1
|
Dong C, Tan D, Sun H, Li Z, Zhang L, Zheng Y, Liu S, Zhang Y, He Q. Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy. Curr Issues Mol Biol 2024; 46:11548-11579. [PMID: 39451566 PMCID: PMC11506767 DOI: 10.3390/cimb46100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-12 (IL-12) is considered to be a promising cytokine for enhancing an antitumor immune response; however, recombinant IL-12 has shown significant toxicity and limited efficacy in early clinical trials. Recently, many strategies for delivering IL-12 to tumor tissues have been developed, such as modifying IL-12, utilizing viral vectors, non-viral vectors, and cellular vectors. Previous studies have found that the fusion of IL-12 with extracellular matrix proteins, collagen, and immune factors is a way to enhance its therapeutic potential. In addition, studies have demonstrated that viral vectors are a good platform, and a variety of viruses such as oncolytic viruses, adenoviruses, and poxviruses have been used to deliver IL-12-with testing previously conducted in various cancer models. The local expression of IL-12 in tumors based on viral delivery avoids systemic toxicity while inducing effective antitumor immunity and acting synergistically with other therapies without compromising safety. In addition, lipid nanoparticles are currently considered to be the most mature drug delivery system. Moreover, cells are also considered to be drug carriers because they can effectively deliver therapeutic substances to tumors. In this article, we will systematically discuss the anti-tumor effects of IL-12 on its own or in combination with other therapies based on different delivery strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing He
- State Key Laboratory of Drug Regulatory Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (C.D.); (D.T.); (H.S.); (Z.L.); (L.Z.); (Y.Z.); (S.L.); (Y.Z.)
| |
Collapse
|
2
|
Almalki WH. An Up-to-date Review on Protein-based Nanocarriers in the Management of Cancer. Curr Drug Deliv 2024; 21:509-524. [PMID: 37165498 DOI: 10.2174/1567201820666230509101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND A big health issue facing the world's population is cancer. An alarming increase in cancer patients was anticipated by worldwide demographic statistics, which showed that the number of patients with different malignancies was rapidly increasing. By 2025, probably 420 million cases were projected to be achieved. The most common cancers diagnosed are breast, colorectal, prostate, and lung. Conventional treatments, such as surgery, chemotherapy, and radiation therapy, have been practiced. OBJECTIVE In recent years, the area of cancer therapy has changed dramatically with expanded studies on the molecular-level detection and treatment of cancer. Recent advances in cancer research have seen significant advances in therapies such as chemotherapy and immunotherapy, although both have limitations in effectiveness and toxicity. METHODS The development of nanotechnology for anticancer drug delivery has developed several potentials as nanocarriers, which may boost the pharmacokinetic and pharmacodynamic effects of the drug product and substantially reduce the side effects. RESULTS The advancement in non-viral to viral-based protein-based nanocarriers for treating cancer has earned further recognition in this respect. Many scientific breakthroughs have relied on protein-based nanocarriers, and proteins are essential organic macromolecules for life. It allows targeted delivery of passive or active tumors using non-viral-based protein-based nanocarriers to viral-based protein nanocarriers. When targeting cancer cells, both animal and plant proteins may be used in a formulation process to create self-assembled viruses and platforms that can successfully eradicate metastatic cancer cells. CONCLUSION This review, therefore, explores in depth the applications of non-viral to viral proteinbased noncarriers with a specific focus on intracellular drug delivery and anti-cancer drug targeting ability.
Collapse
Affiliation(s)
- Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Aal-qura University, Saudi Arabia
| |
Collapse
|
3
|
Yuan B, Liu Y, Lv M, Sui Y, Hou S, Yang T, Belhadj Z, Zhou Y, Chang N, Ren Y, Sun C. Virus-like particle-based nanocarriers as an emerging platform for drug delivery. J Drug Target 2023; 31:433-455. [PMID: 36940208 DOI: 10.1080/1061186x.2023.2193358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
New nanocarrier technologies are emerging, and they have great potential for improving drug delivery, targeting efficiency, and bioavailability. Virus-like particles (VLPs) are natural nanoparticles from animal and plant viruses and bacteriophages. Hence, VLPs present several great advantages, such as morphological uniformity, biocompatibility, reduced toxicity, and easy functionalisation. VLPs can deliver many active ingredients to the target tissue and have great potential as a nanocarrier to overcome the limitations associated with other nanoparticles. This review will focus primarily on the construction and applications of VLPs, particularly as a novel nanocarrier to deliver active ingredients. Herein, the main methods for the construction, purification, and characterisation of VLPs, as well as various VLP-based materials used in delivery systems are summarised. The biological distribution of VLPs in drug delivery, phagocyte-mediated clearance, and toxicity are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No.100, Kexue Avenue, Zhengzhou 450001, China
| | - Meilin Lv
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yilei Sui
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Shenghua Hou
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Tinghui Yang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Naidan Chang
- Harbin Medical University-Daqing, Daqing 163319, China
| | - Yachao Ren
- Harbin Medical University-Daqing, Daqing 163319, China.,School of Chemistry and Chemical Engineering, Tianjin University of Technology, tianjin, 300000, China
| | | |
Collapse
|
4
|
Therapeutic targeting of eukaryotic initiation factor (eIF) 4E. Biochem Soc Trans 2023; 51:113-124. [PMID: 36661272 DOI: 10.1042/bst20220285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Fundamental studies unraveled the role of eukaryotic initiation factor (eIF) 4E in mRNA translation and its control. Under physiological conditions, regulation of translation by eIF4E is essential to cellular homeostasis. Under stress, gene flow information is parsed by eIF4E to support adaptive mechanisms that favor cell survival. Dysregulated eIF4E activity fuels tumor formation and progression and modulates response to therapy. Thus, there has been heightened interest in understanding eIF4E function in controlling gene expression as well as developing strategies to block its activity to treat disease.
