects on maize plants compared to the inoculated control, a half-dose (0.6% w/v) application of J. mimosifolia in combination with half-strength mefenoxam was the most effective treatment in reducing stalk rot disease in pot and field experiments. The same seed treatment significantly upregulated the expression of genes in the leaves encoding chitinase, glucanase, lipid transfer protein, and pathogenesis-related proteins PR-1, PR-5 and PR-10, 72 h after inoculation. This treatment also induced the activities of peroxidase, polyphenol oxidase, protease, acid invertase, chitinase and phenylalanine ammonia lyase. We conclude that seed pre-treatment with J. mimosifolia extract with half-strength chemical mefenoxam is a promising approach for the management of stalk rot in maize.
Collapse
|
8
|
Santana Silva RJ, Alves RM, Peres Gramacho K, Marcellino LH, Micheli F. Involvement of structurally distinct cupuassu chitinases and osmotin in plant resistance to the fungus Moniliophthora perniciosa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:142-151. [PMID: 31958681 DOI: 10.1016/j.plaphy.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 05/18/2023]
Abstract
The cupuassu tree (Theobroma grandiflorum) is a crop of great economic importance to Brazil, mainly for its pulp and seeds, which are used in food industry. However, cupuassu fruit production is threatened by witches' broom disease caused by the fungus Moniliophthora perniciosa. As elements of its defense mechanisms, the plant can produce and accumulate pathogenesis-related (PR) proteins such as chitinases and osmotins. Here, we identified three cupuassu PR proteins (TgPR3, TgPR5 and TgPR8) from cupuassu-M. perniciosa interaction RNA-seq data. TgPR3 and TgPR8 corresponded to chitinases, and TgPR5 to osmotin; they are phylogenetically related to cacao and to Arabidopsis PR sequences involved in biotic and abiotic stress. The TgPR proteins' tridimensional structure was obtained through homology modeling, and molecular docking with chitin and chitosan showed that the TgPR proteins can interact with both cell wall molecules and presented a higher affinity for chitosan. TgPR gene expression was analyzed by RT-qPCR on resistant and susceptible cupuassu genotypes infected by M. perniciosa at 8, 24, 48 and 72 h after infection (hai). The TgPR genes showed higher expression in resistant plants compared to the susceptible ones, mainly for TgPR5 at 8 and 24 hai, while the expression was lower in the susceptible cupuassu plants. To our knowledge, this is the first in silico and in vitro reports of cupuassu PR protein. The data suggested that TgPRs could be involved in recognizing mechanisms of the plant's innate immune system through chitin receptors. Our results also suggest a putative role of chitinase/chitosanase for the TgPR5/osmotin.
Collapse
Affiliation(s)
- Raner José Santana Silva
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Rafael Moyses Alves
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Amazônia Oriental, 66095-903, Belém, PA, Brazil
| | | | - Lucilia Helena Marcellino
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662-900, Ilhéus, BA, Brazil; CIRAD, UMR AGAP, F-34398, Montpellier, France.
| |
Collapse
|
9
|
Naz R, Nosheen A, Yasmin H, Bano A, Keyani R. Botanical-chemical formulations enhanced yield and protection against Bipolaris sorokiniana in wheat by inducing the expression of pathogenesis-related proteins. PLoS One 2018; 13:e0196194. [PMID: 29708983 PMCID: PMC5927443 DOI: 10.1371/journal.pone.0196194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/09/2018] [Indexed: 12/03/2022] Open
Abstract
Two experiments (pot and field experiments) were conducted in two consecutive years to evaluate the protective effects of botanical-chemical formulations on physiological, biochemical performance and grain yield of wheat inoculated with Bipolaris sorokiniana. We compared different formulations comprising Calotropis procera, Jacaranda mimosifolia, Thevetia peruviana extracts, chemical fungicide (mefenoxam) and salicylic acid to modulate the defense system of wheat host plants. Among the selected plant species J. mimosifolia aqueous and methanolic leaf extracts (1.2% w/v) resulted in 96 to 97% inhibition against B. sorokiniana. Both in pot and field experiments, among all the formulations of selected plant extracts the combined formulation of JAF2 (J. mimosifolia 0.6%)+MFF2 (mefenoxam 0.1%) lowered the dose of chemical fungicide required to reduce the leaf spot blotch disease. The same formulation induced resistance in wheat apparently through the accumulation of peroxidase, polyphenol oxidase, protease, acid invertase, chitinase and phenylalanine ammonia lyase. This formulation also stimulated the defense-related gene expression of PR-proteins. The same treatment gave even more increase (48%, 12% and 22%) in no. of grains/spike, grains weight and grain yield, than the MFF1 (mefenoxam 0.2%). We conclude that foliar application of J. mimosifolia leaf extract with very low dose of chemical fungicide (J. mimosifolia 0.6%+mefenoxam 0.1%) is a promising approach for the management of leaf blight and spot blotch in wheat.