1
|
Zhang S, Kong N, Wang Z, Zhang Y, Ni C, Li L, Wang H, Yang M, Yang W, Yan F. Nanochemistry of gold: from surface engineering to dental healthcare applications. Chem Soc Rev 2024; 53:3656-3686. [PMID: 38502089 DOI: 10.1039/d3cs00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Lingjun Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the leading causes of death worldwide. Nanotechnology, particularly nanoparticle-based platforms, is at the leading edge of current cancer management research. Polymer-based nanosystems have piqued the interest of researchers owing to their many benefits over other conventional drug delivery systems. Polymers derived from both natural and synthetic sources have various biomedical applications due to unique qualities like porosity, mechanical strength, biocompatibility, and biodegradability. Polymers such as poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) have been approved by the USFDA and are being researched for drug delivery applications. They have been reported to be potential carriers for drug loading and are used in theranostic applications. In this review, we have primarily focused on the aforementioned polymers and their conjugates. In addition, the therapeutic and diagnostic implications of polymer-based nanosystems have been briefly reviewed. Furthermore, the safety of the developed polymeric formulations is crucial, and we have discussed their biocompatibility in detail. This article also discusses recent developments in block co-polymer-based nanosystems for cancer treatment. The review ends with the challenges of clinical translation of polymer-based nanosystems in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Chetan Janrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Bavaskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
Dholariya S, Singh RD, Sonagra A, Yadav D, Vajaria BN, Parchwani D. Integrating Cutting-Edge Methods to Oral Cancer Screening, Analysis, and Prognosis. Crit Rev Oncog 2023; 28:11-44. [PMID: 37830214 DOI: 10.1615/critrevoncog.2023047772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has become a significant barrier to health worldwide due to its high morbidity and mortality rates. OC is among the most prevalent types of cancer that affect the head and neck region, and the overall survival rate at 5 years is still around 50%. Moreover, it is a multifactorial malignancy instigated by genetic and epigenetic variabilities, and molecular heterogeneity makes it a complex malignancy. Oral potentially malignant disorders (OPMDs) are often the first warning signs of OC, although it is challenging to predict which cases will develop into malignancies. Visual oral examination and histological examination are still the standard initial steps in diagnosing oral lesions; however, these approaches have limitations that might lead to late diagnosis of OC or missed diagnosis of OPMDs in high-risk individuals. The objective of this review is to present a comprehensive overview of the currently used novel techniques viz., liquid biopsy, next-generation sequencing (NGS), microarray, nanotechnology, lab-on-a-chip (LOC) or microfluidics, and artificial intelligence (AI) for the clinical diagnostics and management of this malignancy. The potential of these novel techniques in expanding OC diagnostics and clinical management is also reviewed.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | | | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| |
Collapse
|
4
|
Shapira C, Itshak D, Duadi H, Harel Y, Atkins A, Lipovsky A, Lavi R, Lellouche JP, Fixler D. Noninvasive Nanodiamond Skin Permeation Profiling Using a Phase Analysis Method: Ex Vivo Experiments. ACS NANO 2022; 16:15760-15769. [PMID: 36037067 DOI: 10.1021/acsnano.2c03613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon-based nanoparticles (NPs) are widely used in nanotechnology. Among them, nanodiamonds (NDs) are suitable for biotechnology and are especially interesting for skin delivery and topical treatments. However, noninvasive detection of NDs within the different skin layers or analyzing their penetration ability is complicated due to the turbid nature of the tissue. The iterative multiplane optical properties extraction (IMOPE) technique detects differences in the optical properties of the measured item by a phase-image analysis method. The phase image is reconstructed by the multiplane Gerchberg-Saxton algorithm. This technique, traditionally, detects differences in the reduced scattering coefficients. Here, however, due to the actual size of the NDs, the IMOPE technique's detection relies on absorption analysis rather than relying on scattering events. In this paper, we use the IMOPE technique to detect the presence of the NDs within tissue-like phantoms. In addition, we perform ex vivo pigskin experiments to estimate the penetration of the NDs to the different skin layers and show that their presence reduces at deeper layers. The significance signal of the NDs within the epidermis, dermis, and fat layers gradually reduces, with t test significance values that are smaller than 10-4, 10-3, and 10-2, respectively. The IMOPE results are corroborated by TEM results and Franz-cell experiments. These results confirm that the IMOPE profiled the skin-permeation of the NDs noninvasively.
