1
|
Sustained endosomal release of a neurokinin-1 receptor antagonist from nanostars provides long-lasting relief of chronic pain. Biomaterials 2022; 285:121536. [PMID: 35533442 PMCID: PMC10064865 DOI: 10.1016/j.biomaterials.2022.121536] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022]
Abstract
Soft polymer nanoparticles designed to disassemble and release an antagonist of the neurokinin 1 receptor (NK1R) in endosomes provide efficacious yet transient relief from chronic pain. These micellar nanoparticles are unstable and rapidly release cargo, which may limit the duration of analgesia. We examined the efficacy of stable star polymer nanostars containing the NK1R antagonist aprepitant-amine for the treatment of chronic pain in mice. Nanostars continually released cargo for 24 h, trafficked through the endosomal system, and disrupted NK1R endosomal signaling. After intrathecal injection, nanostars accumulated in endosomes of spinal neurons. Nanostar-aprepitant reversed mechanical, thermal and cold allodynia and normalized nociceptive behavior more efficaciously than free aprepitant in preclinical models of neuropathic and inflammatory pain. Analgesia was maintained for >10 h. The sustained endosomal delivery of antagonists from slow-release nanostars provides effective and long-lasting reversal of chronic pain.
Collapse
|
2
|
Dao NV, Ercole F, Li Y, Davis TP, Kaminskas LM, Sloan EK, Quinn JF, Whittaker MR. Nitroxide-functional PEGylated nanostars arrest cellular oxidative stress and exhibit preferential accumulation in co-cultured breast cancer cells. J Mater Chem B 2021; 9:7805-7820. [PMID: 34586131 DOI: 10.1039/d1tb00812a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The limited application of traditional antioxidants to reducing elevated levels of reactive oxygen species (ROS) is potentially due to their lack of stability and biocompatibility when tested in a biological milieu. For instance, the poor biological antioxidant performance of small molecular nitroxides arises from their limited diffusion across cell membranes and their significant side effects when applied at high doses. Herein, we describe the use of nanostructured carriers to improve the antioxidant activity of a typical nitroxide derivative, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). Polymers with star-shaped structures were synthesised and were further conjugated to TEMPO moieties via amide linkages. The TEMPO-loaded stars have small hydrodynamic sizes (<20 nm), and are better tolerated by cells than free TEMPO in a breast cancer-fibroblast co-culture, a system exhibiting elevated ROS levels. At a well-tolerated concentration, the polymer with the highest TEMPO-loading capacity successfully downregulated ROS production in co-cultured cells (a significant decrease of up to 50% vs. basal ROS levels), which was accompanied by a specific reduction in superoxide anion generation in the mitochondria. In contrast, the equivalent concentration of free TEMPO did not achieve the same outcome. Further investigation showed that the TEMPO-conjugated star polymers can be recycled inside the cells, thus providing longer term scavenging activity. Cell association studies demonstrated that the polymers can be taken up by both cell types in the co-culture, and are found to co-locate with the mitochondria. Interestingly the stars exhibited preferential mitochodria targeting in the co-cultured cancer cells compared to accompanying fibroblasts. The data suggest the potential of TEMPO-conjugated star polymers to arrest oxidative stress for various applications in cancer therapy.