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Chak Shahzad, Islamabad, Pakistan
- * E-mail:
| | - Asia Nosheen
- Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Chak Shahzad, Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Chak Shahzad, Islamabad, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Chak Shahzad, Islamabad, Pakistan
| |
Collapse
|
10
|
Alshehria AN, Ghanem KM, Al-Garni SM. Application of a five level central composite design to optimize operating conditions for electricity generation in a microbial fuel cell. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2015.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Abdullah N.Z. Alshehria
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, University College in Al-Jummum, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Khaled M. Ghanem
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Alexandria, Egypt
| | - Saleh M. Al-Garni
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Protein profile and protein interaction network of Moniliophthora perniciosa basidiospores. BMC Microbiol 2016; 16:120. [PMID: 27342316 PMCID: PMC4919874 DOI: 10.1186/s12866-016-0753-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/15/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Witches' broom, a disease caused by the basidiomycete Moniliophthora perniciosa, is considered to be the most important disease of the cocoa crop in Bahia, an area in the Brazilian Amazon, and also in the other countries where it is found. M. perniciosa germ tubes may penetrate into the host through intact or natural openings in the cuticle surface, in epidermis cell junctions, at the base of trichomes, or through the stomata. Despite its relevance to the fungal life cycle, basidiospore biology has not been extensively investigated. In this study, our goal was to optimize techniques for producing basidiospores for protein extraction, and to produce the first proteomics analysis map of ungerminated basidiospores. We then presented a protein interaction network by using Ustilago maydis as a model. RESULTS The average pileus area ranged from 17.35 to 211.24 mm(2). The minimum and maximum productivity were 23,200 and 6,666,667 basidiospores per basidiome, respectively. The protein yield in micrograms per million basidiospores were approximately 0.161; 2.307, and 3.582 for germination times of 0, 2, and 4 h after germination, respectively. A total of 178 proteins were identified through mass spectrometry. These proteins were classified according to their molecular function and their involvement in biological processes such as cellular energy production, oxidative metabolism, stress, protein synthesis, and protein folding. Furthermore, to better understand the expression pattern, signaling, and interaction events of spore proteins, we presented an interaction network using orthologous proteins from Ustilago maydis as a model. Most of the orthologous proteins that were identified in this study were not clustered in the network, but several of them play a very important role in hypha development and branching. CONCLUSIONS The quantities of basidiospores 7 × 10(9); 5.2 × 10(8), and 6.7 × 10(8) were sufficient to obtain enough protein mass for the three 2D-PAGE replicates, for the 0, 2, and 4 h-treatments, respectively. The protein extraction method that is based on sedimentation, followed by sonication with SDS-dense buffer, and phenolic extraction, which was utilized in this study, was effective, presenting a satisfactory resolution and reproducibility for M. perniciosa basidiospores. This report constitutes the first comprehensive study of protein expression during the ungerminated stage of the M. perniciosa basidiospore. Identification of the spots observed in the reference gel enabled us to know the main molecular interactions involved in the initial metabolic processes of fungal development.