Collapse
Affiliation(s)
- Channa Shapira
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Daniel Itshak
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Hamootal Duadi
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yifat Harel
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Atkins
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Anat Lipovsky
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ronit Lavi
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Jean Paul Lellouche
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
5
|
Zhang Q, Hou D, Wen X, Xin M, Li Z, Wu L, Pathak JL. Gold nanomaterials for oral cancer diagnosis and therapy: Advances, challenges, and prospects. Mater Today Bio 2022; 15:100333. [PMID: 35774196 PMCID: PMC9237953 DOI: 10.1016/j.mtbio.2022.100333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis and treatment of oral cancer are vital for patient survival. Since the oral cavity accommodates the second largest and most diverse microbiome community after the gut, the diagnostic and therapeutic approaches with low invasiveness and minimal damage to surrounding tissues are keys to preventing clinical intervention-related infections. Gold nanoparticles (AuNPs) are widely used in the research of cancer diagnosis and therapy due to their excellent properties such as surface-enhanced Raman spectroscopy, surface plasma resonance, controlled synthesis, the plasticity of surface morphology, biological safety, and stability. AuNPs had been used in oral cancer detection reagents, tumor-targeted therapy, photothermal therapy, photodynamic therapy, and other combination therapies for oral cancer. AuNPs-based noninvasive diagnosis and precise treatments further reduce the clinical intervention-related infections. This review is focused on the recent advances in research and application of AuNPs for early screening, diagnostic typing, drug delivery, photothermal therapy, radiotherapy sensitivity treatment, and combination therapy of oral cancer. Distinctive reports from the literature are summarized to highlight the latest advances in the development and application of AuNPs in oral cancer diagnosis and therapy. Finally, this review points out the challenges and prospects of possible applications of AuNPs in oral cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | - Dan Hou
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Xueying Wen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Mengyu Xin
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Ziling Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| |
Collapse
|
6
|
Rudraiah PS, Duadi H, Fixler D. Diffused reflectance measurements to detect tattoo ink location in skin using the crossover point. JOURNAL OF BIOPHOTONICS 2022; 15:e202200003. [PMID: 35067001 DOI: 10.1002/jbio.202200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Tattoos are highly trendy in western culture, but many people regret their tattoos for many reasons. It is essential to be aware of the ink location in advance to reduce the long and short-term side effects. In this study, diffuse reflectance (DR) experiments were conducted on two-layer (2L) tissue-mimicking phantoms, where ink was sandwiched between the layers. An appreciable difference in the DR profile was found between the 2L phantom with and without the tattoo ink using the crossover point (Cp) method. Our technique was applied to ex vivo porcine skin. A point of intersection was found, between the skin and the tattooed skin. In the shorter wavelengths (500-600 nm), a distinguishable 2L behavior was found, and in longer wavelengths (600-850 nm), a single layer behavior was found between the tattooed skin before and after the intersection. In biological tissue, this Cp indeed finds the tattoo ink without harm to the surrounding skin.