Collapse
|
5
|
Virus-Like Particles as Nanocarriers for Intracellular Delivery of Biomolecules and Compounds. Viruses 2022; 14:v14091905. [PMID: 36146711 PMCID: PMC9503347 DOI: 10.3390/v14091905] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Virus-like particles (VLPs) are nanostructures assemble from viral proteins. Besides widely used for vaccine development, VLPs have also been explored as nanocarriers for cargo delivery as they combine the key advantages of viral and non-viral vectors. While it protects cargo molecules from degradation, the VLP has good cell penetrating property to mediate cargo passing the cell membrane and released into cells, making the VLP an ideal tool for intracellular delivery of biomolecules and drugs. Great progresses have been achieved and multiple challenges are still on the way for broad applications of VLP as delivery vectors. Here we summarize current advances and applications in VLP as a delivery vector. Progresses on delivery of different types of biomolecules as well as drugs by VLPs are introduced, and the strategies for cargo packaging are highlighted which is one of the key steps for VLP mediated intracellular delivery. Production and applications of VLPs are also briefly reviewed, with a discussion on future challenges in this rapidly developing field.
Collapse
|
6
|
Can Virus-like Particles Be Used as Synergistic Agent in Pest Management? Viruses 2022; 14:v14050943. [PMID: 35632685 PMCID: PMC9144638 DOI: 10.3390/v14050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Among novel strategies proposed in pest management, synergistic agents are used to improve insecticide efficacy through an elevation of intracellular calcium concentration that activates the calcium-dependent intracellular pathway. This leads to a changed target site conformation and to increased sensitivity to insecticides while reducing their concentrations. Because virus-like particles (VLPs) increase the intracellular calcium concentration, they can be used as a synergistic agent to synergize the effect of insecticides. VLPs are self-assembled viral protein complexes, and by contrast to entomopathogen viruses, they are devoid of genetic material, which makes them non-infectious and safer than viruses. Although VLPs are well-known to be used in human health, we propose in this study the development of a promising strategy based on the use of VLPs as synergistic agents in pest management. This will lead to increased insecticides efficacy while reducing their concentrations.
Collapse
|
7
|
Kleczewska N, Sikorski PJ, Warminska Z, Markiewicz L, Kasprzyk R, Baran N, Kwapiszewska K, Karpinska A, Michalski J, Holyst R, Kowalska J, Jemielity J. Cellular delivery of dinucleotides by conjugation with small molecules: targeting translation initiation for anticancer applications. Chem Sci 2021; 12:10242-10251. [PMID: 34377411 PMCID: PMC8336483 DOI: 10.1039/d1sc02143e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Targeting cap-dependent translation initiation is one of the experimental approaches that could lead to the development of novel anti-cancer therapies. Synthetic dinucleoside 5',5'-triphosphates cap analogs are potent antagonists of eukaryotic translation initiation factor 4E (eIF4E) in vitro and could counteract elevated levels of eIF4E in cancer cells; however, transformation of these compounds into therapeutic agents remains challenging - they do not easily penetrate into cells and are susceptible to enzymatic cleavage. Here, we tested the potential of several small molecule ligands - folic acid, biotin, glucose, and cholesterol - to deliver both hydrolyzable and cleavage-resistant cap analogs into cells. A broad structure-activity relationship (SAR) study using model fluorescent probes and cap-ligand conjugates showed that cholesterol greatly facilitates uptake of cap analogs without disturbing the interactions with eIF4E. The most potent cholesterol conjugate identified showed apoptosis-mediated cytotoxicity towards cancer cells.
Collapse
Affiliation(s)
- Natalia Kleczewska
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Zofia Warminska
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Lukasz Markiewicz
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw Banacha 2c 02-097 Warsaw Poland
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw Pasteura 5 02-093 Warsaw Poland
| | - Natalia Baran
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
- Faculty of Biology University of Warsaw I. Miecznikowa 1 02-096 Warsaw Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Aneta Karpinska
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Jaroslaw Michalski
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Robert Holyst
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Joanna Kowalska
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw Pasteura 5 02-093 Warsaw Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| |
Collapse
|
8
|
Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther 2021; 6:225. [PMID: 34099630 PMCID: PMC8182741 DOI: 10.1038/s41392-021-00631-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Over the past decades, great interest has been given to biomimetic nanoparticles (BNPs) since the rise of targeted drug delivery systems and biomimetic nanotechnology. Biological vectors including cell membranes, extracellular vesicles (EVs), and viruses are considered promising candidates for targeted delivery owing to their biocompatibility and biodegradability. BNPs, the integration of biological vectors and functional agents, are anticipated to load cargos or camouflage synthetic nanoparticles to achieve targeted delivery. Despite their excellent intrinsic properties, natural vectors are deliberately modified to endow multiple functions such as good permeability, improved loading capability, and high specificity. Through structural modification and transformation of the vectors, they are pervasively utilized as more effective vehicles that can deliver contrast agents, chemotherapy drugs, nucleic acids, and genes to target sites for refractory disease therapy. This review summarizes recent advances in targeted delivery vectors based on cell membranes, EVs, and viruses, highlighting the potential applications of BNPs in the fields of biomedical imaging and therapy industry, as well as discussing the possibility of clinical translation and exploitation trend of these BNPs.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Hong
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Ren
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Caulier B, Stofleth G, Hannani D, Guidetti M, Josserand V, Laurin D, Chroboczek J, Mossuz P, Plantaz D. Evaluation of the human type 3 adenoviral dodecahedron as a vector to target acute myeloid leukemia. Mol Ther Methods Clin Dev 2021; 20:181-190. [PMID: 33473357 PMCID: PMC7797482 DOI: 10.1016/j.omtm.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Intensive systemic chemotherapy is the gold standard of acute myeloid leukemia (AML) treatment and is associated with considerable off-target toxicities. Safer and targeted delivery systems are thus urgently needed. In this study, we evaluated a virus-like particle derived from the human type 3 adenovirus, called the adenoviral dodecahedron (Dd) to target AML cells. The vectorization of leukemic cells was proved very effective at nanomolar concentrations in a time- and dose-dependent manner, without vector toxicity. The internalization involved clathrin-mediated energy-dependent endocytosis and strongly correlated with the expression of αVβ3 integrin. The treatment of healthy donor peripheral blood mononuclear cells showed a preferential targeting of monocytes compared to lymphocytes and granulocytes. Similarly, monocytes but also AML blasts were the best-vectorized populations in patients while acute lymphoid leukemia blasts were less efficiently targeted. Importantly, AML leukemic stem cells (LSCs) could be addressed. Finally, Dd reached peripheral monocytes and bone marrow hematopoietic stem and progenitor cells following intravenous injection in mice, without excessive spreading in other organs. These findings reveal Dd as a promising myeloid vector especially for therapeutic purposes in AML blasts, LSCs, and progenitor cells.
