1
|
Breusa S, Thomas E, Baldinotti N, Zilio S, Delcros JG, Hernandez-Palomino DM, Qi W, Guérin H, Gibert B, Mehlen P, Marigo I, Kryza D, Lollo G. Anti-Netrin-1 decorated nanoparticles combined with chemotherapy for the treatment of triple-negative breast cancer. BIOMATERIALS ADVANCES 2024; 161:213881. [PMID: 38749213 DOI: 10.1016/j.bioadv.2024.213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024]
Abstract
Nanoparticle's success as drug delivery systems for cancer treatment has been achieved through passive targeting mechanisms. However, tumor heterogeneity and rapid drug clearance limit the treatment efficacy. Improved outcomes and selective drug release can be achieved by grafting ligands at the surface of nanocarriers that bind molecules overexpressed in the tumor microenvironment (TME). In this work, we developed a docetaxel-loaded nanoemulsions (NEs) binding an anti-netrin-1 monoclonal antibody (NP137) to selectively target the netrin-1 protein overexpressed in many different tumors. The goal is to refine a combined approach utilizing NP137 and docetaxel as an improved tumor-targeting chemotherapeutic agent for addressing triple-negative breast cancer (TNBC). Several factors have been considered for the optimization of the active targeted drug delivery system via the click-chemistry conjugation, as the impact of PEGylated surfactant that stabilize the NEs shell on conjugation efficiency, cytocompatibility with EMT6 cell line and colloidal stability over time of NEs. Results showed that a 660 Da PEG chain length contributed to NEs colloidal stability and had no impact on cell viability or on the antibody binding ability for its ligand after surface conjugation. Moreover, docetaxel was encapsulated into the oily core of NEs, with an encapsulation efficiency of 70 %. To validate our treatment strategy in vivo, the 4T1 murine breast cancer model was used. As a result, the comparison of active-targeted and non-targeted NEs revealed that only active-targeted NE could decrease the tumor growth rate.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France
| | - Eloise Thomas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Noemi Baldinotti
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Jean-Guy Delcros
- Small molecules for biological targets, Centre de Recherche en Cancérologie de Lyon, INSERM 1052 - CNRS5286, ISPB Rockefeller, Université Lyon 1, 69008 Lyon, France
| | | | - Weisha Qi
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Hanäé Guérin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France; Gastroenterology and technologies for health group, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, 69008 Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS, Université de Lyon1, 69008 Lyon, France; Netris Pharma, Lyon, France
| | - Ilaria Marigo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padua, Italy; Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Imthernat Plateform, Hospices Civils de Lyon, 69437 Lyon, France.
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| |
Collapse
|
2
|
Beheshtizadeh N, Amiri Z, Tabatabaei SZ, Seraji AA, Gharibshahian M, Nadi A, Saeinasab M, Sefat F, Kolahi Azar H. Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: from cancer therapy to regenerative medicine approaches. J Transl Med 2024; 22:520. [PMID: 38816723 PMCID: PMC11137998 DOI: 10.1186/s12967-024-05347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024] Open
Abstract
The intersection of nanotechnology and pharmacology has revolutionized the delivery and efficacy of chemotherapeutic agents, notably docetaxel, a key drug in cancer treatment. Traditionally limited by poor solubility and significant side effects, docetaxel's therapeutic potential has been significantly enhanced through its incorporation into nanoplatforms, such as nanofibers and nanoparticles. This advancement offers targeted delivery, controlled release, and improved bioavailability, dramatically reducing systemic toxicity and enhancing patient outcomes. Nanofibers provide a versatile scaffold for the controlled release of docetaxel, utilizing techniques like electrospinning to tailor drug release profiles. Nanoparticles, on the other hand, enable precise drug delivery to tumor cells, minimizing damage to healthy tissues through sophisticated encapsulation methods such as nanoprecipitation and emulsion. These nanotechnologies not only improve the pharmacokinetic properties of docetaxel but also open new avenues in regenerative medicine by facilitating targeted therapy and cellular regeneration. This narrative review highlights the transformative impact of docetaxel-loaded nanoplatforms in oncology and beyond, showcasing the potential of nanotechnology to overcome the limitations of traditional chemotherapy and pave the way for future innovations in drug delivery and regenerative therapies. Through these advancements, nanotechnology promises a new era of precision medicine, enhancing the efficacy of cancer treatments while minimizing adverse effects.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Zahra Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 1458889694, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zoha Tabatabaei
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Morvarid Saeinasab
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Hanieh Kolahi Azar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Ashton MD, Cooper PA, Municoy S, Desimone MF, Cheneler D, Shnyder SD, Hardy JG. Controlled Bioactive Delivery Using Degradable Electroactive Polymers. Biomacromolecules 2022; 23:3031-3040. [PMID: 35748772 PMCID: PMC9277582 DOI: 10.1021/acs.biomac.2c00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Biomaterials capable
of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances
have significant markets in the agriscience/healthcare industries.
Here, we report the development of degradable electroactive polymers
and their application for the controlled delivery of a clinically
relevant drug (the anti-inflammatory dexamethasone phosphate, DMP).
Electroactive copolymers composed of blocks of polycaprolactone (PCL)
and naturally occurring electroactive pyrrole oligomers (e.g., bilirubin,
biliverdin, and hemin) were prepared and solution-processed to produce
films (optionally doped with DMP). A combination of in silico/in vitro/in
vivo studies demonstrated the cytocompatibility of the polymers. The
release of DMP in response to the application of an electrical stimulus
was observed to be enhanced by ca. 10–30% relative to the passive
release from nonstimulated samples in vitro. Such stimuli-responsive
biomaterials have the potential for integration devices capable of
delivering a variety of molecules for technical/medical applications.
Collapse
Affiliation(s)
- Mark D Ashton
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| | - Patricia A Cooper
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - Sofia Municoy
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina
| | - Martin F Desimone
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina
| | - David Cheneler
- Department of Engineering, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YW, U.K.,Materials Science Institute, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| | - Steven D Shnyder
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - John G Hardy
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K.,Materials Science Institute, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| |
Collapse
|
4
|
Darwish WM, Bayoumi NA, Ebeid NH. Biocompatible mucoadhesive nanoparticles for brain targeting of ropinirole hydrochloride: Formulations, radiolabeling and biodistribution. Biopolymers 2022; 113:e23489. [PMID: 35403210 DOI: 10.1002/bip.23489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/07/2022]
Abstract
Two nanoformulations with mucoadhesive properties and brain-targeting mechanisms were designed to deliver the anti-Parkinson's drug, ropinirole hydrochloride (RH). In the first formulation, RH and the amphiphilic block copolymer methoxy poly(ethylene glycol)-b-poly(caprolactone) were assembled in a core-shell morphology followed by coating with a mucoadhesive chitosan outer layer producing a multilayer vehicle (MLV). In the second formulation, RH was encapsulated during the polyelectrolyte complexation of two natural polymers, chitosan and alginate producing RH-loaded chitosan-alginate polyelectrolyte (PEC) nanocomplex. Conditions of each formulation were adopted for optimal drug loading. Physico-chemical characterization of the prepared formulations (particle size, polydispersity index and zeta-potential) exhibited stable monodispersed nanoparticles. RH was radiolabeled by I-131 radiotracer in a high-radiochemical yield. Biodistribution and brain targeting of RH from the prepared formulations were studied after administration of 131 I-RH-loaded nanoparticles to albino mice via intranasal and intravenous routs. Elevated brain radioactivity was detected post IN administration of (131 I-RH/PCL-PEG/CS) nanoparticles and (131 I-RH/CS-ALG) nanoparticles comparing with the IN administrated RH solutions (Cmax = 2.8 ± 0.3, 2 ± 0.3, 0.93 ± 0.03% radioactivity/g, 1 h post administration, respectively). This demonstrated that a relatively high-brain targeting could be achieved via intranasal route of administration of RH-loaded nanoparticles. The proposed models are further potential for application to deliver many other brain-targeting therapeutics.