Collapse
|
12
|
Rishad K, Rebello S, Nathan VK, Shabanamol S, Jisha M. Optimised production of chitinase from a novel mangrove isolate, Bacillus pumilus MCB-7 using response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Mycelial development preceding basidioma formation in Moniliophthora perniciosa is associated to chitin, sugar and nutrient metabolism alterations involving autophagy. Fungal Genet Biol 2016; 86:33-46. [DOI: 10.1016/j.fgb.2015.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/02/2015] [Accepted: 12/12/2015] [Indexed: 02/07/2023]
|
14
|
Naz R, Bano A, Wilson NL, Guest D, Roberts TH. Pathogenesis-related protein expression in the apoplast of wheat leaves protected against leaf rust following application of plant extracts. PHYTOPATHOLOGY 2014; 104:933-944. [PMID: 24624956 DOI: 10.1094/phyto-11-13-0317-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Leaf rust (Puccinia triticina) is a major disease of wheat. We tested aqueous leaf extracts of Jacaranda mimosifolia (Bignoniaceae), Thevetia peruviana (Apocynaceae), and Calotropis procera (Apocynaceae) for their ability to protect wheat from leaf rust. Extracts from all three species inhibited P. triticina urediniospore germination in vitro. Plants sprayed with extracts before inoculation developed significantly lower levels of disease incidence (number of plants infected) than unsprayed, inoculated controls. Sprays combining 0.6% leaf extracts and 2 mM salicylic acid with the fungicide Amistar Xtra at 0.05% (azoxystrobin at 10 μg/liter + cyproconazole at 4 μg/liter) reduced disease incidence significantly more effectively than sprays of fungicide at 0.1% alone. Extracts of J. mimosifolia were most active, either alone (1.2%) or in lower doses (0.6%) in combination with 0.05% Amistar Xtra. Leaf extracts combined with fungicide strongly stimulated defense-related gene expression and the subsequent accumulation of pathogenesis-related (PR) proteins in the apoplast of inoculated wheat leaves. The level of protection afforded was significantly correlated with the ability of extracts to increase PR protein expression. We conclude that pretreatment of wheat leaves with spray formulations containing previously untested plant leaf extracts enhances protection against leaf rust provided by fungicide sprays, offering an alternative disease management strategy.
Collapse
|
15
|
Pereira Menezes S, de Andrade Silva EM, Matos Lima E, Oliveira de Sousa A, Silva Andrade B, Santos Lima Lemos L, Peres Gramacho K, da Silva Gesteira A, Pirovani CP, Micheli F. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca(2+) and Mg(2+) dependent-DNase activity and antifungal action on Moniliophthora perniciosa. BMC PLANT BIOLOGY 2014; 14:161. [PMID: 24920373 PMCID: PMC4079191 DOI: 10.1186/1471-2229-14-161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/06/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND The production and accumulation of pathogenesis-related proteins (PR proteins) in plants in response to biotic or abiotic stresses is well known and is considered as a crucial mechanism for plant defense. A pathogenesis-related protein 4 cDNA was identified from a cacao-Moniliophthora perniciosa interaction cDNA library and named TcPR-4b. RESULTS TcPR-4b presents a Barwin domain with six conserved cysteine residues, but lacks the chitin-binding site. Molecular modeling of TcPR-4b confirmed the importance of the cysteine residues to maintain the protein structure, and of several conserved amino acids for the catalytic activity. In the cacao genome, TcPR-4b belonged to a small multigene family organized mainly on chromosome 5. TcPR-4b RT-qPCR analysis in resistant and susceptible cacao plants infected by M. perniciosa showed an increase of expression at 48 hours after infection (hai) in both cacao genotypes. After the initial stage (24-72 hai), the TcPR-4b expression was observed at all times in the resistant genotypes, while in the susceptible one the expression was concentrated at the final stages of infection (45-90 days after infection). The recombinant TcPR-4b protein showed RNase, and bivalent ions dependent-DNase activity, but no chitinase activity. Moreover, TcPR-4b presented antifungal action against M. perniciosa, and the reduction of M. perniciosa survival was related to ROS production in fungal hyphae. CONCLUSION To our knowledge, this is the first report of a PR-4 showing simultaneously RNase, DNase and antifungal properties, but no chitinase activity. Moreover, we showed that the antifungal activity of TcPR-4b is directly related to RNase function. In cacao, TcPR-4b nuclease activities may be related to the establishment and maintenance of resistance, and to the PCD mechanism, in resistant and susceptible cacao genotypes, respectively.