Collapse
Affiliation(s)
- Benjamin Caulier
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
- Institute of Biology and Pathology, Laboratory of Cellular Hematology, University Grenoble Alpes Hospital, Grenoble, France
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Gaëlle Stofleth
- Institute of Biology and Pathology, Laboratory of Cellular Hematology, University Grenoble Alpes Hospital, Grenoble, France
- Department of Pediatric Onco-Immuno-Hematology, University Grenoble Alpes Hospital, Grenoble, France
| | - Dalil Hannani
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Mélanie Guidetti
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Véronique Josserand
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - David Laurin
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne Rhône-Alpes, Grenoble, France
| | - Jadwiga Chroboczek
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Pascal Mossuz
- Institute of Biology and Pathology, Laboratory of Cellular Hematology, University Grenoble Alpes Hospital, Grenoble, France
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Dominique Plantaz
- Department of Pediatric Onco-Immuno-Hematology, University Grenoble Alpes Hospital, Grenoble, France
| |
Collapse
|
10
|
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021; 19:59. [PMID: 33632278 PMCID: PMC7905985 DOI: 10.1186/s12951-021-00806-7] [Citation(s) in RCA: 376] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Collapse
Affiliation(s)
- Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK.
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
| |
Collapse
|
11
|
Zhao Y, Li T, Tian S, Meng W, Sui Y, Yang J, Wang B, Liang Z, Zhao H, Han Y, Tang Y, Zhang L, Ma J. Effective Inhibition of MYC-Amplified Group 3 Medulloblastoma Through Targeting EIF4A1. Cancer Manag Res 2020; 12:12473-12485. [PMID: 33299354 PMCID: PMC7721120 DOI: 10.2147/cmar.s278844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose In medulloblastoma (MB), group 3 (G3) patients with MYC amplification tend to exhibit worse prognosis, thus creating a need for novel effective therapies. As the driver and crucial dependency for MYC-amplified G3-MB, MYC has been proven to be a prospective therapeutic target. Here, we aimed to identify novel effective therapeutic strategies against MYC-amplified G3-MB via targeting MYC translation. Materials and Methods Major components of translation initiation complex eIF4F were subjected to MB tumor dataset analysis, and EIF4A1 was identified to be a potential therapeutic target of MYC-amplified G3-MB. Validation was performed through genetic or pharmacological approaches with multiple patient-derived tumor models of MYC-amplified G3-MB in vitro and in vivo. Underlying mechanisms were further explored by Western blot, quantitative real-time PCR and mass spectrometry (MS) analyses. Results MB tumor datasets analyses showed that EIF4A1 was significantly up-regulated in G3-MB patients relative to normal cerebella, positively correlated with MYC in G3-MB at transcriptional level and a crucial cancer dependency in MYC-amplified G3-MB cells. Targeting EIF4A1 with a CRISPR/Cas9 approach or small-molecule inhibitor silvestrol effectively attenuated growth in multiple preclinical models of MYC-amplified G3-MB via blocking proliferation and inducing apoptosis. Mechanistically, EIF4A1 inhibition effectively impeded MYC expression at translational level, and its potency was positively associated with MYC level. Whole-proteome MS analysis of silvestrol-treated cells further unveiled other biological functions and pathways influenced by EIF4A1 inhibition. Conclusion Our investigation shows that interrupting MYC translation by EIF4A1 inhibition could be a potential effective therapeutic approach when treating patients with MYC-amplified G3-MB.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tiantian Li
- Key Laboratory of Cell Differentiation and Apoptosis of the National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shuaiwei Tian
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Meng
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Sui
- Key Laboratory of Cell Differentiation and Apoptosis of the National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jian Yang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Baocheng Wang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhuangzhuang Liang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Heng Zhao
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yipeng Han
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yujie Tang
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Cell Differentiation and Apoptosis of the National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of the National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Golojuch S, Kopcial M, Strzelecka D, Kasprzyk R, Baran N, Sikorski PJ, Kowalska J, Jemielity J. Exploring tryptamine conjugates as pronucleotides of phosphate-modified 7-methylguanine nucleotides targeting cap-dependent translation. Bioorg Med Chem 2020; 28:115523. [PMID: 32362385 DOI: 10.1016/j.bmc.2020.115523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/23/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is overexpressed in many cancers deregulating translational control of the cell cycle. mRNA 5' cap analogs targeting eIF4E are small molecules with the potential to counteract elevated levels of eIF4E in cancer cells. However, the practical utility of typical cap analogs is limited because of their reduced cell membrane permeability. Transforming the active analogs into their pronucleotide derivatives is a promising approach to overcome this obstacle. 7-Benzylguanosine monophosphate (bn7GMP) is a cap analog that has been successfully transformed into a cell-penetrating pronucleotide by conjugation of the phosphate moiety with tryptamine. In this work, we explored whether a similar strategy is applicable to other cap analogs, particularly phosphate-modified 7-methylguanine nucleotides. We report the synthesis of six new tryptamine conjugates containing N7-methylguanosine mono- and diphosphate and their analogs modified with thiophosphate moiety. These new potential pronucleotides and the expected products of their activation were characterized by biophysical and biochemical methods to determine their affinity towards eIF4E, their ability to inhibit translation in vitro, their susceptibility to enzymatic degradation and their turnover in cell extract. The results suggest that compounds containing the thiophosphate moiety may act as pronucleotides that release low but sustainable concentrations of 7-methylguanosine 5'-phosphorothioate (m7GMPS), which is a translation inhibitor with in vitro potency higher than bn7GMP.