Collapse
Affiliation(s)
- Wael M Darwish
- Department of Polymers and Pigments, National Research Centre, Dokki, Egypt
| | - Noha A Bayoumi
- Department of Radiolabeled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nahed H Ebeid
- Department of Radiolabeled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Faisal KS, Clulow AJ, Krasowska M, Gillam T, Miklavcic SJ, Williamson NH, Blencowe A. Interrogating the relationship between the microstructure of amphiphilic poly(ethylene glycol-b-caprolactone) copolymers and their colloidal assemblies using non-interfering techniques. J Colloid Interface Sci 2022; 606:1140-1152. [PMID: 34492457 DOI: 10.1016/j.jcis.2021.08.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Understanding the microstructural parameters of amphiphilic copolymers that control the formation and structure of aggregated colloids (e.g., micelles) is essential for the rational design of hierarchically structured systems for applications in nanomedicine, personal care and food formulations. Although many analytical techniques have been employed to study such systems, in this investigation we adopted an integrated approach using non-interfering techniques - diffusion nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS) and synchrotron small-angle X-ray scattering (SAXS) - to probe the relationship between the microstructure of poly(ethylene glycol-b-caprolactone) (PEG-b-PCL) copolymers [e.g., block molecular weight (MW) and the mass fraction of PCL (fPCL)] and the structure of their aggregates. Systematic trends in the self-assembly behaviour were determined using a large family of well-defined block copolymers with variable PEG and PCL block lengths (number-average molecular weights (Mn) between 2 and 10 and 0.5-15 kDa, respectively) and narrow dispersity (Ð < 1.12). For all of the copolymers, a clear transition in the aggregate structure was observed when the hydrophobic fPCL was increased at a constant PEG block Mn, although the nature of this transition is also dependent on the PEG block Mn. Copolymers with low Mn PEG blocks (2 kDa) were observed to transition from unimers and loosely associated unimers to metastable aggregates and finally, to cylindrical micelles as the fPCL was increased. In comparison, copolymers with PEG block Mn of between 5 and 10 kDa transitioned from heterogenous metastable aggregates to cylindrical micelles and finally, well-defined ellipsoidal micelles (of decreasing aspect ratios) as the fPCL was increased. In all cases, the diffusion NMR spectroscopy, DLS and synchrotron SAXS results provided complementary information and the grounds for a phase diagram relating copolymer microstructure to aggregation behaviour and structure. Importantly, the absence of commonly depicted spherical micelles has implications for applications where properties may be governed by shape, such as, cellular uptake of nanomedicine formulations.
Collapse
Affiliation(s)
- Khandokar Sadique Faisal
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Marta Krasowska
- Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Todd Gillam
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia; Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Stanley J Miklavcic
- Phenomics and Bioinformatics Research Centre, UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Nathan H Williamson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
6
|
Raspantini GL, Luiz MT, Abriata JP, Eloy JDO, Vaidergorn MM, Emery FDS, Marchetti JM. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: Development, physicochemical and biological characterization. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Conte C, Dal Poggetto G, Schiano Di Cola V, Russo A, Ungaro F, Russo G, Laurienzo P, Quaglia F. PEGylated cationic nanoassemblies based on triblock copolymers to combine siRNA therapeutics with anticancer drugs. Biomater Sci 2021; 9:6251-6265. [PMID: 34369494 DOI: 10.1039/d1bm00909e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nowadays, the clinical administration of siRNA therapeutics is still challenging due to the need of safe and efficient delivery carriers. In this context, biodegradable and amphiphilic triblock copolymers (ABC) containing amine-based cationic segments could be a powerful tool for siRNA delivery. Herein, we propose a range of poly(ethylene glycol) (PEG)-poly(2-dimethyl(aminoethyl) methacrylate) (pDMAEMA)-polycaprolactone (PCL) copolymers with different lengths of the blocks and hydrophilic/lipophilic balance to deliver siRNA alone or in association with a conventional anticancer drug. mPEG-pDMAEMA-PCL copolymers were synthesized by a combination of techniques and characterized by NMR analysis, Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Copolymers were then employed to prepare NPs through nanoprecipitation. NPs based on copolymers with long PCL chains (SSL-NPs and LLL-NPs) showed the best colloidal properties and a highly stable core-shell structure with a better orientation of the PEG fringe on the surface. Concerning siRNA delivery, SSL-NPs based on copolymers with short PEG and pDMAEMA chains showed optimized ability to complex and then deliver siRNA at the cell level. The strong interaction between the nucleic acid and the cationic pDMAEMA blocks of NPs was then confirmed by release studies that showed a sustained release of siRNA within 48 h. The transfection efficiency of NPs was assessed in human melanoma cells. NPs were complexed with a therapeutic siRNA against TUBB3 (TUB-siRNA). We observed the best results with SSL-NPs, probably due to the higher preserved buffer capacity of the pDMAEMA blocks. Finally, in order to give a proof of concept of a possible application in the combined chemo/gene-therapy of cancer, SSL-NPs complexed with TUB-siRNA were loaded with docetaxel (DTX) and then cytotoxicity was evaluated in the same cell line. The co-delivery of TUB-siRNA into NPs appeared to strongly potentiate the anti-proliferative activity of DTX, thus highlighting the combinatory activity of the NPs.