Collapse
Affiliation(s)
- Pavitra Sokke Rudraiah
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Hamootal Duadi
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
7
|
Rudraiah PS, Duadi H, Fixler D. Bottom layer absorption coefficients extraction from two-layer phantoms based on crossover point in diffuse reflectance. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210253R. [PMID: 34850612 PMCID: PMC8630471 DOI: 10.1117/1.jbo.26.11.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Numerous optical imaging and spectroscopy techniques are used to study the tissue-optical properties; the majority of them are limited in information regarding the penetration depth. A simple, safe, easily applicable diagnostic technique is required to get deeper tissue information in a multilayer structure. AIM A fiber-based diffuse reflectance (DR) technique is used to extract and quantify the bottom layer absorption coefficients in two-layer (2L) tissue-mimicking solid phantoms. We determine the Indian black ink concentrations in a deep-hidden layer that is sandwiched between agar and silicone-based phantom layers. APPROACH A fiber-based DR experiment was performed to study the optical properties of the tissue at higher penetration depth, with different fiber core diameters and a constant numerical aperture (0.5 NA). The optimal core diameter of the fiber was chosen by measuring solid phantoms. In 2L phantoms, the thickness of the top layer was kept 5.5 mm with a constant absorption and reduced scattering coefficients (μa = 0.045 mm - 1 and μs ' = 2.622 mm - 1), whereas the absorption coefficients of the bottom layers were varied from 0.014 to 0.037 mm - 1 keeping the μs ' the same as the top layer. A unique crossover point (Cp) was found in the DR intensity profile against distance. We examined the slope before and after the Cp. These two slopes indicate the difference between the optical properties of the top and bottom layers. Our technique got further verification, as we successfully determined the Cp with different Indian black ink concentrations, placed at the junction between the agar and silicone-based phantom layers. RESULTS The DR measurements were applied to 2L phantoms. Two different slopes were found in 2L phantoms compared to the one-layer (optical properties equal to the top layer of 2L). We extracted the slopes before and after the Cp in the 2L phantoms. The calculated absorption coefficients before the Cp were 0.014 ± 0.0004, 0.022 ± 0.0003, 0.028 ± 0.0003, and 0.036 ± 0.0014 mm - 1, and the absorption coefficients after the Cp were 0.019 ± 0.0013, 0.013 ± 0.0004, 0.014 ± 0.0006, and 0.031 ± 0.0001 mm - 1, respectively. The calculated absorption coefficients before the Cp were in good agreement with the optical properties of the bottom layer. The calculated absorption coefficients after the Cp were not the same as the top layer. Our DR system successfully determines the crossover points 12.14 ± 0.11 and 11.73 ± 0.15 mm for 70% and 100% ink concentrations placed at the junction of the agar and silicone layers. CONCLUSIONS In a 2L tissue structure, the Cp depends on the absorption coefficients of top and bottom layers and the thickness of the top layer. With the help of the Cp and the absorption coefficients, one can determine the thickness of the top layer or vice versa. The slope value before the Cp in the DR profile allowed us to determine the absorption properties of the bottom layer instead of having the average behavior of the 2L phantom in the far detection range (11.0 to 17.0 mm).
Collapse
Affiliation(s)
- Pavitra S. Rudraiah
- Bar Ilan University, Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Ramat Gan, Israel
| | - Hamootal Duadi
- Bar Ilan University, Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Ramat Gan, Israel
| | - Dror Fixler
- Bar Ilan University, Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Ramat Gan, Israel
| |
Collapse
|
8
|
Yariv I, Kannan S, Harel Y, Levy E, Duadi H, Lellouche JP, Michaeli S, Fixler D. Iterative optical technique for detecting anti-leishmania nanoparticles in mouse lesions. BIOMEDICAL OPTICS EXPRESS 2021; 12:4496-4509. [PMID: 34457428 PMCID: PMC8367277 DOI: 10.1364/boe.425798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticles (NPs) based drugs for topical administration are gaining interest in the biomedical world. However, a study tool of their penetration depth to the different tissue layers without additional markers or contrast agents is required in order to relieve safety concerns. While common diagnostic tools, e.g. X-ray, computed tomography or magnetic resonance imaging, can provide in vivo detection of the metallic NPs, their resolution cannot determine the exact penetration depth to the thin skin layers. In this work, we propose the noninvasive nanophotonics iterative multi-plane optical property extraction (IMOPE) technique for the novel iron-based NPs detection in leishmaniasis lesions. The optical properties of the different tissue layers: epidermis, dermis, subcutaneous fat and muscle, were examined before and after topical drug administration. The potential topical drug was detected in the epidermis (∼13µm) and dermis (∼160µm) layers in mice lesions at different stages of the disease (two or four weeks post infection). The lesion size influence on the detection was also observed, where in larger lesions the IMOPE senses a greater presence of the topical drug.
