1
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
2
|
He S, Niu Y, Xing L, Liang Z, Song X, Ding M, Huang W. Research progress of the detection and analysis methods of heavy metals in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1310328. [PMID: 38362447 PMCID: PMC10867983 DOI: 10.3389/fpls.2024.1310328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Heavy metal (HM)-induced stress can lead to the enrichment of HMs in plants thereby threatening people's lives and health via the food chain. For this reason, there is an urgent need for some reliable and practical techniques to detect and analyze the absorption, distribution, accumulation, chemical form, and transport of HMs in plants for reducing or regulating HM content. Not only does it help to explore the mechanism of plant HM response, but it also holds significant importance for cultivating plants with low levels of HMs. Even though this field has garnered significant attention recently, only minority researchers have systematically summarized the different methods of analysis. This paper outlines the detection and analysis techniques applied in recent years for determining HM concentration in plants, such as inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray absorption spectroscopy (XAS), X-ray fluorescence spectrometry (XRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), non-invasive micro-test technology (NMT) and omics and molecular biology approaches. They can detect the chemical forms, spatial distribution, uptake and transport of HMs in plants. For this paper, the principles behind these techniques are clarified, their advantages and disadvantages are highlighted, their applications are explored, and guidance for selecting the appropriate methods to study HMs in plants is provided for later research. It is also expected to promote the innovation and development of HM-detection technologies and offer ideas for future research concerning HM accumulation in plants.
Collapse
Affiliation(s)
- Shuang He
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuting Niu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu Xing
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaomei Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meihai Ding
- Management Department, Xi’an Ande Pharmaceutical Co; Ltd., Xi’an, China
| | - Wenli Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
Darma A, Yang J, Bloem E, Możdżen K, Zandi P. Arsenic biotransformation and mobilization: the role of bacterial strains and other environmental variables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1763-1787. [PMID: 34713399 DOI: 10.1007/s11356-021-17117-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Over several decades, arsenic (As) toxicity in the biosphere has affected different flora, fauna, and other environmental components. The majority of these problems are linked with As mobilization due to bacterial dissolution of As-bearing minerals and its transformation in other reservoirs such as soil, sediments, and ground water. Understanding the process, mechanism, and various bacterial species involved in these processes under the influence of some ecological variables greatly contributes to a better understanding of the fate and implications of As mobilization into the environments. This article summarizes the process, role, and various types of bacterial species involved in the transformation and mobilization of As. Furthermore, insight into how Fe(II) oxidation and resistance mechanisms such as methylation and detoxification against the toxic effect of As(III) was highlighted as a potential immobilization and remediation strategy in As-contaminated sites. Furthermore, the significance and comparative advantages of some useful analytical tools used in the evaluation, speciation, and analysis of As are discussed and how their in situ and ex situ applications support assessing As contamination in both laboratory and field settings. Nevertheless, additional research involving advanced molecular techniques is required to elaborate on the contribution of these bacterial consortia as a potential agronomic tool for reducing As availability, particularly in natural circumstances. Graphical abstract. Courtesy of conceptual model: Aminu Darma.