Collapse
Affiliation(s)
- Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy.
| | - Giovanni Dal Poggetto
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Viola Schiano Di Cola
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy.
| | - Annapina Russo
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy.
| | - Francesca Ungaro
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy.
| | - Giulia Russo
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy.
| | - Paola Laurienzo
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy. and Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
8
|
Conte C, Monteiro PF, Gurnani P, Stolnik S, Ungaro F, Quaglia F, Clarke P, Grabowska A, Kavallaris M, Alexander C. Multi-component bioresponsive nanoparticles for synchronous delivery of docetaxel and TUBB3 siRNA to lung cancer cells. NANOSCALE 2021; 13:11414-11426. [PMID: 34160534 DOI: 10.1039/d1nr02179f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioresponsive nanoparticles (NPs) are of interest for anticancer nanomedicines, owing to the possibility to 'design in' selective modulation of drug release at target sites. Here we describe the double emulsion formulation of redox-responsive NPs based on modified polyethylene glycol (PEG)-co-poly(lactic-co-glycolic acid) (PLGA) block copolymers and oligo (β-aminoesters) (OBAE), both of which contained disulfide linkages, for the co-delivery of a cytotoxic small molecule drug and a nucleic acid. In particular, we focused our attention on docetaxel (DTX) and a siRNA against TUBB3, a gene that encodes for βIII-tubulin, in order to have a synergistic effect in the treatment of lung cancer. Spherical NPs of around 150 nm with negative zeta potential and high loading efficiencies of both drugs were obtained. Stability and release studies showed "on demand" drug release under reducing conditions. Unloaded NPs containing PEG-disulfide-PLGA and OBAE were well-tolerated by lung cancer cells, thus masking the intrinsic cytotoxicity of OBAE, while for intracellular siRNA delivery, redox responsive NPs demonstrated a higher cell internalization with a preferential cytoplasmic accumulation of siRNA, with a subsequent fast gene-silencing efficiency. The viability of cells treated with combined DTX/TUBB3-siRNA NPs significantly decreased as compared to NPs loaded only with DTX, thus showing an efficient combined anticancer effect, due to a substantial reduction of β-tubulin expression. Finally, in an in vivo feasibility study employing an orthotopic lung cancer model, NPs formulated with an anti-luciferase siRNA distributed throughout the lungs following oro-tracheal administration, and demonstrated effective gene knockdown and no apparent cytotoxicity. Taken together, these results show that the double emulsion formulated redox responsive PEG-PLGA and OBAE systems represent a promising new therapeutic approach for the local combined chemo- and gene-therapy of lung cancer.
Collapse
Affiliation(s)
- Claudia Conte
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK. and Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Patrícia F Monteiro
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Francesca Ungaro
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Philip Clarke
- The BioDiscovery Institute and Faculty of Medicine & Health Sciences, University of Nottingham, NG7 2RD, UK
| | - Anna Grabowska
- The BioDiscovery Institute and Faculty of Medicine & Health Sciences, University of Nottingham, NG7 2RD, UK
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2052, Australia and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia and School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, Australia 2052
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
9
|
Fan R, Chuan D, Hou H, Chen H, Han B, Zhang X, Zhou L, Tong A, Xu J, Guo G. Development of a hybrid nanocarrier-recognizing tumor vasculature and penetrating the BBB for glioblastoma multi-targeting therapy. NANOSCALE 2019; 11:11285-11304. [PMID: 31165845 DOI: 10.1039/c9nr01320b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The success of glioma chemotherapy is hampered by poor drug penetration ability across the blood-brain barrier (BBB) and low intratumoral drug concentration. Novel tumor-targeted delivery systems are useful in specifically accumulating in the tumor foci and penetrating into the glioma core after entering into the brain. Here we show that a multi-targeting hybrid nanocarrier (Pep-MLHA HNPs) system based on hyaluronic acid (HA)-modified polymer and a functional peptide possesses multi-target capability and stronger penetration ability into the core of three-dimensional tumor spheroids, could migrate efficiently across the BBB in vitro. The intensity of the Pep-MLHA HNPs after transporting across the BBB was 5.2-fold and 5.6-fold higher than that of ML NPs in C6 and U87 cells, respectively. More interestingly, this multi-targeting hybrid system displayed high colloidal stability in PBS solution, and weak negative zeta potential (-1.99 ± 0.655 mV) minimizing nonspecific interactions with plasma proteins and promoting long-term circulation in vivo. Additionally, the multi-targeting hybrid system induced enhanced tumor localization in U87 in situ-bearing nude mice and xenograft-bearing nude mice after systemic administration. Furthermore, docetaxel (DTX)-loaded Pep-MLHA HNPs showed negligible systemic toxicity and enhanced therapeutic efficacy, with significantly improved survival rates in intracranial C6 glioma-bearing rats. The 50% survival rate of DTX/Pep-MLHA HNPs-treated rats (40 days) was significantly longer than that of rats treated with NS (22 days), Taxotere® (25 days), DTX/ML NPs (25 days), DTX/Pep NPs (32 days) and DTX/MLHA NPs (29 days). All the results suggested that the multi-targeting hybrid nanocarrier system is promising for glioma treatment.
Collapse
Affiliation(s)
- Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Espinoza SM, Patil HI, San Martin Martinez E, Casañas Pimentel R, Ige PP. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1539990] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sergio Miguel Espinoza
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Harshal Indrabhan Patil
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Eduardo San Martin Martinez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Rocio Casañas Pimentel
- CONACYT-Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Pradum Pundlikrao Ige
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
11
|
Esposito D, Conte C, Dal Poggetto G, Russo A, Barbieri A, Ungaro F, Arra C, Russo G, Laurienzo P, Quaglia F. Biodegradable nanoparticles bearing amine groups as a strategy to alter surface features, biological identity and accumulation in a lung metastasis model. J Mater Chem B 2018; 6:5922-5930. [PMID: 32254712 DOI: 10.1039/c8tb01330f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer-based nanoparticles (NPs) with a cationic charge have emerged recently as a potent nanotool due to their unique ability to penetrate deeply inside tumor tissue and to interact preferentially with the plasma membrane of cancer cells. In this paper, we propose a general strategy to obtain biodegradable cationic NPs of poly(ε-caprolactone) (PCL) based on an amine terminated PCL (NH2-PCL4.2k) or its mixture with monomethoxypoly(ethylene glycol)-PCL (mPEG1k-PCL4k). Positively-charged NPs were obtained, switching to net negative values through adsorption of low molecular weight hyaluronan. NPs exposing both amine and PEG groups on the surface showed a larger fixed aqueous layer thickness as compared to fully PEGylated NPs, suggesting that PEG conformation/localization is affected by the presence of amino groups. The stability of the positively-charged NPs was affected by the presence of ions, while interaction with the human plasma protein pool indicated time-dependent protein corona formation imparting an overall negative charge. NP-induced haemolysis was low, while cytotoxicity against A549 and Calu-3 lung cancer cell lines was cell-specific as well as dose and time-dependent. Finally, the presence of amino groups greatly changed the in vivo biodistribution of the NPs in tumor-bearing mice (lung colonization of B16F10 cancer cells) allowing the amine/PEGylated NPs to accumulate mainly at the target organ. Overall, this study demonstrates that NPs with a mixed amine/PEGylated surface exhibit a peculiar biological identity that alters their interaction with the bioenvironment and are thus worthy of further investigation in the delivery of chemotherapeutics.