Collapse
Affiliation(s)
- Inbar Yariv
- Faculty of Engineering, Bar
Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
| | - Sriram Kannan
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
- The Mina and Everard Goodman Faculty of
Life Sciences, Bar Ilan University, Ramat
Gan 5290002, Israel
| | - Yifat Harel
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
- Department of Chemistry Faculty of Exact
Sciences, Bar Ilan University, Ramat Gan
5290002, Israel
| | - Esthy Levy
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
- Department of Chemistry Faculty of Exact
Sciences, Bar Ilan University, Ramat Gan
5290002, Israel
| | - Hamootal Duadi
- Faculty of Engineering, Bar
Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
| | - Jean-Paul Lellouche
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
- Department of Chemistry Faculty of Exact
Sciences, Bar Ilan University, Ramat Gan
5290002, Israel
| | - Shulamit Michaeli
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
- The Mina and Everard Goodman Faculty of
Life Sciences, Bar Ilan University, Ramat
Gan 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering, Bar
Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and
Advanced Materials, Bar Ilan University,
Ramat Gan 5290002, Israel
| |
Collapse
|
9
|
Zheng W, Zhou Q, Yuan C. Nanoparticles for Oral Cancer Diagnosis and Therapy. Bioinorg Chem Appl 2021; 2021:9977131. [PMID: 33981334 PMCID: PMC8088384 DOI: 10.1155/2021/9977131] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is the sixth most common malignant cancer, affecting the health of people with an unacceptably high mortality rate. Despite numerous clinical methods in the diagnosis and therapy of oral cancer (e.g., magnetic resonance imaging, computed tomography, surgery, and chemoradiotherapy), they still remain far from optimal. Therefore, an urgent need exists for effective and practical techniques of early diagnosis and effective therapy of oral cancer. Currently, various types of nanoparticles have aroused wide public concern, representing a promising tool for diagnostic probes and therapeutic devices. Their inherent physicochemical features, including ultrasmall size, high reactivity, and tunable surface modification, enable them to overcome some of the limitations and achieve the expected diagnostic and therapeutic effect. In this review, we introduce different types of nanoparticles that emerged for the diagnosis and therapy of oral cancers. Then, the challenges and future perspectives for nanoparticles applied in oral cancer diagnosis and therapy are presented. The objective of this review is to help researchers better understand the effect of nanoparticles on oral cancer diagnosis and therapy and may accelerate breakthroughs in this field.
Collapse
Affiliation(s)
- Weiping Zheng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| |
Collapse
|
10
|
Sudri S, Duadi H, Altman F, Allon I, Ashkenazy A, Chakraborty R, Novikov I, Fixler D, Hirshberg A. Diffusion Reflection Method for Early Detection of Oral Squamous Cell Carcinoma Specifically Targeted by Circulating Gold-Nanorods Bio-Conjugated to Anti-Epidermal Growth Factor Receptor. Int J Nanomedicine 2021; 16:2237-2246. [PMID: 33762823 PMCID: PMC7982793 DOI: 10.2147/ijn.s300125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/13/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Translation of nanomedical developments into clinical application is receiving an increasing interest. However, its use for oral squamous cell carcinoma (OSCC) diagnosis remains limited. We present an advanced nanophotonic method for oral cancer detection, based on diffusion reflection (DR) measurements of gold-nanorods bio-conjugated to anti-epidermal growth factor receptor (C-GNRs) specifically attached to OSCC cells. OBJECTIVE To investigate in a rat model of oral carcinogenesis the targeting potential of C-GNRs to OSCC by using the DR optical method. MATERIALS AND METHODS OSCC was induced by the carcinogen 4-nitroquinoline-N-oxide (4NQO). C-GNRs were introduced locally and systemically and DR measurements were recorded from the surface of the rat tongue following illumination with red laser beam. Rats were divided into experimental and control groups. The results were compared with the histologic diagnosis. RESULTS A total of 75 Wistar-derived rats were enrolled in the study. Local application did not reveal any statistical results. DR measurements following intravenous injection of C-GNRs revealed a significant increase in light absorption in rats with OSCC compare with rats without cancer (p<0.02, sensitivity 100%, specificity 89%). In addition, absorption of light increased significantly in cases of severe dysplasia and cancer (high risk) compared to rats without cancer and rats with mild dysplasia (low risk) (86% sensitivity and 89% specificity, AUC=0.79). CONCLUSION Combining nanotechnology and nanophotonics for in vivo diagnosis of OSCC serves as additional tier in the translation of advanced nanomedical developments into clinical applications. The presented method shows a promising potential of nanophotonics for oral cancer identification, and provides support for the use of C-GNRs as a selective drug delivery.