Collapse
Affiliation(s)
- Nam V Dao
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Francesca Ercole
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Yuhuan Li
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Thomas P Davis
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.,Peter MacCallum Cancer Centre, Division of Surgery, Melbournem, VIC 3000, Australia
| | - John F Quinn
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Michael R Whittaker
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
3
|
Yong HW, Kakkar A. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Macromol Biosci 2021; 21:e2100105. [PMID: 34117840 DOI: 10.1002/mabi.202100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Soft nanoparticles continue to offer a promising platform for the encapsulation and controlled delivery of poorly water-soluble drugs and help enhance their bioavailability at targeted sites. Linear amphiphilic block copolymers are the most extensively investigated in formulating delivery vehicles. However, more recently, there has been increasing interest in utilizing branched macromolecules for nanomedicine, as these have been shown to lower critical micelle concentrations, form particles of smaller dimensions, facilitate the inclusion of varied compositions and function-based entities, as well as provide prolonged and sustained release of cargo. In this review, it is aimed to discuss some of the key variables that are studied in tailoring branched architecture-based assemblies, and their influence on drug loading and delivery. By understanding structure-property relationships in these formulations, one can better design branched star polymers with suitable characteristics for efficient therapeutic interventions. The role played by polymer composition, chain architecture, crosslinking, stereocomplexation, compatibility between polymers and drugs, drug/polymer concentrations, and self-assembly methods in their performance as nanocarriers is highlighted.
Collapse
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec, H3A 0B8, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec, H3A 0B8, Canada
| |
Collapse
|
4
|
Goos JACM, Davydova M, Dilling TR, Cho A, Cornejo MA, Gupta A, Price WS, Puttick S, Whittaker MR, Quinn JF, Davis TP, Lewis JS. Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nucl Med Biol 2020; 84-85:63-72. [PMID: 32135473 PMCID: PMC7253331 DOI: 10.1016/j.nucmedbio.2020.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pretargeting strategies that do not rely on the expression of molecular targets have expanded imaging and therapy options for cancer patients. Nanostars with designed multivalency and which highly accumulate in tumor tissue via the enhanced permeability and retention (EPR) effect may therefore be the ideal vectors for the development of a passive pretargeting approach. METHODS Nanostars were synthesized, consisting of 7-8 center-cross-linked arms that were modified with trans-cyclooctene (TCO) using poly(ethylene glycol) (PEG) linkers of 12 or 106 monomer units or without linker. The bioorthogonal click reaction with radiofluorinated 2,2'-(7-(2-(tetrazine-poly(ethyleneglycol)11-amino)-2-oxoethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid ([18F]F-Tz-PEG11-NODA) or 2,2'-(7-(2-(tetrazine-amino)-2-oxoethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid ([18F]F-Tz-NODA) was measured by ex vivo biodistribution studies and positron emission tomography (PET) in mice bearing tumors with high EPR characteristics. Bioorthogonal masking was performed using a tetrazine-functionalized dextran polymer (Tz-DP). RESULTS Highest tumor accumulation of [18F]F-Tz-PEG11-NODA was observed for nanostars functionalized with TCO without linker, with a tumor uptake of 3.2 ± 0.4%ID/g and a tumor-to-muscle ratio of 12.8 ± 4.2, tumor-to-large intestine ratio of 0.5 ± 0.3 and tumor-to-kidney ratio of 2.0 ± 0.3, being significantly higher than for nanostars functionalized with TCO-PEG12 (P < 0.05) or TCO-PEG106 (P < 0.05). Tumor uptake and tumor-to-tissue ratios did not improve upon bioorthogonal masking with Tz-DP or when using a smaller, more lipophilic tetrazine([18F]F-Tz-NODA). CONCLUSIONS A pretargeting strategy was developed based on the passive delivery of TCO-functionalized nanostars. Such a strategy would allow for the imaging and treatment of tumors with apparent EPR characteristics, with high radioactive tumor doses and minimal doses to off-target tissues.
Collapse
Affiliation(s)
- Jeroen A C M Goos
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; MedTechLabs, Stockholm, Sweden.