Collapse
Affiliation(s)
- Diletta Esposito
- Drug Delivery Laboratory, Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pandey G, Mittapelly N, Banala VT, Mishra PR. Multifunctional Glycoconjugate Assisted Nanocrystalline Drug Delivery for Tumor Targeting and Permeabilization of Lysosomal-Mitochondrial Membrane. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16964-16976. [PMID: 29726253 DOI: 10.1021/acsami.7b18699] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotechnology has emerged as the most successful strategy for targeting drug payloads to tumors with the potential to overcome the problems of low concentration at the target site, nonspecific distribution, and untoward toxicities. Here, we synthesized a novel polymeric conjugate comprising chondroitin sulfate A and polyethylene glycol using carbodiimide chemistry. We further employed this glycoconjugate possessing the propensity to provide stability, stealth effects, and tumor targeting via CD44 receptors, all in one, to develop a nanocrystalline system of docetaxel (DTX@CSA-NCs) with size < 200 nm, negative zeta potential, and 98% drug content. Taking advantage of the enhanced permeability and retention effect coupled with receptor mediated endocytosis, the DTX@CSA-NCs cross the peripheral tumor barrier and penetrate deeper into the cells of tumor mass. In MDA-MB-231 cells, this enhanced cellular uptake was observed to exhibit a higher degree of cytotoxicity and arrest in the G2 phase in a time dependent fashion. Acting via a mitochondrial-lysosomotropic pathway, DTX@CSA-NCs disrupted the membrane potential and integrity and outperformed the clinically used formulation. Upon intravenous administration, the DTX@CSA-NCs showed better pharmacokinetic profile and excellent 4T1 induced tumor inhibition with significantly less off target toxicity. Thus, this glycoconjugate stabilized nanocrystalline formulation has the potential to take nano-oncology a step forward.
Collapse
Affiliation(s)
- Gitu Pandey
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
- Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex CSIR Campus , CSIR Road , Taramani, Chennai - 600 113, India
| | - Naresh Mittapelly
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
- Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex CSIR Campus , CSIR Road , Taramani, Chennai - 600 113, India
| | - Venkatesh Teja Banala
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
| | - Prabhat Ranjan Mishra
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
- Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex CSIR Campus , CSIR Road , Taramani, Chennai - 600 113, India
| |
Collapse
|
13
|
Conte C, Fraix A, Thomsen H, Ungaro F, Cardile V, Graziano ACE, Ericson MB, Quaglia F, Sortino S. Monitoring the release of a NO photodonor from polymer nanoparticles via Förster resonance energy transfer and two-photon fluorescence imaging. J Mater Chem B 2018; 6:249-256. [DOI: 10.1039/c7tb02781h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polymer nanoparticles entrapping a NO photodonor are designed to monitor its release in human skin samples through two-photon fluorescence imaging.
Collapse
Affiliation(s)
- Claudia Conte
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | - Aurore Fraix
- Laboratory of Photochemistry
- Department of Drug Science
- Catania
- Italy
| | - Hanna Thomsen
- Biomedical Photonics Group
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Sweden
| | - Francesca Ungaro
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | - Venera Cardile
- Department of Bio-Medical and Biotechnological Sciences
- University of Catania
- I-95125 Catania
- Italy
| | - Adriana C. E. Graziano
- Department of Bio-Medical and Biotechnological Sciences
- University of Catania
- I-95125 Catania
- Italy
| | - Marica B. Ericson
- Biomedical Photonics Group
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Sweden
| | - Fabiana Quaglia
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | | |
Collapse
|
14
|
Venuta A, Moret F, Dal Poggetto G, Esposito D, Fraix A, Avitabile C, Ungaro F, Malinconico M, Sortino S, Romanelli A, Laurienzo P, Reddi E, Quaglia F. Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: Beyond a paradigm. Eur J Pharm Sci 2018; 111:177-185. [DOI: 10.1016/j.ejps.2017.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
|
15
|
Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. J Control Release 2017; 260:46-60. [PMID: 28536049 DOI: 10.1016/j.jconrel.2017.05.028] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 02/01/2023]
Abstract
The lack of efficient therapeutic options for many severe disorders including cancer spurs demand for improved drug delivery technologies. Nanoscale drug delivery systems based on poly(ethylene glycol)-poly(ε-caprolactone) copolymers (PEG-PCL) represent a strategy to implement therapies with enhanced drug accumulation at the site of action and decreased off-target effects. In this review, we discuss state-of-the-art nanomedicines based on PEG-PCL that have been investigated in a preclinical setting. We summarize the various synthesis routes and different preparation methods used for the production of PEG-PCL nanoparticles. Additionally, we review physico-chemical properties including biodegradability, biocompatibility, and drug loading. Finally, we highlight recent therapeutic applications investigated in vitro and in vivo using advanced systems such as triggered release, multi-component therapies, theranostics, or gene delivery systems.
Collapse
Affiliation(s)
- Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Fan R, Mei L, Gao X, Wang Y, Xiang M, Zheng Y, Tong A, Zhang X, Han B, Zhou L, Mi P, You C, Qian Z, Wei Y, Guo G. Self-Assembled Bifunctional Peptide as Effective Drug Delivery Vector with Powerful Antitumor Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600285. [PMID: 28435772 PMCID: PMC5396162 DOI: 10.1002/advs.201600285] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/22/2016] [Indexed: 02/05/2023]
Abstract
E-cadherin/catenin complex is crucial for cancer cell migration and invasion. The histidine-alanine-valine (HAV) sequence has been shown to inhibit a variety of cadherin-based functions. In this study, by fusing HAV and the classical tumor-targeting Arg-Gly-Asp (RGD) motif and Asn-Gly-Arg (NGR) motif to the apoptosis-inducing peptide sequence-AVPIAQK, a bifunctional peptide has been constructed with enhanced tumor targeting and apoptosis effects. This peptide is further processed as a nanoscale vector to encapsulate the hydrophobic drug docetaxel (DOC). Bioimaging analysis shows that peptide nanoparticles can penetrate into xenograft tumor cells with a significantly long retention in tumors and high tumor targeting specificity. In vivo, DOC/peptide NPs are substantially more effective at inhibiting tumor growth and prolonging survival compared with DOC control. Together, the findings of this study suggest that DOC/peptide NPs may have promising applications in pulmonary carcinoma therapy.