Collapse
Affiliation(s)
- Shiran Sudri
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Florin Altman
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irit Allon
- Institute of Pathology, Barzilai Medical Center, Ben Gurion University of the Negev, Beer Sheba, Israel
| | - Ariel Ashkenazy
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Ruchira Chakraborty
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Ilya Novikov
- Gertner Institute for Epidemiology and Health Policy Research, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Abraham Hirshberg
- Department of Oral Pathology and Oral Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Pritzker KPH, Darling MR, Hwang JTK, Mock D. Oral Potentially Malignant Disorders (OPMD): What is the clinical utility of dysplasia grade? Expert Rev Mol Diagn 2021; 21:289-298. [PMID: 33682567 DOI: 10.1080/14737159.2021.1898949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Oral epithelial dysplasia is considered a potential histologic precursor of subsequent squamous cell cancer. As standard clinical practice, pathologists grade dysplasia to assess risk for progression to malignancy. Except for the most advanced grade, severe dysplasia, dysplasia grading has failed to correlate well with the risk to develop invasive cancer. The questions of what process dysplasia grading best represents and what clinical utility dysplasia grading may have are explored. AREAS COVERED This narrative review is based on PubMed search with emphasis on papers since 2010. Epithelial dysplasia as a precursor lesion of cancer and dysplasia grading as a risk assessment tool for progression to cancer are discussed. The close clinical association of dysplasia with known carcinogens, alcohol, and tobacco products is presented. EXPERT OPINION Oral epithelial dysplasia is often, associated with prolonged exposure to tobacco and alcohol products. With reduction of carcinogen exposure, dysplasia is known to regress in some cases. It is proposed that histologic dysplasia grade together with macroscopic images of dysplastic clinical lesions be used as an educational tool to incentivize patients to reduce their known carcinogen exposure. This strategy has the potential to reduce lesion progression thereby reducing the disease burden of oral cancer.
Collapse
Affiliation(s)
- Kenneth P H Pritzker
- Professor Emeritus, Laboratory Medicine and Pathobiology; Surgery University of Toronto, Toronto, Ontario, Canada.,Proteocyte Diagnostics Inc., Toronto, Canada.,Department of Pathology and Laboratory Medicine, Pathology & Laboratory Medicine Mount Sinai Hospital, Toronto, Canada
| | - Mark R Darling
- Professor, Department of Pathology and Laboratory Medicine, Schulich Faculty of Medicine and Dentistry, Western University London Ontario, Canada
| | | | - David Mock
- Department of Pathology and Laboratory Medicine, Pathology & Laboratory Medicine Mount Sinai Hospital, Toronto, Canada.,Professor, Pathology/Oral Medicine & Dean Emeritus, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Department of Dentistry, Dentistry Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
12
|
Wang L, Xu SM, Guan S, Qu X, Waterhouse GIN, He S, Zhou S. Highly efficient photothermal heating via distorted edge-defects in boron quantum dots. J Mater Chem B 2020; 8:9881-9887. [PMID: 33001121 DOI: 10.1039/d0tb01873b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Quantum dots (QDs) are increasingly being utilized as near infrared (NIR) active photothermal agents for cancer diagnosis and therapy, with the main emphasis of current research being the enhancement of photothermal conversion efficiencies. Herein, we report the facile synthesis of 2-3 nm boron quantum dots (B QDs), which demonstrated a remarkable photothermal conversion efficiency of 57% under NIR excitation. This outstanding performance can be attributed to the alteration of the electronic structure, which was a result from the distorted edge-effect induced by the unique empty orbit of B atoms in the B QDs. These results can be verified by B K-edge near edge X-ray absorption fine structure (NEXAFS), high-resolution transmission electron microscopy (HR-TEM) and density functional theory (DFT) calculations. The results demonstrate that B QDs represent a promising new and non-toxic agent for both multimodal NIR-driven cancer imaging and photothermal therapy. This work thus identifies B QDs as an exciting new and theranostic agent for cancer therapy. Furthermore, the synthetic strategy used here to synthesize the B QDs was simple and easily scalable.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | - Shan He
- Beijing Technology and Business University, Beijing, 100148, China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
13
|
Abstract
Oral cancer, a universal malady, has become a stumbling block over the years due to its significant morbidity and mortality rates. The greater morbidity associated with this deadly disease is attributed to delay in its diagnosis / its presentation in advanced stage. Being multifactorial, Oral squamous cell carcinoma (OSCC) is the outcome of genetic and epigenetic instability. However, in many instances, oral cancer is preceded by precursor lesions named as oral potentially malignant disorders (OPMDs), the early detection of which makes it beneficial for patients with the possible increase in the productive longevity. Many diagnostic tools / aids have been explored with the aim of early detection of oral precancer and cancer. The basic chair-side procedures or relatively advanced aids come with a set of limitations along with subjectivity as one of the setbacks. The advent and exploitation of molecular techniques in the field of health diagnostics, is demanding the molecular typing of the OPMDs and also of oral cancer. The saga of various diagnostic aids for OSCC has witnessed the so-called latest trends such as lab-on-chip, microfluidics, nano diagnostics, liquid biopsy, omics technology and synthetic biology in early detection of oral precancer and cancer. Oral cancer being multifactorial in origin with the chief participation of altered genetics and epigenetics would demand high-end diagnostics for designing personalized therapy. Hence, the present paper highlights the role of various advanced diagnostic aids including 'omics' technology and synthetic biology in oral precancer and cancer.