| | - Maria Davydova
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Andrew Cho
- Department of Biochemistry & Structural Biology, Weill Cornell Graduate School, New York, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, USA
| | - Mike A Cornejo
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - William S Price
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - Simon Puttick
- Probing Biosystems Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Herston, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA; Department of Radiology, the Molecular Pharmacology Program and the Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Radiology, Weill Cornell Medical College, New York, USA; Department Pharmacology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
5
|
Eftekhari RB, Maghsoudnia N, Samimi S, Zamzami A, Dorkoosh FA. Co-Delivery Nanosystems for Cancer Treatment: A Review. Pharm Nanotechnol 2019; 7:90-112. [PMID: 30907329 DOI: 10.2174/2211738507666190321112237] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Massive data available on cancer therapy more than ever lead our mind to the general concept that there is no perfect treatment for cancer. Indeed, the biological complexity of this disease is too excessive to be treated by a single therapeutic approach. Current delivery systems containing a specific drug or gene have their particular opportunities and restrictions. It is worth noting that a considerable number of studies suggest that single- drug delivery systems result in insufficient suppression of cancer growth. Therefore, one of the main ideas of co-delivery system designing is to enhance the intended response or to achieve the synergistic/combined effect compared to the single drug strategy. This review focuses on various strategies for co-delivery of therapeutic agents in the treatment of cancer. The primary approaches within the script are categorized into co-delivery of conventional chemotherapeutics, gene-based molecules, and plant-derived materials. Each one is explained in examples with the recent researches. In the end, a brief summary is provided to conclude the gist of the review.
Collapse
Affiliation(s)
- Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Maghsoudnia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Samimi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zamzami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yu SH, Patra M, Ferrari S, Ramirez Garcia P, Veldhuis NA, Kaminskas LM, Graham B, Quinn JF, Whittaker MR, Gasser G, Davis TP. Linker chemistry dictates the delivery of a phototoxic organometallic rhenium(i) complex to human cervical cancer cells from core crosslinked star polymer nanoparticles. J Mater Chem B 2018; 6:7805-7810. [PMID: 32255026 DOI: 10.1039/c8tb02464b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have investigated core-crosslinked star polymer nanoparticles designed with tunable release chemistries as potential nanocarriers for a photoactive Re(i) organometallic complex. The nanoparticles consisted of a brush poly(oligo-ethylene glycol)methyl ether acrylate (POEGA) corona and a cross-linked core of non-biodegradable N,N'-methylenebis(acrylamide) (MBAA) and either pentafluorophenyl acrylate (PFPA), 3-vinyl benzaldehyde (VBA) or diacetone acrylamide (DAAM). Each star was modified with an amine functionalized photodynamic agent (i.e. a rhenium(i) organometallic complex) resulting in the formation of either a stable amide bond (POEGA-star-PFPA), or hydrolytically labile aldimine (POEGA-star-VBA) or ketimine bonds (POEGA-star-DAAM). These materials revealed linker dependent photo- and cytotoxicity when tested in vitro against non-cancerous lung fibroblast MRC-5 cells and HeLa human cervical cancer cells: the toxicity results correlated with final intracellular Re concentrations.
Collapse
Affiliation(s)
- Sul Hwa Yu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mehta D, Leong N, McLeod VM, Kelly BD, Pathak R, Owen DJ, Porter CJ, Kaminskas LM. Reducing Dendrimer Generation and PEG Chain Length Increases Drug Release and Promotes Anticancer Activity of PEGylated Polylysine Dendrimers Conjugated with Doxorubicin via a Cathepsin-Cleavable Peptide Linker. Mol Pharm 2018; 15:4568-4576. [DOI: 10.1021/acs.molpharmaceut.8b00581] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Dharmini Mehta
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Nathania Leong
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Victoria M. McLeod
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Brian D. Kelly