Collapse
Affiliation(s)
- Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Lan Mei
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Xiang Gao
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Yuelong Wang
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Mingli Xiang
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Yu Zheng
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Xiaoning Zhang
- Department of Pharmacology and Pharmaceutical SciencesSchool of MedicineTsinghua UniversityCollaborative Innovation Center for BiotherapyBeijing100084P. R. China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine ResourcesShihezi832002P. R. China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Peng Mi
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Chao You
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer CenterDepartment of NeurosurgeryWest China HospitalSichuan UniversityCollaborative Innovation Center for BiotherapyChengdu610041P. R. China
| |
Collapse
|
17
|
Varan C, Bilensoy E. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1446-1456. [PMID: 28900598 PMCID: PMC5530721 DOI: 10.3762/bjnano.8.144] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/20/2017] [Indexed: 05/20/2023]
Abstract
Background: Brain tumors are the most common tumors among adolescents. Although some chemotherapeutics are known to be effective against brain tumors based on cell culture studies, the same effect is not observed in clinical trials. For this reason, the development of drug delivery systems is important to treat brain tumors and prevent tumor recurrence. The aim of this study was to develop core-shell polymeric nanoparticles with positive charge by employing a chitosan coating. Additionally, an implantable formulation for the chemotherapeutic nanoparticles was developed as a bioadhesive film to be applied at the tumor site following surgical operation for brain glioma treatment. To obtain positively charged, implantable nanoparticles, the effects of preparation technique, chitosan coating concentration and presence of surfactants were evaluated to obtain optimal nanoparticles with a diameter of less than 100 nm and a net positive surface charge to facilitate cellular internalization of drug-loaded nanoparticles. Hydroxypropyl cellulose films were prepared to incorporate these nanoparticle dispersions to complete the implantable drug delivery system. Results: The diameter of core-shell nanoparticles were in the range of 70-270 nm, depending on the preparation technique, polymer type and coating. Moreover, the chitosan coating significantly altered the surface charge of the nanoparticles to net positive values of +30 to +50 mV. The model drug docetaxel was successfully loaded into all particles, and the drug release rate from the nanoparticles was slowed down to 48 h by dispersing the nanoparticles in a hydroxypropyl cellulose film. Cell culture studies revealed that docetaxel-loaded nanoparticles cause higher cytotoxicity compared to the free docetaxel solution in DMSO. Conclusion: Docetaxel-loaded nanoparticles dispersed in a bioadhesive film were shown to be suitable for application of chemotherapeutics directly to the action site during surgical operation. The system was found to release chemotherapeutics for several days at the tumor site and neighboring tissue. This can be suggested to result in a more effective brain tumor treatment when compared to chemotherapeutics administered as an intravenous bolus infusion.
Collapse
Affiliation(s)
- Cem Varan
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, 06800, Turkey
| | - Erem Bilensoy
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, 06800, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| |
Collapse
|
18
|
Xie J, Yan C, Yan Y, Chen L, Song L, Zang F, An Y, Teng G, Gu N, Zhang Y. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. NANOSCALE 2016; 8:16902-15. [PMID: 27427416 DOI: 10.1039/c6nr03916b] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The high performance and increased tumor-targeting accumulation of magnetic nanocrystals (MNCs) are the most important considerations in cancer targeted magnetic hyperthermia (TMH). To achieve these goals, our study was firstly done using well-established fluorescence/magnetic Mn-Zn ferrite MNCs (core size: 14 nm) as multi-modal imaging contrast agents and highly-efficient "heat generators", which were coated with a biocompatible PEG-phospholipid (DSPE-PEG2000) and further modified by a cyclic tripeptide of arginine-glycine-aspartic acid (RGD). By using a mouse model bearing breast carcinoma (4T1), we then systematically compared PEGylated MNCs (MNCs@PEG)- and RGD-PEGylated MNCs (MNCs@RGD)-mediated tumor targeting abilities by intravenous administration. The MNCs@PEG-based passive targeting could successfully accumulate at the tumor due to the enhanced permeability and retention (EPR) effects, but the non-targeted localization might make the MNCs@PEG "leaking" from larger pores of tumor fenestrated vascular networks. Our designed MNCs@RGD, simultaneously functionalized with PEG and RGD ligands, might promote a synergistic effect including efficient tumor vasculature active targeting and EPR-mediated passive targeting, improving total MNC concentration and retention time in tumor tissues. By combining fluorescence/magnetic resonance (MR)/thermal multi-modal imaging-guided diagnostics and continuous TMH treatment under an alternating current magnetic field (ACMF, 2.58 kA m(-1), 390 kHz), the tumor surface could be heated to approximately 43-44 °C based on the MNC-mediated repeated injections. Sufficient temperature elevation induced the apoptosis of tumor cells, and inhibited the tumor angiogenesis. Compared with MNCs@PEG, the active MNCs@RGD-based tumor targeting MR image was significantly more efficient due to both the higher and long-lasting tumor accumulation, but its antitumor efficacy was not obviously improved in the TMH treatments. To achieve a singularly promising tumor TMH therapy, a greatly increased MNC content in tumor was needed. This insight indicated that not only the tumor vasculature targeting, but also the active tumor cells targeting of MNCs should receive considerable attention in future clinical TMH therapy application.
Collapse
Affiliation(s)
- Jun Xie
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fan R, Li X, Deng J, Gao X, Zhou L, Zheng Y, Tong A, Zhang X, You C, Guo G. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity. Sci Rep 2016; 6:28373. [PMID: 27324595 PMCID: PMC4914940 DOI: 10.1038/srep28373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/03/2016] [Indexed: 02/05/2023] Open
Abstract
One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer.
Collapse
Affiliation(s)
- Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Jiaojiao Deng
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Xiang Gao
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Yu Zheng
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Xiaoning Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, and Collaborative Innovation Center for Biotherapy, Beijing 100084, P. R. China
| | - Chao You
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China
| |
Collapse
|
20
|
Conte C, Fotticchia I, Tirino P, Moret F, Pagano B, Gref R, Ungaro F, Reddi E, Giancola C, Quaglia F. Cyclodextrin-assisted assembly of PEGylated polyester nanoparticles decorated with folate. Colloids Surf B Biointerfaces 2016; 141:148-157. [DOI: 10.1016/j.colsurfb.2016.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/27/2015] [Accepted: 01/19/2016] [Indexed: 01/28/2023]
|
21
|
Jeong K, Kang CS, Kim Y, Lee YD, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Lett 2016; 374:31-43. [DOI: 10.1016/j.canlet.2016.01.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
22
|
Pawar H, Surapaneni SK, Tikoo K, Singh C, Burman R, Gill MS, Suresh S. Folic acid functionalized long-circulating co-encapsulated docetaxel and curcumin solid lipid nanoparticles: In vitro evaluation, pharmacokinetic and biodistribution in rats. Drug Deliv 2016; 23:1453-68. [PMID: 26878325 DOI: 10.3109/10717544.2016.1138339] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to develop folic acid functionalized long-circulating co-encapsulated docetaxel (DTX) and curcumin (CRM) solid lipid nanoparticles (F-DC-SLN) to improve the pharmacokinetic and efficacy of DTX therapy. F-DC-SLN was prepared by hot melt-emulsification method and optimized by face centered-central composite design (FC-CCD). The SLN was characterized in terms of size and size distribution, drug entrapment efficiency and release profile. The cytotoxicity and cell uptake of the SLN formulations were evaluated in MCF-7 and MDA-MB-231 cell lines. The in vivo pharmacokinetic and biodistribution were studied in Wistar rats. F-DC-SLN exhibited 247.5 ± 3.40 nm particle size with 73.88 ± 1.08% entrapment efficiency and zeta potential of 14.53 ± 3.6 mV. Transmission electron microscopy (TEM) revealed spherical morphology of the SLN. Fluorescence microscopy confirmed the targeting efficacy of F-DC-SLN in MCF-7 cells. F-DC-SLN exhibited a significant increase in area under the curve (594.21 ± 64.34 versus 39.05 ± 7.41 μg/mL h) and mean residence time (31.14 ± 19.94 versus 7.24 ± 4.51 h) in comparison to Taxotere®. In addition, decreased DTX accumulation from F-DC-SLN in the heart and kidney in comparison to Taxotere may avoid to toxicity these vital organs. In conclusion, the F-DC-SLN improved the efficacy and pharmacokinetic profile of DTX exhibiting enhanced potential in optimizing breast cancer therapy.