Collapse
Affiliation(s)
| | - Roopa S Rao
- Department of Oral Pathology & Microbiology, M. S. Ramaiah Dental College, Bengaluru, Karnataka, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Hytham N Fageeh
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Anwar Alhazmi
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah 84095, United States.
| |
Collapse
|
14
|
Olshinka A, Ad-El D, Didkovski E, Weiss S, Ankri R, Goldenberg-Cohen N, Fixler D. Diffusion Reflection Measurements of Antibodies Conjugated to Gold Nanoparticles as a Method to Identify Cutaneous Squamous Cell Carcinoma Borders. MATERIALS 2020; 13:ma13020447. [PMID: 31963462 PMCID: PMC7014005 DOI: 10.3390/ma13020447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Diffusion reflectance spectroscopy measurements targeted with gold nanoparticles (GNPs) can identify residual cutaneous squamous cell carcinoma (SCC) in excision borders. Human SCC specimens were stained with hematoxylin and eosin to identify tumor borders, and reflected onto an unstained deparaffinized section. Diffusion reflection of three sites (normal and SCC) were measured before and after GNPs targeting. Hyperspectral imaging showed a mean of 2.5 sites with tumor per specimen and 1.2 tumor-free (p < 0.05, t-test). GNPs were detected in 25/30 tumor sites (sensitivity 83.3%, false-negative rate 16.6%) and 12/30 non-tumor sites (specificity 60%, false-positive rate 40%). This study verifies the use of nanotechnology in identifying SCC tumor margins. Diffusion reflection scanning has high sensitivity for detecting the residual tumor.
Collapse
Affiliation(s)
- Asaf Olshinka
- Department of Plastic Surgery, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.O.); (D.A.-E.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (E.D.); (S.W.)
| | - Dean Ad-El
- Department of Plastic Surgery, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.O.); (D.A.-E.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (E.D.); (S.W.)
| | - Elena Didkovski
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (E.D.); (S.W.)
- Department of Pathology and Cytology, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel
| | - Shirel Weiss
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (E.D.); (S.W.)
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva 49100, Israel
| | - Rinat Ankri
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva 49100, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, The Technion—Technical Institute of Israel, Haifa 3200003, Israel
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa 3339419, Israel
- Correspondance: (N.G.-C.); (D.F.); Tel.: +972-4-835-9554 (N.G.-C.); +972-3-531-7598 (D.F.)
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel;
- Correspondance: (N.G.-C.); (D.F.); Tel.: +972-4-835-9554 (N.G.-C.); +972-3-531-7598 (D.F.)