- Starpharma Pty Ltd., 4-6 Southampton Cresent, Abbotsford, Victoria 3067, Australia
| | - Rashmi Pathak
- Starpharma Pty Ltd., 4-6 Southampton Cresent, Abbotsford, Victoria 3067, Australia
| | - David J. Owen
- Starpharma Pty Ltd., 4-6 Southampton Cresent, Abbotsford, Victoria 3067, Australia
| | - Christopher J.H. Porter
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lisa M. Kaminskas
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
8
|
Cyclic peptide-poly(HPMA) nanotubes as drug delivery vectors: In vitro assessment, pharmacokinetics and biodistribution. Biomaterials 2018; 178:570-582. [PMID: 29680158 DOI: 10.1016/j.biomaterials.2018.03.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/27/2018] [Accepted: 03/27/2018] [Indexed: 11/22/2022]
Abstract
Size and shape have progressively appeared as some of the key factors influencing the properties of nanosized drug delivery systems. In particular, elongated materials are thought to interact differently with cells and therefore may allow alterations of in vivo fate without changes in chemical composition. A challenge, however, remains the creation of stable self-assembled materials with anisotropic shape for delivery applications that still feature the ability to disassemble, avoiding organ accumulation and facilitating clearance from the system. In this context, we report on cyclic peptide-polymer conjugates that self-assemble into supramolecular nanotubes, as confirmed by SANS and SLS. Their behaviour ex and in vivo was studied: the nanostructures are non-toxic up to a concentration of 0.5 g L-1 and cell uptake studies revealed that the pathway of entry was energy-dependent. Pharmacokinetic studies following intravenous injection of the peptide-polymer conjugates and a control polymer to rats showed that the larger size of the nanotubes formed by the conjugates reduced renal clearance and elongated systemic circulation. Importantly, the ability to slowly disassemble into small units allowed effective clearance of the conjugates and reduced organ accumulation, making these materials interesting candidates in the search for effective drug carriers.
Collapse
|
9
|
Yang DP, Oo MNNL, Deen GR, Li Z, Loh XJ. Nano-Star-Shaped Polymers for Drug Delivery Applications. Macromol Rapid Commun 2017; 38. [PMID: 28895248 DOI: 10.1002/marc.201700410] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 06/28/2017] [Indexed: 12/19/2022]
Abstract
With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates.
Collapse
Affiliation(s)
- Da-Peng Yang
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Ma Nwe Nwe Linn Oo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive Singapore, Singapore, 637459, Singapore
| | - Gulam Roshan Deen
- Soft Materials Laboratory, Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637459, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|
10
|
Glass JJ, Li Y, De Rose R, Johnston APR, Czuba EI, Khor SY, Quinn JF, Whittaker MR, Davis TP, Kent SJ. Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood Components. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12182-12194. [PMID: 28338321 DOI: 10.1021/acsami.6b15942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Directing nanoparticles to specific cell types using nonantibody-based methods is of increasing interest. Thiol-reactive nanoparticles can enhance the efficiency of cargo delivery into specific cells through interactions with cell-surface proteins. However, studies to date using this technique have been largely limited to immortalized cell lines or rodents, and the utility of this technology on primary human cells is unknown. Herein, we used RAFT polymerization to prepare pyridyl disulfide (PDS)-functionalized star polymers with a methoxy-poly(ethylene glycol) brush corona and a fluorescently labeled cross-linked core using an arm-first method. PDS star polymers were examined for their interaction with primary human blood components: six separate white blood cell subsets, as well as red blood cells and platelets. Compared with control star polymers, thiol-reactive nanoparticles displayed enhanced association with white blood cells at 37 °C, particularly the phagocytic monocyte, granulocyte, and dendritic cell subsets. Platelets associated with more PDS than control nanoparticles at both 37 °C and on ice, but they were not activated in the duration examined. Association with red blood cells was minor but still enhanced with PDS nanoparticles. Thiol-reactive nanoparticles represent a useful strategy to target primary human immune cell subsets for improved nanoparticle delivery.