Collapse
Affiliation(s)
- Sebastian Golojuch
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; Faculty of Chemistry, University of Warsaw, L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kopcial
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Dominika Strzelecka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Natalia Baran
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
13
|
Piecyk K, Pietrow P, Arnold T, Worch R, Korneeva NL, Jankowska-Anyszka M. Effect of HIV-1 TAT Peptide Fusion on 5' mRNA Cap Analogs Cell Membrane Permeability and Translation Inhibition. Bioconjug Chem 2020; 31:1156-1166. [PMID: 32227927 DOI: 10.1021/acs.bioconjchem.0c00080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of targeted anticancer drugs has been one of the most challenging goals of current research. Eukaryotic translation initiation factor 4E (eIF4E) is an oncogene that stimulates mRNA translation via binding to the 5' endcap structure. It is well documented that eIF4E is overexpressed in many cancers including breast, prostate, head and neck, and stomach malignancies and leads to oncogenic transformation and metastasis. One approach to block eIF4E function in cancer cells is based on the disruption of the interaction between eIF4E and the 5' mRNA cap structure using cap analog inhibitors. Since analogs are cell-impermeable due to their anionic nature, we used a cell penetrating peptide (CPP) for delivery of model cap analogs into cancer cells. The human immunodeficiency virus I (HIV-1) transactivator of transcription derived peptide (TAT) was conjugated with the analogs m7GMP and m7GpppG using click chemistry methodology. We observed that both conjugates (m7GMP-TAT and m7GpppG-TAT), contrary to TAT alone, did not translocate through the artificial phospholipid membrane of giant unilamellar vesicles. This suggests that passive transport is not the mechanism by which translocation of cap analogs occurs. In contrast, synthesized fluorescently labeled m7GpppG-TAT translocated into the human breast adenocarcinoma cancer cell line MCF-7. Furthermore, we demonstrated that m7GMP-TAT and m7GpppG-TAT inhibited cap-dependent translation up to 30% both in vivo and in vitro while simultaneously not affecting cell growth and viability. These results demonstrate the usefulness of cell penetration peptides as carriers for the internalization of cap analogs.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Paulina Pietrow
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Thomas Arnold
- Department of Emergency Medicine, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, United States
| | - Remigiusz Worch
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Nadejda L Korneeva
- Department of Emergency Medicine, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, United States.,Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130, United States
| | | |
Collapse
|
14
|
Qian C, Liu X, Xu Q, Wang Z, Chen J, Li T, Zheng Q, Yu H, Gu Y, Li S, Xia N. Recent Progress on the Versatility of Virus-Like Particles. Vaccines (Basel) 2020; 8:vaccines8010139. [PMID: 32244935 PMCID: PMC7157238 DOI: 10.3390/vaccines8010139] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022] Open
Abstract
Virus-like particles (VLPs) are multimeric nanostructures composed of one or more structural proteins of a virus in the absence of genetic material. Having similar morphology to natural viruses but lacking any pathogenicity or infectivity, VLPs have gradually become a safe substitute for inactivated or attenuated vaccines. VLPs can achieve tissue-specific targeting and complete and effective cell penetration. With highly ordered epitope repeats, VLPs have excellent immunogenicity and can induce strong cellular and humoral immune responses. In addition, as a type of nanocarrier, VLPs can be used to display antigenic epitopes or deliver small molecules. VLPs have thus become powerful tools for vaccinology and biomedical research. This review highlights the versatility of VLPs in antigen presentation, drug delivery, and vaccine technology.