| |
Collapse
|
15
|
Chakraborty R, Ankri R, Leshem-Lev D, Hochhauser E, Kornowski R, Motiei M, Lev EI, Fixler D. Hyperlipidemic mice as a model for a real-time in vivo detection of atherosclerosis by gold nanorods-based diffusion reflection technique. JOURNAL OF BIOPHOTONICS 2019; 12:e201800218. [PMID: 30141260 DOI: 10.1002/jbio.201800218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/20/2018] [Accepted: 08/22/2018] [Indexed: 05/11/2023]
Abstract
Atherosclerosis (AS), the leading cause of morbidity and mortality in cardiovascular disease, needs an early detection for treatment and prevention of fatal events. Here, for the first time, we applied gold nanorods (GNRs)-assisted diffusion reflection (DR), a noninvasive technique for in vivo detection of AS in a high-fat-diet-induced c57bl mouse model, which resembles the manifestation of AS in humans. DR simply detects the change in light reflection profile of tissue due to the accumulation of GNRs in the AS plaques and enables clear detection of AS lesions in carotid and femoral arteries of these hyperlipidemic mice. After 24 hours post-GNRs injection, DR showed the highest efficiency of AS detection. Moreover, the sensitivity of the DR method is much higher than computed tomography (CT) and is comparable to ex vivo high-resolution CT. Our results strongly suggest that the DR method can detect early atherosclerotic lesions in a sensitive and specific manner.
Collapse
Affiliation(s)
- Ruchira Chakraborty
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Rinat Ankri
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Dorit Leshem-Lev
- Cardiac Research Laboratories at the Felsenstein Medical Research Center and the Cardiology Department, Rabin Medical Center, Petah Tikva, Israel
| | - Edith Hochhauser
- Cardiac Research Laboratories at the Felsenstein Medical Research Center and the Cardiology Department, Rabin Medical Center, Petah Tikva, Israel
| | - Ran Kornowski
- Cardiac Research Laboratories at the Felsenstein Medical Research Center and the Cardiology Department, Rabin Medical Center, Petah Tikva, Israel
| | - Menachem Motiei
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Eli I Lev
- Cardiac Research Laboratories at the Felsenstein Medical Research Center and the Cardiology Department, Rabin Medical Center, Petah Tikva, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
16
|
Ankri R, Chakraborty R, Motiei M, Fixler D. Three-Dimensional Highly Sensitive Diffusion Reflection-Based Imaging Method for the in Vivo Localization of Atherosclerosis Plaques Following Gold Nanorods Accumulation. ACS OMEGA 2018; 3:6134-6142. [PMID: 30023941 PMCID: PMC6045478 DOI: 10.1021/acsomega.8b00750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 05/11/2023]
Abstract
In this work, we present a novel, simple, and highly accurate three-dimensional (3D) diffusion reflection (DR) imaging system and method for the detection of accumulation sites of gold nanorods (GNRs) within the tissue. GNRs are intensively used for diagnosis purposes of varied diseases, mainly because of their ability to well absorb visible light, which introduces them as terrific contrast agents in various imaging and theranostics methods. Lately, these GNRs unique absorption properties have served in DR intensity-based measurements, suggesting a novel diagnostic tool, DR-GNRs. In this paper, we show a new measurement system and method for DR, based on its radial collection from the tissue. These radial measurements enabled a unique 3D presentation of the DR-GNR, introducing the dimensions ρ for the radius, θ for the angle, and Γ for the reflected intensity. On the basis of the diffusion model, which enables to correlate between the sample's optical properties and its reflectance, a unique, radial map is presented. This map introduces the slopes of the DR curves in each measured angle, which are linearly correlated with the tissue's optical properties and with the GNRs concentrations within the tissue, thus enables the exact radial localization of the GNRs in the sample. We show the detection of macrophage accumulation in tissue-like phantoms, as well as the localization of unstable plaques in hyperlipidemic mice, in vivo. This highly accurate, powerful technology paves the way toward a real-time detection method that can be successfully integrated in the rapid increasing field of personalized medicine.
Collapse
Affiliation(s)
| | | | | | - Dror Fixler
- E-mail: . Phone: +972-3-5317598. Fax: +972-3-7384050 (D.F.)