Collapse
Affiliation(s)
- Sara Pereira Menezes
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus, BA, Brazil
| | - Edson Mario de Andrade Silva
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus, BA, Brazil
| | - Eline Matos Lima
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus, BA, Brazil
| | - Aurizângela Oliveira de Sousa
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus, BA, Brazil
| | - Bruno Silva Andrade
- Universidade Estadual do Sudoeste da Bahia (UESB), Av. José Moreira Sobrinho, Jequié, Bahia 45206-190, Brazil
| | | | | | - Abelmon da Silva Gesteira
- Departamento de Biologia Molecular, Embrapa Mandioca e Fruticultura, Rua Embrapa, s/n°, CEP44380-000 Cruz das Almas, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus, BA, Brazil
| | - Fabienne Micheli
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus, BA, Brazil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| |
Collapse
|
16
|
Pareek N, Ghosh S, Singh RP, Vivekanand V. Enhanced production of chitin deacetylase by Penicillium oxalicum SAE M-51 through response surface optimization of fermentation conditions. 3 Biotech 2014; 4:33-39. [PMID: 28324456 PMCID: PMC3909569 DOI: 10.1007/s13205-013-0118-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/15/2013] [Indexed: 12/03/2022] Open
Abstract
Optimization of the fermentation conditions for chitin deacetylase (CDA) production by Penicillium oxalicum SAEM-51 was undertaken in the present study using central composite design (CCD) under submerged condition. CDA is widely employed for bio-catalytic conversion of chitin to chitosan. Chitosan is a biopolymer with immense commercial potential in diverse industrial sectors, viz. pharmaceutics, food, agriculture, water treatment, etc. CDA production was significantly affected by all the variables studied, viz. pH, temperature, inoculum age and size. The optimal conditions that stimulating maximal CDA production were found to be: pH, 7.9; temperature, 28 °C; inoculum age, 90 h, and 11 % inoculum size. Under these optimized conditions, the actual maximal CDA production was 623.57 ± 8.2 Ul−1, which was in good agreement with the values predicted by the quadratic model (648.24 Ul−1), confirming the validity of the model. Optimization of fermentation conditions through CCD had resulted into 1.4-fold enhancement in CDA productivity (Qp = 4.3264 Ul−1 h−1). Results of these experiments indicated that response surface methodology was proved to be a promising method for optimization of CDA production.
Collapse
Affiliation(s)
- Nidhi Pareek
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
- Department of Chemistry, Umeå University, 90183, Umeå, Sweden.
| | - Sanjoy Ghosh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - R P Singh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - V Vivekanand
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
- Protein Engineering and Proteomics Group, Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, 1430, Ås, Norway
| |
Collapse
|
17
|
Silva MLC, Souza VBD, Santos VDS, Kamida HM, Vasconcellos-Neto JRTD, Góes-Neto A, Bello Koblitz MG. Production of Manganese Peroxidase by <i>Trametes villosa</i> on Unexpensive Substrate and Its Application in the Removal of Lignin from Agricultural Wastes. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abb.2014.514122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Argôlo Santos Carvalho H, de Andrade Silva EM, Carvalho Santos S, Micheli F. Polygalacturonases from Moniliophthora perniciosa are regulated by fermentable carbon sources and possible post-translational modifications. Fungal Genet Biol 2013; 60:110-21. [DOI: 10.1016/j.fgb.2013.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 09/30/2013] [Accepted: 10/06/2013] [Indexed: 11/30/2022]
|
19
|
|
20
|
Al-Shehri AN, Ghanem KM, Al-Garni SM. Statistical Optimization of Medium Components to Enhance Bioelectricity Generation in Microbial Fuel Cell. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/s13369-012-0397-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Murugappan R, Karthikeyan M, Aravinth A, Alamelu M. Siderophore-mediated iron uptake promotes yeast-bacterial symbiosis. Appl Biochem Biotechnol 2012; 168:2170-83. [PMID: 23086281 DOI: 10.1007/s12010-012-9926-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022]
Abstract
In the present study, siderophore produced by the marine yeast Aureobasidium pullulans was characterized as hydroxamate by chemical and bioassays. The hydroxamate assignment was supported by the appearance of peaks at 1,647.21-1,625.99 cm(-1) and at 1,435.04 cm(-1) in the infrared spectrum. The purified siderophore exhibited specific growth-promoting activity under iron-limited conditions for siderophore auxotrophic probiotic bacteria. Cross-utilization of siderophore indicates a symbiotic relationship between the yeast A. pullulans and the selected probiotic bacterial strains. Statistical optimization of medium components for improved siderophore production in A. pullulans was depicted by response surface methodology. The shift in UV-Vis spectroscopy indicates the photoreactive property and subsequent oxidative cleavage of purified siderophore on exposure to sunlight.