Collapse
Affiliation(s)
- Ciying Qian
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Xinlin Liu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qin Xu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Zhiping Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Jie Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Tingting Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| |
Collapse
|
15
|
Wang Z, Zhi K, Ding Z, Sun Y, Li S, Li M, Pu K, Zou J. Emergence in protein derived nanomedicine as anticancer therapeutics: More than a tour de force. Semin Cancer Biol 2020; 69:77-90. [PMID: 31962173 DOI: 10.1016/j.semcancer.2019.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/14/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
Cancer has thwarted as a major health problem affecting the global population. With an alarming increase in the patient population suffering from diverse varieties of cancers, the global demographic data predicts sharp escalation in the number of cancer patients. This can be expected to reach 420 million cases by 2025. Among the diverse types of cancers, the most frequently diagnosed cancers are the breast, colorectal, prostate and lung cancer. From years, conventional treatment approaches like surgery, chemotherapy and radiation therapy have been practiced. In the past few years, increasing research on molecular level diagnosis and treatment of cancers have significantly changed the realm of cancer treatment. Lately, uses of advanced chemotherapy and immunotherapy like treatments have gained significant progress in the cancer therapy, but these approaches have several limitations on their safety and toxicity. This has generated lot of momentum for the evolution of new drug delivery approaches for the effective delivery of anticancer therapeutics, which may improve the pharmacokinetic and pharmacodynamic effect of the drugs along with significant reduction in the side effects. In this regard, the protein-based nano-medicines have gained wider attention in the management of cancer. Proteins are organic macromolecules essential, for life and have quite well explored in developing the nano-carriers. Furthermore, it provides passive or active tumour cell targeted delivery, by using protein based nanovesicles or virus like structures, antibody drug conjugates, viral particles, etc. Moreover, by utilizing various formulation strategies, both the animal and plant derived proteins can be converted to produce self-assembled virus like nano-metric structures with high efficiency in targeting the metastatic cancer cells. Therefore, the present review extensively discusses the applications of protein-based nano-medicine with special emphasis on intracellular delivery/drug targeting ability for anticancer drugs.
Collapse
Affiliation(s)
- Zhenchang Wang
- Department of Spleen, Stomach and Liver Diseases, Guangxi International Zhuang Medical Hospital, Guangxi, Nanning, 530201, China
| | - Kangkang Zhi
- Vascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Zhongyang Ding
- General Surgery, Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, Nanjing, 214023, China
| | - Yi Sun
- Oncology Department, Guizhou Provincial People's Hospital, Guizhou, Guiyang, 550002, China
| | - Shuang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Jiamusi University, Heilongjiang, Jiamu, 154003, China
| | - Manyuan Li
- Laboratory Department, Jinzhou Maternal and Infant Hospital, Liaoning, Jinzhou, 121000, China
| | - Kefeng Pu
- Suzhou Institute of Nanotechnology and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
16
|
Casanova I, Unzueta U, Arroyo-Solera I, Céspedes MV, Villaverde A, Mangues R, Vazquez E. Protein-driven nanomedicines in oncotherapy. Curr Opin Pharmacol 2019; 47:1-7. [PMID: 30685732 DOI: 10.1016/j.coph.2018.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Proteins are organic macromolecules essential in life but exploited, mainly in recombinant versions, as drugs or vaccine components, among other uses in industry or biomedicine. In oncology, individual proteins or supramolecular complexes have been tailored as small molecular weight drug carriers for passive or active tumor cell-targeted delivery, through the de novo design of appropriate drug stabilizing vehicles, or by generating constructs with different extents of mimesis of natural cell-targeted entities, such as viruses. In most of these approaches, a convenient nanoscale size is achieved through the oligomeric organization of the protein component in the drug conjugate. Among the different taken strategies, highly cytotoxic proteins such as microbial or plant toxins have been conveniently engineered to self-assemble as self-delivered virus-like, nanometric structures, chemically homogeneous that target metastatic cancer stem cells for the destruction of metastasis in absence of any partner vehicle.
Collapse
Affiliation(s)
- Isolda Casanova
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Irene Arroyo-Solera
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Maria Virtudes Céspedes
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Ramon Mangues
- Biomedical Research Institute Sant Pau (IIB-Sant Pau) and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain.
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
17
|
Jedynak M, Worch R, Podsiadła-Białoskórska M, Chroboczek J, Szołajska E. Cholesterol and phosphatidylserine are engaged in adenoviral dodecahedron endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2215-2223. [DOI: 10.1016/j.bbamem.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/14/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022]
|
18
|
Jedynak M, Laurin D, Dolega P, Podsiadla-Bialoskorska M, Szurgot I, Chroboczek J, Szolajska E. Leukocytes and drug-resistant cancer cells are targets for intracellular delivery by adenoviral dodecahedron. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1853-1865. [DOI: 10.1016/j.nano.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/04/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
|
19
|
Wojtczak BA, Sikorski PJ, Fac-Dabrowska K, Nowicka A, Warminski M, Kubacka D, Nowak E, Nowotny M, Kowalska J, Jemielity J. 5'-Phosphorothiolate Dinucleotide Cap Analogues: Reagents for Messenger RNA Modification and Potent Small-Molecular Inhibitors of Decapping Enzymes. J Am Chem Soc 2018; 140:5987-5999. [PMID: 29676910 DOI: 10.1021/jacs.8b02597] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 5' cap consists of 7-methylguanosine (m7G) linked by a 5'-5'-triphosphate bridge to messenger RNA (mRNA) and acts as the master regulator of mRNA turnover and translation initiation in eukaryotes. Cap analogues that influence mRNA translation and turnover (either as small molecules or as part of an RNA transcript) are valuable tools for studying gene expression, which is often also of therapeutic relevance. Here, we synthesized a series of 15 dinucleotide cap (m7GpppG) analogues containing a 5'-phosphorothiolate (5'-PSL) moiety (i.e., an O-to-S substitution within the 5'-phosphoester) and studied their biological properties in the context of three major cap-binding proteins: translation initiation factor 4E (eIF4E) and two decapping enzymes, DcpS and Dcp2. While the 5'-PSL moiety was neutral or slightly stabilizing for cap interactions with eIF4E, it significantly influenced susceptibility to decapping. Replacing the γ-phosphoester with the 5'-PSL moiety (γ-PSL) prevented β-γ-pyrophosphate bond cleavage by DcpS and conferred strong inhibitory properties. Combining the γ-PSL moiety with α-PSL and β-phosphorothioate (PS) moiety afforded first cap-derived hDcpS inhibitor with low nanomolar potency. Susceptibility to Dcp2 and translational properties were studied after incorporation of the new analogues into mRNA transcripts by RNA polymerase. Transcripts containing the γ-PSL moiety were resistant to cleavage by Dcp2. Surprisingly, superior translational properties were observed for mRNAs containing the α-PSL moiety, which were Dcp2-susceptible. The overall protein expression measured in HeLa cells for this mRNA was comparable to mRNA capped with the translation augmenting β-PS analogue reported previously. Overall, our study highlights 5'-PSL as a synthetically accessible cap modification, which, depending on the substitution site, can either reduce susceptibility to decapping or confer superior translational properties on the mRNA. The 5'-PSL-analogues may find application as reagents for the preparation of efficiently expressed mRNA or for investigation of the role of decapping enzymes in mRNA processing or neuromuscular disorders associated with decapping.