Collapse
Affiliation(s)
- Harish Pawar
- a Department of Pharmaceutical Technology (Formulations)
| | | | | | - Charan Singh
- a Department of Pharmaceutical Technology (Formulations)
| | - Rohani Burman
- c Department of Pharmaceutical Technology (Process Chemistry) , National Institute of Pharmaceutical Education and Research (NIPER) , S.A.S. Nagar, Mohali, Punjab , India
| | - Manjinder Singh Gill
- c Department of Pharmaceutical Technology (Process Chemistry) , National Institute of Pharmaceutical Education and Research (NIPER) , S.A.S. Nagar, Mohali, Punjab , India
| | | |
Collapse
|
23
|
Skin transport of PEGylated poly(ε-caprolactone) nanoparticles assisted by (2-hydroxypropyl)-β-cyclodextrin. J Colloid Interface Sci 2015; 454:112-20. [DOI: 10.1016/j.jcis.2015.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023]
|
24
|
Guo P, Song S, Li Z, Tian Y, Zheng J, Yang X, Pan W. In vitro and in vivo evaluation of APRPG-modified angiogenic vessel targeting micelles for anticancer therapy. Int J Pharm 2015; 486:356-66. [DOI: 10.1016/j.ijpharm.2015.03.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/27/2015] [Accepted: 03/30/2015] [Indexed: 12/18/2022]
|
25
|
Gao X, Wang S, Wang B, Deng S, Liu X, Zhang X, Luo L, Fan R, Xiang M, You C, Wei Y, Qian Z, Guo G. Improving the anti-ovarian cancer activity of docetaxel with biodegradable self-assembly micelles through various evaluations. Biomaterials 2015; 53:646-58. [PMID: 25890760 DOI: 10.1016/j.biomaterials.2015.02.108] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Abstract
Docetaxel (DOC) produces anti-tumor effects by inducing apoptosis and inhibiting cell growth. However, its clinical application is limited by its hydrophobicity and low biocompatibility. Therefore, improving DOC's water solubility, biocompatibility, and anti-tumor effects are important goals that will improve its clinical utility. In this work, DOC and methoxy poly(ethylene glycol) (MPEG)/polycaprolactone (PCL) (MPEG-PCL) showed good compatibility through computer simulations. We prepared DOC-loaded polymeric micelles (DOC/MPEG-PCL micelles) with drug loading of 6.82% and encapsulation efficiency of 98.36%; these were monodispersed and approximately 30 nm in diameter, and released DOC over an extended period in vitro and in vivo. In addition, DOC/MPEG-PCL micelles inhibited cell growth and induced apoptosis more effectively than free DOC in vitro. Furthermore, DOC/MPEG-PCL micelles inhibited ovarian tumor growth more significantly than free DOC. Immunohistochemical analysis indicated that DOC/MPEG-PCL micelles improved DOC's anti-tumor effect by enhancing tumor cell apoptosis and suppressing tumor cell proliferation. Moreover, in bio-imaging analysis, DOC/MPEG-PCL micelles showed a higher concentration and a longer retention time in ovarian tumor tissue than did free DOC, indicating that the DOC/MPEG-PCL micelles delivered more anti-tumor drug to the tumor. Our data suggest that DOC/MPEG-PCL micelles have the potential to be applied clinically in ovarian cancer therapy.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China; Institute of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Shimin Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - BiLan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Senyi Deng
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Xiaoxiao Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - XiaoNing Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - LinLi Luo
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - RangRang Fan
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - MingLi Xiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China.
| | - Chao You
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China; Institute of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - YuQuan Wei
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - ZhiYong Qian
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Gang Guo
- Department of Neurosurgery, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, and West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
26
|
Li X, Fan R, Wang Y, Wu M, Tong A, Shi J, Xiang M, Zhou L, Guo G. In situ gel-forming dual drug delivery system for synergistic combination therapy of colorectal peritoneal carcinomatosis. RSC Adv 2015. [DOI: 10.1039/c5ra21067d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel local drug delivery system composed of docetaxel loaded micelles and an oxaliplatin loaded hydrogel was fabricated and proved to be potentially useful in the treatment of colorectal peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Yuelong Wang
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Min Wu
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Juan Shi
- National Laboratory of Medical Molecular Biology
- Institute of Basic Medical, Sciences
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100005
- PR China
| | - Mingli Xiang
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center
- Department of Neurosurgery
- West China Hospital
- Sichuan University
- Collaborative Innovation Center for Biotherapy
| |
Collapse
|
27
|
Zhang L, Yang Y, Song Y, Yang H, Zhou G, Xin Y, You Z, Xuan Y. Nanoparticle Delivery Systems Reduce the Reproductive Toxicity of Docetaxel in Rodents. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984414410128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Various docetaxel (DTX)-loaded nanoparticle delivery systems have been designed to enhance the solubility and pharmacological effects of DTX. However, the toxicity changes of these nano-modified DTX (nano-DTX) are not yet clear enough. Herein, to compare the reproductive toxicity between conventional DTX and nano-DTX, we performed sperm toxicity test in mice, and fertility and early embryo-fetal developmental toxicity test in rats. It was found that DTX severely repressed spermatogenesis and sperm motility, and dramatically increased sperm abnormality in mice and rats. Moreover, DTX significantly decreased copulation, conception and fertility indexes in rats, and no positive pregnant female rat was obtained after treatment with DTX. However, nano-DTX significantly reduced DTX-induced toxicity to sperm. Most importantly, nano-DTX obviously converted DTX-induced fertility and early embryo-fetal developmental toxicity. Furthermore, organ weights and histopathology examination revealed DTX, but not nano-DTX, significantly decreased testis and epididymis weights, and induced obvious histopathological atrophy of testes and epididymides in rats. Further studies indicated that changed activity of lactate dehydrogenase C4 (LDH-C4) in rodents testes was mainly responsible for the above observations. These results strongly support the idea that DTX-loaded nanoformulations have the potential to overcome the reproductive toxicity of DTX.