Collapse
Affiliation(s)
- Rm Murugappan
- Department of Zoology and Microbiology, Thiagarajar College, Madurai, Tamil Nadu, India.
| | | | | | | |
Collapse
|
22
|
Kumar DP, Singh RK, Anupama PD, Solanki MK, Kumar S, Srivastava AK, Singhal PK, Arora DK. Studies on Exo-Chitinase Production from Trichoderma asperellum UTP-16 and Its Characterization. Indian J Microbiol 2012; 52:388-95. [PMID: 23997329 PMCID: PMC3460120 DOI: 10.1007/s12088-011-0237-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 09/26/2011] [Indexed: 10/16/2022] Open
Abstract
The growth conditions for chitinase production by Trichoderma asperellum UTP-16 in solid state fermentation was optimized using response surface methodology based on central composite design. The chitinase production was optimized, using one-factor at a time approach, with six independent variables (temperature, pH, NaCl, incubation period, nitrogen and carbon sources) and 3.31 Units per gram dry substrate (U gds(-1)) exo-chitinase yield was obtained. A 21.15% increase was recorded in chitinase activity (4.01 U gds(-1)) through surface response methodology, indicates that it is a powerful and rapid tool for optimization of physical and nutritional variables. Further, efficiency of crude enzyme was evaluated against phytopathogenic Fusarium spp. and a mycelial growth inhibition up to 3.5-6.5 mm was achieved in well diffusion assay. These results could be supplemented as basic information for the development of enzyme based formulation of T. asperellum UTP-16 and its use as a biocontrol agent.
Collapse
Affiliation(s)
- D. Praveen Kumar
- National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275101 India
| | - Rajesh Kumar Singh
- National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275101 India
| | - P. D. Anupama
- National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275101 India
| | - Manoj Kumar Solanki
- National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275101 India
| | - Sudheer Kumar
- National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275101 India
| | - Alok K. Srivastava
- National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275101 India
| | - Pradeep K. Singhal
- Department of Bioscience, Ranidurgavati University, Jabalpur, Madhya Pradesh 482001 India
| | - Dilip K. Arora
- National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275101 India
| |
Collapse
|
23
|
Singh RK, Kumar DP, Solanki MK, Singh P, Srivastva AK, Kumar S, Kashyap PL, Saxena AK, Singhal PK, Arora DK. Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B-CM18. J Basic Microbiol 2012; 53:451-60. [PMID: 22733389 DOI: 10.1002/jobm.201100590] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/24/2012] [Indexed: 11/11/2022]
Abstract
Chitinase producing strain B-CM18 was isolated from chickpea rhizosphere and identified as Lysinibacillus fusiformis B-CM18. It showed in vitro antifungal activity against a wide range of fungal plant pathogens and was found to produce several PGPR activities. Further, a multivariate response surface methodology was used to evaluate the effects of different factors on chitinolytic activity and optimizing enzyme production. A central composite design was employed to achieve the highest chitinase production at optimum values of the process variables, viz., temperature (20-45 °C), sodium chloride (2-7%), starch (0.1-1%) and yeast extract (0.1-1%), added in the minimal medium supplemented with colloidal chitin (1-10%; w:w). The fit of the model (R(2) = 0.5692) was found to be significant. The production medium to achieve the highest chitinase production (101 U ml(-1) ) was composed of the minimal medium composed of chitin (6.09%), NaCl (4.5%), starch (0.55%) and yeast extract (0.55%) with temperature (32.5 °C). The results show that the optimization strategy led to an increase in chitinase production by 56.1-fold. The molecular mass of the chitinase was estimated to be 20 kDa by anion exchange and gel filtration chromatography. Further, purified chitinase showed strong antifungal activity against test pathogens. Overall, these results may serve as a base line data for enhancing the chitinolytic potential of bacterial antagonists for bio-management of chickpea pathogens.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India -275101