Collapse
Affiliation(s)
- Blazej A Wojtczak
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| | - Pawel J Sikorski
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| | - Kaja Fac-Dabrowska
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| | - Anna Nowicka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Dorota Kubacka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Elzbieta Nowak
- International Institute of Molecular and Cell Biology in Warsaw , 4 Ks. Trojdena Street , 02-109 Warsaw , Poland
| | - Marcin Nowotny
- International Institute of Molecular and Cell Biology in Warsaw , 4 Ks. Trojdena Street , 02-109 Warsaw , Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Jacek Jemielity
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| |
Collapse
|
20
|
Ramon Y Cajal S, Castellvi J, Hümmer S, Peg V, Pelletier J, Sonenberg N. Beyond molecular tumor heterogeneity: protein synthesis takes control. Oncogene 2018; 37:2490-2501. [PMID: 29463861 PMCID: PMC5945578 DOI: 10.1038/s41388-018-0152-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/15/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023]
Abstract
One of the daunting challenges facing modern medicine lies in the understanding and treatment of tumor heterogeneity. Most tumors show intra-tumor heterogeneity at both genomic and proteomic levels, with marked impacts on the responses of therapeutic targets. Therapeutic target-related gene expression pathways are affected by hypoxia and cellular stress. However, the finding that targets such as eukaryotic initiation factor (eIF) 4E (and its phosphorylated form, p-eIF4E) are generally homogenously expressed throughout tumors, regardless of the presence of hypoxia or other cellular stress conditions, opens the exciting possibility that malignancies could be treated with therapies that combine targeting of eIF4E phosphorylation with immune checkpoint inhibitors or chemotherapy.
Collapse
Affiliation(s)
- Santiago Ramon Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain. .,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain.
| | - Josep Castellvi
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Stefan Hümmer
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Vicente Peg
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Jerry Pelletier
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Muttach F, Muthmann N, Rentmeister A. Synthetic mRNA capping. Beilstein J Org Chem 2017; 13:2819-2832. [PMID: 30018667 PMCID: PMC5753152 DOI: 10.3762/bjoc.13.274] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic mRNA with its 5'-cap is of central importance for the cell. Many studies involving mRNA require reliable preparation and modification of 5'-capped RNAs. Depending on the length of the desired capped RNA, chemical or enzymatic preparation - or a combination of both - can be advantageous. We review state-of-the art methods and give directions for choosing the appropriate approach. We also discuss the preparation and properties of mRNAs with non-natural caps providing novel features such as improved stability or enhanced translational efficiency.
Collapse
Affiliation(s)
- Fabian Muttach
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Nils Muthmann
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Andrea Rentmeister
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| |
Collapse
|
22
|
Rydzik AM, Warminski M, Sikorski PJ, Baranowski MR, Walczak S, Kowalska J, Zuberek J, Lukaszewicz M, Nowak E, W Claridge TD, Darzynkiewicz E, Nowotny M, Jemielity J. mRNA cap analogues substituted in the tetraphosphate chain with CX2: identification of O-to-CCl2 as the first bridging modification that confers resistance to decapping without impairing translation. Nucleic Acids Res 2017; 45:8661-8675. [PMID: 28666355 PMCID: PMC5587727 DOI: 10.1093/nar/gkx569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Analogues of the mRNA 5'-cap are useful tools for studying mRNA translation and degradation, with emerging potential applications in novel therapeutic interventions including gene therapy. We report the synthesis of novel mono- and dinucleotide cap analogues containing dihalogenmethylenebisphosphonate moiety (i.e. one of the bridging O atom substituted with CCl2 or CF2) and their properties in the context of cellular translational and decapping machineries, compared to phosphate-unmodified and previously reported CH2-substituted caps. The analogues were bound tightly to eukaryotic translation initiation factor 4E (eIF4E), with CCl2-substituted analogues having the highest affinity. When incorporated into mRNA, the CCl2-substituted dinucleotide most efficiently promoted cap-dependent translation. Moreover, the CCl2-analogues were potent inhibitors of translation in rabbit reticulocyte lysate. The crystal structure of eIF4E in complex with the CCl2-analogue revealed a significantly different ligand conformation compared to that of the unmodified cap analogue, which likely contributes to the improved binding. Both CCl2- and CF2- analogues showed lower susceptibility to hydrolysis by the decapping scavenger enzyme (DcpS) and, when incorporated into RNA, conferred stability against major cellular decapping enzyme (Dcp2) to transcripts. Furthermore, the use of difluoromethylene cap analogues was exemplified by the development of 19F NMR assays for DcpS activity and eIF4E binding.