| |
Collapse
|
17
|
Chen XJ, Zhang XQ, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising method for oral cancer detection and diagnosis. J Nanobiotechnology 2018; 16:52. [PMID: 29890977 PMCID: PMC5994839 DOI: 10.1186/s12951-018-0378-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Oral cancer is a common and aggressive cancer with high morbidity, mortality, and recurrence rate globally. Early detection is of utmost importance for cancer prevention and disease management. Currently, tissue biopsy remains the gold standard for oral cancer diagnosis, but it is invasive, which may cause patient discomfort. The application of traditional noninvasive methods-such as vital staining, exfoliative cytology, and molecular imaging-is limited by insufficient sensitivity and specificity. Thus, there is an urgent need for exploring noninvasive, highly sensitive, and specific diagnostic techniques. Nano detection systems are known as new emerging noninvasive strategies that bring the detection sensitivity of biomarkers to nano-scale. Moreover, compared to current imaging contrast agents, nanoparticles are more biocompatible, easier to synthesize, and able to target specific surface molecules. Nanoparticles generate localized surface plasmon resonances at near-infrared wavelengths, providing higher image contrast and resolution. Therefore, using nano-based techniques can help clinicians to detect and better monitor diseases during different phases of oral malignancy. Here, we review the progress of nanotechnology-based methods in oral cancer detection and diagnosis.
Collapse
Affiliation(s)
- Xiao-Jie Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 People’s Republic of China
| | - Xue-Qiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 People’s Republic of China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 People’s Republic of China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 People’s Republic of China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079 People’s Republic of China
| |
Collapse
|
18
|
Singh DK, Kumar J, Sharma VK, Verma SK, Singh A, Kumari P, Kharwar RN. Mycosynthesis of bactericidal silver and polymorphic gold nanoparticles: physicochemical variation effects and mechanism. Nanomedicine (Lond) 2017; 13:191-207. [PMID: 29199886 DOI: 10.2217/nnm-2017-0235] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Extracellular synthesis of silver and gold nanoparticles using aqueous cell-free filtrate (CFF) of endophytic Chaetomium globosum and characterization of its bioactive proteins. METHODS Temperature and pH gradients were used to assess their effects on dimensions of NPs. NPs were tested in vivo for antibacterial activity. MALDI-TOF-MS/MS was used for characterization of CFF proteins. RESULTS Fungal CFF fabricated nanoparticles of various shape under varied physicochemical conditions. Silver nanoparticles showed significantly (p ≤ 0.5) enhanced antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae compared with AgNO3. Two prominent CFF proteins showed homology with benzoate 4-monooxygenase cytochrome P450 and ubiquinol-cytochrome c reductase. CONCLUSION The study achieved controlled mycosynthesis of NPs and explains the hitherto poorly known mechanism of reduction, stabilization and antibacterial activity of nanoparticles.
Collapse
Affiliation(s)
- Dheeraj Kumar Singh
- Mycopathology & Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Jitendra Kumar
- Mycopathology & Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vijay Kumar Sharma
- Mycopathology & Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Satish Kumar Verma
- Mycopathology & Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arti Singh
- Mycopathology & Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Puja Kumari
- Mycopathology & Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ravindra Nath Kharwar
- Mycopathology & Microbial Technology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
19
|
Irimie AI, Sonea L, Jurj A, Mehterov N, Zimta AA, Budisan L, Braicu C, Berindan-Neagoe I. Future trends and emerging issues for nanodelivery systems in oral and oropharyngeal cancer. Int J Nanomedicine 2017; 12:4593-4606. [PMID: 28721037 PMCID: PMC5500515 DOI: 10.2147/ijn.s133219] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oral cancer is a prevalent cancer type on a global scale, whose traditional treatment strategies have several drawbacks that could in the near future be overcome through the development of novel therapeutic and prognostic strategies. Nanotechnology provides an alternative to traditional therapy that leads to enhanced efficiency and less toxicity. Various nanosystems have been developed for the treatment of oral cancer, including polymeric, metallic, and lipid-based formulations that incorporate chemotherapeutics, natural compounds, siRNA, or other molecules. This review summarizes the main benefits of using these nanosystems, in parallel with a particular focus on the issues encountered in medical practice. These novel strategies have provided encouraging results in both in vitro and in vivo studies, but few have entered clinical trials. The use of nanosystems in oral cancer has the potential of becoming a valid therapeutic option for patients suffering from this malignancy, considering that clinical trials have already been completed and others are currently being developed.
Collapse
Affiliation(s)
| | - Laura Sonea
- MedFuture Research Center for Advanced Medicine
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv.,Technological Center for Emergency Medicine, Plovdiv, Bulgaria
| | - Alina Andreea Zimta
- MedFuture Research Center for Advanced Medicine.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MedFuture Research Center for Advanced Medicine.,Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|