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Galante RS, Taranto AG, Koblitz MG, Góes-Neto A, Pirovani CP, Cascardo JC, Cruz SH, Pereira GA, Assis SAD. Purification, characterization and structural determination of chitinases produced by Moniliophthora perniciosa. AN ACAD BRAS CIENC 2012; 84:469-86. [DOI: 10.1590/s0001-37652012000200016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/31/2011] [Indexed: 11/21/2022] Open
Abstract
The enzyme chitinase from Moniliophthora perniciosa the causative agent of the witches' broom disease in Theobroma cacao, was partially purified with ammonium sulfate and filtration by Sephacryl S-200 using sodium phosphate as an extraction buffer. Response surface methodology (RSM) was used to determine the optimum pH and temperature conditions. Four different isoenzymes were obtained: ChitMp I, ChitMp II, ChitMp III and ChitMp IV. ChitMp I had an optimum temperature at 44-73ºC and an optimum pH at 7.0-8.4. ChitMp II had an optimum temperature at 45-73ºC and an optimum pH at 7.0-8.4. ChitMp III had an optimum temperature at 54-67ºC and an optimum pH at 7.3-8.8. ChitMp IV had an optimum temperature at 60ºC and an optimum pH at 7.0. For the computational biology, the primary sequence was determined in silico from the database of the Genome/Proteome Project of M. perniciosa, yielding a sequence with 564 bp and 188 amino acids that was used for the three-dimensional design in a comparative modeling methodology. The generated models were submitted to validation using Procheck 3.0 and ANOLEA. The model proposed for the chitinase was subjected to a dynamic analysis over a 1 ns interval, resulting in a model with 91.7% of the residues occupying favorable places on the Ramachandran plot and an RMS of 2.68.
Collapse
|
25
|
Ghorbel-Bellaaj O, Manni L, Jellouli K, Hmidet N, Nasri M. Optimization of protease and chitinase production by Bacillus cereus SV1 on shrimp shell waste using statistical experimental design. Biochemical and molecular characterization of the chitinase. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0371-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
26
|
Kamerewerd J, Zadra I, Kürnsteiner H, Kück U. PcchiB1, encoding a class V chitinase, is affected by PcVelA and PcLaeA, and is responsible for cell wall integrity in Penicillium chrysogenum. MICROBIOLOGY-SGM 2011; 157:3036-3048. [PMID: 21816879 DOI: 10.1099/mic.0.051896-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Penicillin production in Penicillium chrysogenum is controlled by PcVelA and PcLaeA, two components of the regulatory velvet-like complex. Comparative microarray analysis with mutants lacking PcVelA or PcLaeA revealed a set of 62 common genes affected by the loss of both components. A downregulated gene in both knockout strains is PcchiB1, potentially encoding a class V chitinase. Under nutrient-depleted conditions, transcript levels of PcchiB1 are strongly upregulated, and the gene product contributes to more than 50 % of extracellular chitinase activity. Functional characterization by generating PcchiB1-disruption strains revealed that PcChiB1 is responsible for cell wall integrity and pellet formation in P. chrysogenum. Further, fluorescence microscopy with a DsRed-labelled chitinase suggests a cell wall association of the protein. An unexpected phenotype occurred when knockout strains were grown on media containing N-acetylglucosamine as the sole C and N source, where, in contrast to the recipient, a penicillin producer strain, the mutants and an ancestral strain show distinct mycelial growth. We discuss the relevance of this class V chitinase for morphology in an industrially important fungus.