Collapse
Affiliation(s)
- Anna M Rydzik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Sylwia Walczak
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Timothy D W Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ksiecia Trojdena Street, 02-109 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
23
|
Walczak S, Nowicka A, Kubacka D, Fac K, Wanat P, Mroczek S, Kowalska J, Jemielity J. A novel route for preparing 5' cap mimics and capped RNAs: phosphate-modified cap analogues obtained via click chemistry. Chem Sci 2017; 8:260-267. [PMID: 28451173 PMCID: PMC5355871 DOI: 10.1039/c6sc02437h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/10/2016] [Indexed: 01/29/2023] Open
Abstract
The significant biological role of the mRNA 5' cap in translation initiation makes it an interesting subject for chemical modifications aimed at producing useful tools for the selective modulation of intercellular processes and development of novel therapeutic interventions. However, traditional approaches to the chemical synthesis of cap analogues are time-consuming and labour-intensive, which impedes the development of novel compounds and their applications. Here, we explore a different approach for synthesizing 5' cap mimics, making use of click chemistry (CuAAC) to combine two mononucleotide units and yield a novel class of dinucleotide cap analogues containing a triazole ring within the oligophosphate chain. As a result, we synthesized a library of 36 mRNA cap analogues differing in the location of the triazole ring, the polyphosphate chain length, and the type of linkers joining the phosphate and the triazole moieties. After biochemical evaluation, we identified two analogues that, when incorporated into mRNA, produced transcripts translated with efficiency similar to compounds unmodified in the oligophosphate bridge obtained by traditional synthesis. Moreover, we demonstrated that the triazole-modified cap structures can be generated at the RNA 5' end using two alternative capping strategies: either the typical co-transcriptional approach, or a new post-transcriptional approach based on CuAAC. Our findings open new possibilities for developing chemically modified mRNAs for research and therapeutic applications, including RNA-based vaccinations.
Collapse
Affiliation(s)
- Sylwia Walczak
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland
| | - Anna Nowicka
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Dorota Kubacka
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Kaja Fac
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland
| | - Przemyslaw Wanat
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Seweryn Mroczek
- Department of Genetics and Biotechnology , Faculty of Biology , University of Warsaw , 02-106 Warsaw , Poland
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Joanna Kowalska
- Division of Biophysics , Institute of Experimental Physics , Faculty of Physics , University of Warsaw , Zwirki i Wigury 93 , 02-089 , Warsaw , Poland
| | - Jacek Jemielity
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 , Warsaw , Poland .
| |
Collapse
|
24
|
Ziemniak M, Mugridge JS, Kowalska J, Rhoads RE, Gross JD, Jemielity J. Two-headed tetraphosphate cap analogs are inhibitors of the Dcp1/2 RNA decapping complex. RNA (NEW YORK, N.Y.) 2016; 22:518-29. [PMID: 26826132 PMCID: PMC4793208 DOI: 10.1261/rna.055152.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/10/2015] [Indexed: 05/08/2023]
Abstract
Dcp1/2 is the major eukaryotic RNA decapping complex, comprised of the enzyme Dcp2 and activator Dcp1, which removes the 5' m(7)G cap from mRNA, committing the transcript to degradation. Dcp1/2 activity is crucial for RNA quality control and turnover, and deregulation of these processes may lead to disease development. The molecular details of Dcp1/2 catalysis remain elusive, in part because both cap substrate (m(7)GpppN) and m(7)GDP product are bound by Dcp1/2 with weak (mM) affinity. In order to find inhibitors to use in elucidating the catalytic mechanism of Dcp2, we screened a small library of synthetic m(7)G nucleotides (cap analogs) bearing modifications in the oligophosphate chain. One of the most potent cap analogs, m(7)GpSpppSm(7)G, inhibited Dcp1/2 20 times more efficiently than m(7)GpppN or m(7)GDP. NMR experiments revealed that the compound interacts with specific surfaces of both regulatory and catalytic domains of Dcp2 with submillimolar affinities. Kinetics analysis revealed that m(7)GpSpppSm(7)G is a mixed inhibitor that competes for the Dcp2 active site with micromolar affinity. m(7)GpSpppSm(7)G-capped RNA undergoes rapid decapping, suggesting that the compound may act as a tightly bound cap mimic. Our identification of the first small molecule inhibitor of Dcp2 should be instrumental in future studies aimed at understanding the structural basis of RNA decapping and may provide insight toward the development of novel therapeutically relevant decapping inhibitors.