Collapse
Affiliation(s)
- Lijiang Zhang
- National Key Laboratory for Safety Evaluation of New Drugs, Center of Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310053, Zhejiang, P. R. China
| | - Yongguang Yang
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yisheng Song
- National Key Laboratory for Safety Evaluation of New Drugs, Center of Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310053, Zhejiang, P. R. China
| | - Hongzhong Yang
- National Key Laboratory for Safety Evaluation of New Drugs, Center of Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310053, Zhejiang, P. R. China
| | - Guoliang Zhou
- National Key Laboratory for Safety Evaluation of New Drugs, Center of Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310053, Zhejiang, P. R. China
| | - Yanfei Xin
- National Key Laboratory for Safety Evaluation of New Drugs, Center of Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310053, Zhejiang, P. R. China
| | - Zhenqiang You
- National Key Laboratory for Safety Evaluation of New Drugs, Center of Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310053, Zhejiang, P. R. China
| | - Yaoxian Xuan
- National Key Laboratory for Safety Evaluation of New Drugs, Center of Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310053, Zhejiang, P. R. China
| |
Collapse
|
28
|
Peng L, Feng L, Yuan H, Benhabbour SR, Mumper RJ. Development of a novel orthotopic non-small cell lung cancer model and therapeutic benefit of 2'-(2-bromohexadecanoyl)-docetaxel conjugate nanoparticles. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2014; 10:1497-506. [PMID: 24709328 PMCID: PMC4185254 DOI: 10.1016/j.nano.2014.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 03/08/2014] [Accepted: 03/27/2014] [Indexed: 11/21/2022]
Abstract
The aims of these studies were to establish an orthotopic non-small-cell lung cancer (NSCLC) mouse model and to investigate the therapeutic efficacy of lipid-based nanoparticles (NPs) containing 2'-(2-bromohexadecanoyl)-docetaxel (Br-C16-DX) in this new model. A novel orthotopic NSCLC model was established in nude mice through a dorsal side injection of luciferase-expressing A549 cells. The model was characterized by a survival study, histological staining, bioluminescence imaging and PET/CT imaging. The therapeutic efficacy of the Br-C16-DX NPs versus Taxotere® was investigated in this model. The results demonstrated that mouse survival time was significantly prolonged by weekly intravenous administration of the NPs or Taxotere. Furthermore, the NP group had 35 days longer progression-free survival and 27 days longer median survival compared to the Taxotere group. It was concluded that the developed orthotopic NSCLC model represents a feasible, reproducible, and clinically relevant experimental mouse model to test current and potential therapies including nanomedicines. From the clinical editor: This team of authors has developed an orthotopic non-small cell lung cancer model, and demonstrates that it represents a feasible, reproducible, and clinically relevant experimental mouse model to test current and potential therapies including nanomedicines.
Collapse
Affiliation(s)
- Lei Peng
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lan Feng
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Yuan
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S Rahima Benhabbour
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Russell J Mumper
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
Adesina SK, Holly A, Kramer-Marek G, Capala J, Akala EO. Polylactide-based paclitaxel-loaded nanoparticles fabricated by dispersion polymerization: characterization, evaluation in cancer cell lines, and preliminary biodistribution studies. J Pharm Sci 2014; 103:2546-55. [PMID: 24961596 PMCID: PMC4672948 DOI: 10.1002/jps.24061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/22/2014] [Accepted: 05/29/2014] [Indexed: 01/05/2023]
Abstract
The macromonomer method was used to prepare cross-linked, paclitaxel-loaded polylactide (PLA)-polyethylene glycol (stealth) nanoparticles using free-radical dispersion polymerization. The method can facilitate the attachment of other molecules to the nanoparticle surface to make it multifunctional. Proton nuclear magnetic resonance and Fourier transform infrared spectra confirm the synthesis of PLA macromonomer and cross-linking agent. The formation of stealth nanoparticles was confirmed by scanning and transmission electron microscopy. The drug release isotherm of paclitaxel-loaded nanoparticles shows that the encapsulated drug is released over 7 days. In vitro cytotoxicity assay in selected breast and ovarian cancer cell lines reveal that the blank nanoparticle is biocompatible compared with medium-only treated controls. In addition, the paclitaxel-loaded nanoparticles exhibit similar cytotoxicity compared with paclitaxel in solution. Confocal microscopy reveals that the nanoparticles are internalized by MCF-7 breast cancer cells within 1 h. Preliminary biodistribution studies also show nanoparticle accumulation in tumor xenograft model. The nanoparticles are suitable for the controlled delivery of bioactive agents.
Collapse
Affiliation(s)
- Simeon K. Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington DC, USA
| | - Alesia Holly
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriela Kramer-Marek
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacek Capala
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Emmanuel O. Akala
- Department of Pharmaceutical Sciences, Howard University, Washington DC, USA
| |
Collapse
|
30
|
Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N, Ganju A, Balakrishna S, Gupta BK, Zafar N, Jaggi M, Chauhan SC. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 2014; 35:8635-48. [PMID: 25028336 DOI: 10.1016/j.biomaterials.2014.06.040] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 06/22/2014] [Indexed: 12/23/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer disease in men in the Unites States and its management remains a challenge in everyday oncology practice. Thus, advanced therapeutic strategies are required to treat prostate cancer patients. Curcumin (CUR) is a promising anticancer agent for various cancer types. The objective of this study was to evaluate therapeutic potential of novel poly(lactic-co-glycolic acid)- CUR nanoparticles (PLGA-CUR NPs) for prostate cancer treatment. Our results indicate that PLGA-CUR NPs efficiently internalize in prostate cancer cells and release biologically active CUR in cytosolic compartment of cells for effective therapeutic activity. Cell proliferation (MTS), clonogenic, and Western blot analyses reveal that PLGA-CUR NPs can effectively inhibit proliferation and colony formation ability of prostate cancer cells than free CUR. PLGA-CUR NPs showed superior tumor regression compared to CUR in xenograft mice. Further investigations reveal that PLGA-CUR NPs inhibit nuclear β-catenin and AR expression in cells and in tumor xenograft tissues. It also suppresses STAT3 and AKT phosphorylation and leads to apoptosis via inhibition of key anti-apoptotic proteins, Mcl-1, Bcl-xL and caused induction of PARP cleavage. Additionally, significant downregulation of oncogenic miR21 and up-regulation of miR-205 was observed with PLGA-CUR NPs treatment as determined by RT-PCR and in situ hybridization analyses. A superior anti-cancer potential was attained with PSMA antibody conjugated PLGA-CUR NPs in prostate cancer cells and a significant tumor targeting of (131)I labeled PSMA antibody was achieved with PLGA-CUR NPs in prostate cancer xenograft mice model. In conclusion, PLGA-CUR NPs can significantly accumulate and exhibit superior anticancer activity in prostate cancer.