Collapse
Affiliation(s)
- Jens Kamerewerd
- Christian Doppler Laboratory for 'Fungal Biotechnology', Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Ivo Zadra
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestraße 10, 6250 Kundl, Austria
| | - Hubert Kürnsteiner
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestraße 10, 6250 Kundl, Austria
| | - Ulrich Kück
- Christian Doppler Laboratory for 'Fungal Biotechnology', Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
27
|
Optimization of medium composition for enhanced chitin deacetylase production by mutant Penicillium oxalicum SAEM-51 using response surface methodology under submerged fermentation. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Partial purification and antifungal profile of chitinase produced by Streptomyces tendae TK-VL_333. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0178-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Nevarez L, Vasseur V, Debaets S, Barbier G. Use of response surface methodology to optimise environmental stress conditions on Penicillium glabrum, a food spoilage mould. Fungal Biol 2010; 114:490-7. [PMID: 20943160 DOI: 10.1016/j.funbio.2010.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/29/2009] [Accepted: 03/24/2010] [Indexed: 11/18/2022]
Abstract
Fungi are ubiquitous microorganisms often associated with spoilage and biodeterioration of a large variety of foods and feedstuffs. Their growth may be influenced by temporary changes in intrinsic or environmental factors such as temperature, water activity, pH, preservatives, atmosphere composition, all of which may represent potential sources of stress. Molecular-based analyses of their physiological responses to environmental conditions would help to better manage the risk of alteration and potential toxicity of food products. However, before investigating molecular stress responses, appropriate experimental stress conditions must be precisely defined. Penicillium glabrum is a filamentous fungus widely present in the environment and frequently isolated in the food processing industry as a contaminant of numerous products. Using response surface methodology, the present study evaluated the influence of two environmental factors (temperature and pH) on P. glabrum growth to determine 'optimised' environmental stress conditions. For thermal and pH shocks, a large range of conditions was applied by varying factor intensity and exposure time according to a two-factorial central composite design. Temperature and exposure duration varied from 30 to 50 °C and from 10 min to 230 min, respectively. The effects of interaction between both variables were observed on fungal growth. For pH, the duration of exposure, from 10 to 230 min, had no significant effect on fungal growth. Experiments were thus carried out on a range of pH from 0.15 to 12.50 for a single exposure time of 240 min. Based on fungal growth results, a thermal shock of 120 min at 40 °C or a pH shock of 240 min at 1.50 or 9.00 may therefore be useful to investigate stress responses to non-optimal conditions.
Collapse
|
30
|
Souza CS, Oliveira BM, Costa GGL, Schriefer A, Selbach-Schnadelbach A, Uetanabaro APT, Pirovani CP, Pereira GAG, Taranto AG, Cascardo JCDM, Góes-Neto A. Identification and characterization of a class III chitin synthase gene of Moniliophthora perniciosa, the fungus that causes witches' broom disease of cacao. J Microbiol 2009; 47:431-40. [PMID: 19763417 DOI: 10.1007/s12275-008-0166-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 04/01/2009] [Indexed: 11/30/2022]
Abstract
Chitin synthase (CHS) is a glucosyltransferase that converts UDP-N-acetylglucosamine into chitin, one of the main components of fungal cell wall. Class III chitin synthases act directly in the formation of the cell wall. They catalyze the conversion of the immediate precursor of chitin and are responsible for the majority of chitin synthesis in fungi. As such, they are highly specific molecular targets for drugs that can inhibit the growth and development of fungal pathogens. In this work, we have identified and characterized a chitin synthase gene of Moniliophthora perniciosa (Mopchs) by primer walking. The complete gene sequence is 3,443 bp, interrupted by 13 small introns, and comprises a cDNA with an ORF with 2,739 bp, whose terminal region was experimentally determined, encoding a protein with 913 aa that harbors all the motifs and domains typically found in class III chitin synthases. This is the first report on the characterization of a chitin synthase gene, its mature transcription product, and its putative protein in basidioma and secondary mycelium stages of M. perniciosa, a basidiomycotan fungus that causes witches' broom disease of cacao.
Collapse
Affiliation(s)
- Catiane S Souza
- Laboratório de Pesquisa em Microbiologia (LAPEM), Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana (UEFS), Avenida Transnordestina, s/n, Bairro Novo Horizonte, Feira de Santana, BA 44036-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Effects of carbon and nitrogen sources on the induction and repression of chitinase enzyme fromMetarhizium anisopliae isolates. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
32
|
Pires ABL, Gramacho KP, Silva DC, Góes-Neto A, Silva MM, Muniz-Sobrinho JS, Porto RF, Villela-Dias C, Brendel M, Cascardo JCM, Pereira GAG. Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes. BMC Microbiol 2009; 9:158. [PMID: 19653910 PMCID: PMC2782264 DOI: 10.1186/1471-2180-9-158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 08/04/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The hemibiotrophic fungus Moniliophthora perniciosa is the causal agent of Witches' broom, a disease of Theobroma cacao. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease. RESULTS Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order Agaricales. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage of M. perniciosa, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a second in basidiomata, confirming their distinctiveness. The number of transcripts of the gene for plerototolysin B increased in reddish-pink mycelium and indicated an activation of the initial basidiomata production even at this culturing stage. Expression of the glucose transporter gene increased in mycelium after the stress, coinciding with a decrease of adenylate cyclase gene transcription. This indicated that nutrient uptake can be an important signal to trigger fruiting in this fungus. CONCLUSION The identification of genes with increased expression in this phase of the life cycle of M. perniciosa opens up new possibilities of controlling fungus spread as well as of genetic studies of biological processes that lead to basidiomycete fruiting. This is the first comparative morphologic study of the early development both in vivo and in vitro of M. perniciosa basidiomata and the first description of genes expressed at this stage of the fungal life cycle.