Collapse
Affiliation(s)
- Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Elke Bloem
- Institute for Crop and Soil Science Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Bundesallee 69, 38116, Braunschweig, Germany
| | - Katarzyna Możdżen
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St, 30-084, Kraków, Poland
| | - Peiman Zandi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, People's Republic of China
| |
Collapse
|
4
|
Hu H, Zhao J, Wang L, Shang L, Cui L, Gao Y, Li B, Li YF. Synchrotron-based techniques for studying the environmental health effects of heavy metals: Current status and future perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115721] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Comprehensive characterization of nanostructured lipid carriers using laboratory and synchrotron X-ray scattering and diffraction. Eur J Pharm Biopharm 2019; 139:153-160. [DOI: 10.1016/j.ejpb.2019.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 11/22/2022]
|
6
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Ovais M, Chen C. Safety considerations for nanoparticles in tumor treatment. Nanomedicine (Lond) 2018; 13:2373-2376. [PMID: 30284498 DOI: 10.2217/nnm-2018-0267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Muhammad Ovais
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology (NCNST), Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology (NCNST), Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
8
|
Porcaro F, Roudeau S, Carmona A, Ortega R. Advances in element speciation analysis of biomedical samples using synchrotron-based techniques. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Intelligent testing strategy and analytical techniques for the safety assessment of nanomaterials. Anal Bioanal Chem 2018; 410:6051-6066. [DOI: 10.1007/s00216-018-0940-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
|
10
|
Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017; 90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liming Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
11
|
Feng H, Qian Y, Cochran JK, Zhu Q, Hu W, Yan H, Li L, Huang X, Chu YS, Liu H, Yoo S, Liu CJ. Nanoscale measurement of trace element distributions in Spartina alterniflora root tissue during dormancy. Sci Rep 2017; 7:40420. [PMID: 28098254 PMCID: PMC5241796 DOI: 10.1038/srep40420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/06/2016] [Indexed: 01/22/2023] Open
Abstract
This paper reports a nanometer-scale investigation of trace element (As, Ca, Cr, Cu, Fe, Mn, Ni, S and Zn) distributions in the root system Spartina alterniflora during dormancy. The sample was collected on a salt marsh island in Jamaica Bay, New York, in April 2015 and the root was cross-sectioned with 10 μm resolution. Synchrotron X-ray nanofluorescence was applied to map the trace element distributions in selected areas of the root epidermis and endodermis. The sampling resolution was 60 nm to increase the measurement accuracy and reduce the uncertainty. The results indicate that the elemental concentrations in the epidermis, outer endodermis and inner endodermis are significantly (p < 0.01) different. The root endodermis has relatively higher concentrations of these elements than the root epidermis. Furthermore, this high resolution measurement indicates that the elemental concentrations in the outer endodermis are significantly (p < 0.01) higher than those in the inner endodermis. These results suggest that the Casparian strip may play a role in governing the aplastic transport of these elements. Pearson correlation analysis on the average concentrations of each element in the selected areas shows that most of the elements are significantly (p < 0.05) correlated, which suggests that these elements may share the same transport pathways.
Collapse
Affiliation(s)
- Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, USA
| | - Yu Qian
- Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, USA
| | - J. Kirk Cochran
- School of Marine and Atmospheric Science, State University of New York, Stony Brook, NY 11794, USA
| | - Qingzhi Zhu
- School of Marine and Atmospheric Science, State University of New York, Stony Brook, NY 11794, USA
| | - Wen Hu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Li Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Xiaojing Huang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Yong S. Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Houjun Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, PRC
| | - Shinjae Yoo
- Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Chang-Jun Liu
- Biological Sciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
12
|
Caballero-Díaz E, Valcárcel Cases M. Analytical methodologies for nanotoxicity assessment. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Wang J, Quershi WA, Li Y, Xu J, Nie G. Analytical methods for nano-bio interface interactions. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0340-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Feng H, Zhang W, Qian Y, Liu W, Yu L, Yoo S, Wang J, Wang JJ, Eng C, Liu CJ, Tappero R. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:937-946. [PMID: 27359142 DOI: 10.1107/s1600577516008146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.
Collapse
Affiliation(s)
- Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
| | - Weiguo Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, People's Republic of China
| | - Yu Qian
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
| | - Wenliang Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, People's Republic of China
| | - Lizhong Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, People's Republic of China
| | - Shinjae Yoo
- Computational Science Center, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jun Wang
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jia Jun Wang
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Christopher Eng
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Chang Jun Liu
- Biological Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ryan Tappero
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
15
|
Xu X, Li YF, Zhao J, Li Y, Lin J, Li B, Gao Y, Chen C. Nanomaterial-based approaches for the detection and speciation of mercury. Analyst 2015; 140:7841-53. [DOI: 10.1039/c5an01519g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Detection and speciation of Hg through the T–Hg–T coordination, Hg–S and/or Hg–Au/Ag interactions based colorimetric or fluorescent changes.
Collapse
Affiliation(s)
- Xiaohan Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
| | - Yunyun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
| | - Jing Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- and State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
| | - Chunying Chen
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|