Collapse
Affiliation(s)
- Murali M Yallapu
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Diane M Maher
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Mara C Ebeling
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Vasudha Sundram
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Swathi Balakrishna
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Brij K Gupta
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Nadeem Zafar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
31
|
Antitumor activity of PEGylated biodegradable nanoparticles for sustained release of docetaxel in triple-negative breast cancer. Int J Pharm 2014; 473:55-63. [PMID: 24992317 DOI: 10.1016/j.ijpharm.2014.06.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 11/21/2022]
Abstract
With the aim to find novel therapeutical approaches for triple-negative breast cancer (TNBC) treatment, we have developed a powder for i.v. injection based on cyclodextrins and docetaxel (DTX)-loaded polyethyleneglycol-poly(epsilon-caprolactone) nanoparticles (DTX-NPs). Nanoparticles are designed to concentrate at tumor level by enhanced permeability and retention effect and release drug cargo at a sustained rate in the blood and in tumor interstitium. DTX-NPs of around 70 nm, shielding proteins and allowing a sustained DTX release for about 30 days, were produced by melting sonication technique. DTX-NPs were associated to hydroxypropyl-β-cyclodextrin to give a powder for injection with excellent dispersibility and suitable for i.v. administration. DTX-NPs were as efficient as free DTX in inhibiting cell growth of MDA-MB231 cells, even at low concentrations, and displayed a comparable in vivo antitumor efficacy and better survival in a TNBC animal model as compared with DTX commercial formulation (Taxotere(®)). In conclusion, PEGylated biodegradable DTX-NPs highlighted their potential in the treatment of aggressive TNBC providing a foundation for future clinical studies.
Collapse
|
32
|
Chae SW, Jun YJ, Cui JX, Park JH, Lee HJ, Sohn YS. Preclinical evaluation of efficacy and stability of docetaxel micelle-encapsulated by a tripodal cyclotriphosphazene amphiphile. Biomed Pharmacother 2014; 68:649-55. [DOI: 10.1016/j.biopha.2014.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/16/2014] [Indexed: 01/17/2023] Open
|
33
|
Lamberti M, Zappavigna S, Sannolo N, Porto S, Caraglia M. Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers. Expert Opin Drug Deliv 2014; 11:1087-101. [DOI: 10.1517/17425247.2014.913568] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Multifunctional Tumor-Targeting Nanocarriers Based on Hyaluronic Acid-Mediated and pH-Sensitive Properties for Efficient Delivery of Docetaxel. Pharm Res 2013; 31:1032-45. [DOI: 10.1007/s11095-013-1225-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/03/2013] [Indexed: 01/24/2023]
|
35
|
Bury K, Du Prez F, Neugebauer D. Self-assembling Linear and Star Shaped Poly(ϵ-caprolactone)/poly[(meth)acrylic acid] Block Copolymers as Carriers of Indomethacin and Quercetin. Macromol Biosci 2013; 13:1520-30. [DOI: 10.1002/mabi.201300179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/05/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Katarzyna Bury
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry; Silesian University of Technology; M. Strzody 9, 44-100 Gliwice Poland
| | - Filip Du Prez
- Department of Organic Chemistry, Polymer Chemistry Research Group, Faculty of Science; Ghent University; Krijgslaan 281 S4-bis, B-9000 Ghent Belgium
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry; Silesian University of Technology; M. Strzody 9, 44-100 Gliwice Poland
| |
Collapse
|
36
|
de Oliveira R, Zhao P, Li N, de Santa Maria LC, Vergnaud J, Ruiz J, Astruc D, Barratt G. Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel. Int J Pharm 2013; 454:703-11. [PMID: 23701998 DOI: 10.1016/j.ijpharm.2013.05.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 10/26/2022]
Abstract
The aim of these studies was to synthesize, characterize and evaluate the efficacy of pegylated gold nanoparticles (AuNPs) that differed in their PEG molecular weight, using PEG 550 and PEG 2000. The synthesis of the gold nanoparticles was carried out by modified Brust method with a diameter of 4-15 nm. The targeting agent folic acid was introduced by the covalent linkage. Finally, the anti-cancer drug docetaxel was encapsulated by the AuNPs by non covalent adsorption. The nanoparticles were characterized by transmission electron microscopy and used for in vitro studies against a hormone-responsive prostate cancer cell line, LnCaP. The loaded nanoparticles reduced the cell viability in more than 50% at concentrations of 6 nM and above after 144 h of treatment. Moreover, observation of prostate cancer cells by optical microscopy showed damage to the cells after exposure to drug-loaded AuNPs while unloaded AuNPs had much less effect.
Collapse
|
37
|
Conte C, Ungaro F, Maglio G, Tirino P, Siracusano G, Sciortino M, Leone N, Palma G, Barbieri A, Arra C, Mazzaglia A, Quaglia F. Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn(II)-phthalocyanine inspired by combination therapy for cancer. J Control Release 2013; 167:40-52. [DOI: 10.1016/j.jconrel.2012.12.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 01/05/2023]
|
38
|
Yu Y, He Y, Xu B, He Z, Zhang Y, Chen Y, Yang Y, Xie Y, Zheng Y, He G, He J, Song X. Self-assembled methoxy poly(ethylene glycol)-cholesterol micelles for hydrophobic drug delivery. J Pharm Sci 2012; 102:1054-62. [PMID: 23280512 DOI: 10.1002/jps.23418] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/13/2012] [Accepted: 11/20/2012] [Indexed: 02/05/2023]
Abstract
To promote the application of methoxy poly(ethylene glycol)-cholesterol (mPEG-Chol), mPEG-Chol was used to prepare core-shell micelles encapsulating poorly water-soluble docetaxel (DTX-PM) by modified cosolvent evaporation method. Approaches to enhance DTX entrapment efficiency (EE) and minimize particle size were investigated in detail, including organic and aqueous phase composition, organic/aqueous phase ratio, and polymer concentration. In optimal formulation, micelles had higher EE (97.6%) and drug loading (4.76%) with the diameter of 13.76 ± 0.68 nm and polydispersity index of 0.213 ± 0.006. Transmission electron microscopy (TEM) showed that the micelles were spherical, and differential scanning calorimetry (DSC) analysis proved that DTX was successfully entrapped into mPEG-Chol micelles. The in vitro cytotoxicity experiments displayed that blank micelles had no effect on the growth of SKOV-3, BXPC-3, A549, and HepG-2 cells, demonstrating that mPEG-Chol was one of the biocompatible biomaterials. The half inhibition concentration of DTX-PM on SKOV-3, BXPC-3, A549, and HepG-2 cells were 10.08, 7.6, 28.37, and 125.75 ng/mL, respectively. DTX-PM had the similar antitumor activity to free DTX, indicating that mPEG-Chol was a promising micellar vector for hydrophobic drug delivery. In addition, this work provided a new and facile approach to prepare drug-loaded micelles with controllable performances.
Collapse
Affiliation(s)
- Yiyi Yu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|