Collapse
Affiliation(s)
- Acássia B L Pires
- Centro de Biotecnologia e Genética, Laboratório de Genômica e Expressão Gênica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, 45662-000, Ilhéus-Bahia, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Caribé dos Santos AC, Sena JAL, Santos SC, Dias CV, Pirovani CP, Pungartnik C, Valle RR, Cascardo JCM, Vincentz M. dsRNA-induced gene silencing in Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao. Fungal Genet Biol 2009; 46:825-36. [PMID: 19602443 DOI: 10.1016/j.fgb.2009.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 06/06/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
The genome sequence of the hemibiotrophic fungus Moniliophthora perniciosa revealed genes possibly participating in the RNAi machinery. Therefore, studies were performed in order to investigate the efficiency of gene silencing by dsRNA. We showed that the reporter gfp gene stably introduced into the fungus genome can be silenced by transfection of in vitro synthesized gfpdsRNA. In addition, successful dsRNA-induced silencing of endogenous genes coding for hydrophobins and a peroxiredoxin were also achieved. All genes showed a silencing efficiency ranging from 18% to 98% when compared to controls even 28d after dsRNA treatment, suggesting systemic silencing. Reduction of GFP fluorescence, peroxidase activity levels and survival responses to H(2)O(2) were consistent with the reduction of GFP and peroxidase mRNA levels, respectively. dsRNA transformation of M. perniciosa is shown here to efficiently promote genetic knockdown and can thus be used to assess gene function in this pathogen.
Collapse
Affiliation(s)
- A C Caribé dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus - Itabuna, Km 16, CEP 45662-000 Ilhéus, BA, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pungartnik C, Melo S, Basso T, Macena W, Cascardo J, Brendel M. Reactive oxygen species and autophagy play a role in survival and differentiation of the phytopathogen Moniliophthora perniciosa. Fungal Genet Biol 2009; 46:461-72. [DOI: 10.1016/j.fgb.2009.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/26/2009] [Accepted: 03/06/2009] [Indexed: 11/29/2022]
|
35
|
Pirovani CP, Carvalho HAS, Machado RCR, Gomes DS, Alvim FC, Pomella AWV, Gramacho KP, Cascardo JCDM, Pereira GAG, Micheli F. Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches' broom disease. Electrophoresis 2008; 29:2391-401. [PMID: 18435495 DOI: 10.1002/elps.200700743] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Preparation of high-quality proteins from cacao vegetative organs is difficult due to very high endogenous levels of polysaccharides and polyphenols. In order to establish a routine procedure for the application of proteomic and biochemical analysis to cacao tissues, three new protocols were developed; one for apoplastic washing fluid (AWF) extraction, and two for protein extraction--under denaturing and nondenaturing conditions. The first described method allows a quick and easy collection of AWF--using infiltration-centrifugation procedure--that is representative of its composition in intact leaves according to the smaller symplastic contamination detected by the use of the hexose phosphate isomerase marker. Protein extraction under denaturing conditions for 2-DE was remarkably improved by the combination of chemically and physically modified processes including phenol, SDS dense buffer and sonication steps. With this protocol, high-quality proteins from cacao leaves and meristems were isolated, and for the first time well-resolved 1-DE and 2-DE protein patterns of cacao vegetative organs are shown. It also appears that sonication associated with polysaccharide precipitation using tert-butanol was a crucial step for the nondenaturing protein extraction and subsequent enzymatic activity detection. It is expected that the protocols described here could help to develop high-level proteomic and biochemical studies in cacao also being applicable to other recalcitrant plant tissues.
Collapse
Affiliation(s)
- Carlos Priminho Pirovani
- UESC, DCB, Laboratório de Genômica e Expressão Gênica, Rodovia Ilhéus-Itabuna, Ilhéus-BA, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|