Collapse
Affiliation(s)
- Joshua J Glass
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Yang Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Robert De Rose
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Angus P R Johnston
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Ewa I Czuba
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Song Yang Khor
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- Department of Chemistry, University of Warwick , Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Victoria 3010, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University , Melbourne, Victoria 3800, Australia
| |
Collapse
|
11
|
Hu J, Qiao R, Whittaker MR, Quinn JF, Davis TP. Synthesis of Star Polymers by RAFT Polymerization as Versatile Nanoparticles for Biomedical Applications. Aust J Chem 2017. [DOI: 10.1071/ch17391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The precise control of polymer chain architecture has been made possible by developments in polymer synthesis and conjugation chemistry. In particular, the synthesis of polymers in which at least three linear polymeric chains (or arms) are tethered to a central core has yielded a useful category of branched architecture, so-called star polymers. Fabrication of star polymers has traditionally been achieved using either a core-first technique or an arm-first approach. Recently, the ability to couple polymeric chain precursors onto a functionalized core via highly efficient coupling chemistry has provided a powerful new methodology for star synthesis. Star syntheses can be implemented using any of the living polymerization techniques using ionic or living radical intermediates. Consequently, there are innumerable routes to fabricate star polymers with varying chemical composition and arm numbers. In comparison with their linear counterparts, star polymers have unique characteristics such as low viscosity in solution, prolonged blood circulation, and high accumulation in tumour regions. These advantages mean that, far beyond their traditional application as rheology control agents, star polymers may also be useful in the medical and pharmaceutical sciences. In this account, we discuss recent advances made in our laboratory focused on star polymer research ranging from improvements in synthesis through to novel applications of the product materials. Specifically, we examine the core-first and arm-first preparation of stars using reversible addition–fragmentation chain transfer (RAFT) polymerization. Further, we also discuss several biomedical applications of the resulting star polymers, particularly those made by the arm-first protocol. Emphasis is given to applications in the emerging area of nanomedicine, in particular to the use of star polymers for controlled delivery of chemotherapeutic agents, protein inhibitors, signalling molecules, and siRNA. Finally, we examine possible future developments for the technology and suggest the further work required to enable clinical applications of these interesting materials.
Collapse
|
12
|
Dearnley M, Reynolds NP, Cass P, Wei X, Shi S, Mohammed AA, Le T, Gunatillake P, Tizard ML, Thang SH, Hinton TM. Comparing Gene Silencing and Physiochemical Properties in siRNA Bound Cationic Star-Polymer Complexes. Biomacromolecules 2016; 17:3532-3546. [DOI: 10.1021/acs.biomac.6b01029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Megan Dearnley
- CSIRO-Health
and Biosecurity Business Unit, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Vic 3220, Australia
| | - Nicholas P. Reynolds
- ARC
Training Centre for Biodevices, Swinburne University of Technology, Hawthorn, Vic 3122, Australia
| | - Peter Cass
- CSIRO-Manufacturing
Business Unit, Bayview Avenue, Clayton, Vic 3168, Australia
| | - Xiaohu Wei
- CSIRO-Manufacturing
Business Unit, Bayview Avenue, Clayton, Vic 3168, Australia
- College
of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuning Shi
- CSIRO-Health
and Biosecurity Business Unit, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Vic 3220, Australia
| | - A. Aalam Mohammed
- CSIRO-Health
and Biosecurity Business Unit, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Vic 3220, Australia
| | - Tam Le
- CSIRO-Manufacturing
Business Unit, Bayview Avenue, Clayton, Vic 3168, Australia
| | | | - Mark L. Tizard
- CSIRO-Health
and Biosecurity Business Unit, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Vic 3220, Australia
| | - San H. Thang
- CSIRO-Manufacturing
Business Unit, Bayview Avenue, Clayton, Vic 3168, Australia
| | - Tracey M. Hinton
- CSIRO-Health
and Biosecurity Business Unit, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Vic 3220, Australia
| |
Collapse
|
13
|
Khor SY, Hu J, McLeod VM, Quinn JF, Porter CJ, Whittaker MR, Kaminskas LM, Davis TP. The Pharmacokinetics and Biodistribution of a 64 kDa PolyPEG Star Polymer After Subcutaneous and Pulmonary Administration to Rats. J Pharm Sci 2016; 105:293-300. [DOI: 10.1016/j.xphs.2015.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022]
|