Collapse
Affiliation(s)
- Marcin Ziemniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Jeffrey S Mugridge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
25
|
Szurgot I, Jedynak M, Podsiadla-Bialoskorska M, Piwowarski J, Szolajska E, Chroboczek J. Adenovirus Dodecahedron, a VLP, Can be Purified by Size Exclusion Chromatography Instead of Time-Consuming Sucrose Density Gradient Centrifugation. Mol Biotechnol 2016; 57:565-73. [PMID: 25711740 DOI: 10.1007/s12033-015-9850-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adenoviral dodecahedron (Dd) is a virus-like particle composed of twelve pentameric penton base (Pb) proteins, responsible for adenovirus cell penetration. It is generated spontaneously in the baculovirus system upon expression of the Pb gene of adenovirus serotype 3. This particle shows remarkable cell penetration ability with 2,00,000-3,00,000 Dd internalized into one cell in culture, conceivably delivering several millions of foreign cargo molecules to the target cell. We have used it in the past for delivery of small drugs as well as a vaccination platform, in which Dd serves as a particulate vaccine delivery system. Since development of new biomedicals depends strongly on the cost of their expression and purification, we attempted, albeit unsuccessfully, to obtain Dd expression in bacteria. We therefore retained its expression in the baculovirus/insect cells system but introduced significant improvements in the protocols for Dd expression and purification, leading to considerable savings in time and improved yield.
Collapse
Affiliation(s)
- I Szurgot
- Institute of Biochemistry and Biophysics of Polish Academy of Sciences, Pawińskiego 5a, 02106, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
26
|
Rodríguez-Gascón A, Del Pozo-Rodríguez A, Isla A, Solinís MA. Vaginal gene therapy. Adv Drug Deliv Rev 2015; 92:71-83. [PMID: 26189799 DOI: 10.1016/j.addr.2015.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/09/2015] [Accepted: 07/09/2015] [Indexed: 02/01/2023]
Abstract
In the last years, vaginal gene therapy has gained increasing attention mainly for the treatment and control of sexually transmitted infections. DNA delivery has been also suggested to improve reproductive outcomes for women with deficiencies in the female reproductive tract. Although no product has reached clinical phase, preclinical investigations reveal the potential of the vaginal tract as an effective administration route for gene delivery. This review focuses on the main advantages and challenges of vaginal gene therapy, and on the most used nucleic acid delivery systems, including viral and non-viral vectors. Additionally, the advances in the application of vaginal gene therapy for the treatment and/or prevention of infectious diseases such as the human immunodeficiency virus (HIV), the human papillomavirus (HPV) or the herpes simplex virus (HSV) are presented.
Collapse
Affiliation(s)
- Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain.
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - Arantxazu Isla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - María Angeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
27
|
Ziemniak M, Kowalska J, Lukaszewicz M, Zuberek J, Wnek K, Darzynkiewicz E, Jemielity J. Phosphate-modified analogues of m(7)GTP and m(7)Gppppm(7)G-Synthesis and biochemical properties. Bioorg Med Chem 2015; 23:5369-81. [PMID: 26264844 DOI: 10.1016/j.bmc.2015.07.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 01/05/2023]
Abstract
The synthesis and biochemical properties of 17 new mRNA cap analogues are reported. Six of these nucleotides are m(7)GTP derivatives, whereas 11 are 'two headed' tetraphosphate dinucleotides based on a m(7)Gppppm(7)G structure. The compounds contain either a boranophosphate or phosphorothioate moiety in the nucleoside neighbouring position(s) and some of them possess an additional methylene group between β and γ phosphorus atoms. The compounds were prepared by divalent metal chloride-mediated coupling of an appropriate m(7)GMP analogue with a given P(1),P(2)-di(1-imidazolyl) derivative. The analogues were evaluated as tools for studying cap-dependent processes in a number of biochemical assays, including determination of affinity to eukaryotic initiation factor eIF4E, susceptibility to enzymatic hydrolysis, and translational efficiency in vitro. The results indicate that modification in the phosphate chain can increase binding to cap-interacting proteins and provides higher resistance to degradation. Furthermore, modified derivatives of m(7)GTP were found to be potent inhibitors of cap-dependent translation in cell free systems.
Collapse
Affiliation(s)
- Marcin Ziemniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Katarzyna Wnek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
28
|
Warminski M, Warminska Z, Kowalska J, Jemielity J. mRNA Cap Modification through Carbamate Chemistry: Synthesis of Amino- and Carboxy-Functionalised Cap Analogues Suitable for Labelling and Bioconjugation. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Effio CL, Hubbuch J. Next generation vaccines and vectors: Designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J 2015; 10:715-27. [PMID: 25880158 DOI: 10.1002/biot.201400392] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/11/2015] [Accepted: 03/19/2015] [Indexed: 12/28/2022]
Abstract
In recent years, the development of novel recombinant virus-like particles (VLPs) has been generating new perspectives for the prevention of untreated and arising infectious diseases. However, cost-reduction and acceleration of manufacturing processes for VLP-based vaccines or vectors are key challenges for the global health system. In particular, the design of rapid and cost-efficient purification processes is a critical bottleneck. In this review, we describe and evaluate new concepts, development strategies and unit operations for the downstream processing of VLPs. A special focus is placed on purity requirements and current trends, as well as chances and limitations of novel technologies. The discussed methods and case studies demonstrate the advances and remaining challenges in both rational process development and purification tools for large biomolecules. The potential of a new era of VLP-based products is highlighted by the progress of various VLPs in clinical phases.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | | |
Collapse
|
30
|
Abstract
Dysregulation of mRNA translation is a frequent feature of neoplasia. Many oncogenes and tumour suppressors affect the translation machinery, making aberrant translation a widespread characteristic of tumour cells, independent of the genetic make-up of the cancer. Therefore, therapeutic agents that target components of the protein synthesis apparatus hold promise as novel anticancer drugs that can overcome intra-tumour heterogeneity. In this Review, we discuss the role of translation in cancer, with a particular focus on the eIF4F (eukaryotic translation initiation factor 4F) complex, and provide an overview of recent efforts aiming to 'translate' these results to the clinic.
Collapse
|